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The association between the shift in fecal resident microbiome and social conflicts with
long-term consequences on psychological plasticity, such as the development of post-
traumatic stress disorder (PTSD), is yet to be comprehended. We developed an
aggressor-exposed (Agg-E) social stress (SS) mouse model to mimic warzone-like
conflicts, where random life-threatening interactions took place between naïve intruder
mice and aggressive resident mice. Gradually these Agg-E mice developed distinct
characteristics simulating PTSD-like aspects, whereas the control mice not exposed to
Agg-E SS demonstrated distinct phenotypes. To further investigate the role of Agg-E SS
on the resident microbiome, 16S rRNA gene sequencing was assayed using fecal
samples collected at pre-, during, and post-SS time points. A time agonist shift in the
fecal microbial composition of Agg-E mice in contrast to its controls suggested a
persistent impact of Agg-E SS on resident microbiota. At the taxonomic level, Agg-E
SS caused a significant shift in the time-resolved ratios of Firmicutes and Bacteroidetes
abundance. Furthermore, Agg-E SS caused diverging shifts in the relative abundances of
Verrucomicrobia and Actinobacteria. An in silico estimation of genomic potential identified
a potentially perturbed cluster of bioenergetic networks, which became increasingly
enriched with time since the termination of Agg-E SS. Supported by a growing number
of studies, our results indicated the roles of the microbiome in a wide range of phenotypes
that could mimic the comorbidities of PTSD, which would be directly influenced by energy
deficiency. Together, the present work suggested the fecal microbiome as a potential tool
to manage long-term effects of social conflicts, including the management of PTSD.

Keywords: PTSD, C57BL/6J, stress, social defeat, microbiome
Abbreviations: Agg-E, aggressor-exposed; ASVs, amplicon sequence variants; LEfSe, linear discriminant analysis effect size;
MANOVA, multivariate analysis of variance; OTU, operational taxonomic unit; PCoA, principle coordinate analysis;
PERMANOVA, permutational multivariate analysis of variance; PTSD, post-traumatic stress disorder; SEM, standard error
of mean; SS, social stress.
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1 INTRODUCTION

There is increased interest in the gut-brain axis and the potential
role of the gut microbiome in regulating the mental health of the
host (Clapp et al., 2017; Dinan and Cryan, 2017; Osadchiy et al.,
2019). Studies suggested a bidirectional relationship between the
host and the microbiome (Clapp et al., 2017; Dinan and Cryan,
2017; Osadchiy et al., 2019), and understanding and modeling of
this relationship could result in diagnostic markers of the host
stress response, and thus a way to identify precision treatments.
Communication along the gut microbiota-brain access consists
of various routes including the immune system, the endocrine
hypothalamic-pituitary adrenal axis, and the autonomic and
enteric nervous system, using metabolites such as short-chain
fatty acids, tryptophan metabolites, and secondary bile acids
(Wikoff et al., 2009; Tolhurst et al., 2012; Yano et al., 2015; Cryan
et al., 2019). The alteration of the composition of the gut
microbiome is potentially associated with pathophysiology of
diseased states, including autism, anxiety, stress, major
depressive disorder, schizophrenia, obesity, irritable bowel
syndrome, and bipolar disorder (Cryan et al., 2019).

The connection between the gut microbiome and brain
functions is still a relatively new field, and studies are ongoing
to give understanding into this relationship. There is yet
considerable speculation as to whether changes in the
microbiota are fundamental to the pathophysiology of
neurological and psychiatric disorders (Clapp et al., 2017;
Dinan and Cryan, 2017; Cryan et al., 2019), and it is beneficial
to gain insight into the potential relationships. In the current
study, we are focusing on post-traumatic stress disorder (PTSD),
which is a condition of persistent mental and emotional stress
that is typically triggered by experiencing life-threatening events
(Battle, 2013). PTSD has persistent symptoms that include re-
experiencing of the traumatic event (flashbacks), avoidance of
stimuli associated with the trauma, numbing, significant distress,
and social impairment (Battle, 2013; Auxemery, 2018). The
symptoms of PTSD closely align and significantly overlap with
co-morbidities, so the pathophysiology of PTSD remains poorly
understood, and lacks objective diagnoses and robust treatments
(Auxemery, 2018; Compean, 2018). The number and severity of
additional stressful life events signal a higher risk to develop
PTSD (Maes et al., 2001). To study the gut microbiome and its
role and function in disease, murine models remain the most
popular choice (Nguyen et al., 2015; Schoner et al., 2017). The
murine model has the advantages of allowing investigations of
gut microbiome disruptions in a controlled environment,
permits examinations and interventions not possible in
humans, and the mouse model itself includes well-known
genetics with a homogenous genetic background, low cost of
maintenance, short life cycle, and the gut anatomy and
physiology shares similarities to humans (Nguyen et al., 2015).
Limitations of the murine model include that despite principal
similarities, the mouse model cannot fully capture human
systems, the interaction between the gut and the host is host-
specific, thus using a mouse model may not be as applicable in
humans, and the inbred mouse strains does not capture the
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genetic variations found the human populations (Nguyen
et al., 2015).

In the present study, we probed a previously validated C57BL/
6J mouse model simulating PTSD-like features (Hammamieh
et al., 2012; Chakraborty et al., 2015; Gautam et al., 2015; Muhie
et al., 2015; Muhie et al., 2017; Gautam et al., 2018). This model
was developed to mimic warzone-like conflicts, where random
life-threatening interactions took place between naïve intruder
and aggressive resident mice. The model was modified from a
social stress (SS) model of traumatic stress, which involves mice
being stressed by exposures to trained aggressor mice for 6-hour
sessions daily for ten days in a “cage-within-cage” resident-
intruder protocol. During the 6-hour session, the aggressor-
exposed (Agg-E) mouse was removed from the smaller cage
for up to three random times and exposed to the trained
aggressor mouse for one minute or ten strikes, whichever came
first. By the end of the ten days of SS, the Agg-E SS mice
experienced the effects of acute stress, including gains in body
weight, increased body temperature, metabolite and
transcr iptomic changes , cardiac inflammation and
cardiomyopathy, alterations in brain structure, liver
inflammation, and behaviors indicative of fear and anxiety
(Hammamieh et al., 2012; Chakraborty et al., 2015; Gautam
et al., 2015). There was evidence in the brain of Agg-E SS mice of
increased activations of pathways related to anxiety, mood
disorders, impaired cognition, with enrichment in signaling
pathways associated with PTSD-comorbid conditions, and
inhibition of processes connected with synaptic plasticity and
neurogenesis (Muhie et al., 2015; Muhie et al., 2017).
Furthermore, metabolic dysfunction is also a known
comorbidity of PTSD (Michopoulos et al., 2016; Mellon et al.,
2018), and our previous study found that molecular changes that
were associated with PTSD-comorbidities were also significantly
associated with the differentially regulated genes common among
Agg-E SS mice in the blood, hemibrain, and spleen (Muhie et al.,
2017). The effects of acute stress seen in the Agg-E SS mice are
also evident in humans experiencing PTSD, including gains in
body weight (Mitchell et al., 2016), alterations in metabolites
(Mellon et al., 2019) and transcriptomics (Segman et al., 2005;
Zieker et al., 2007; Yehuda et al., 2009; Pitman et al., 2012), and
there is an increased risk of cardiovascular disease in patients
with PTSD (Pitman et al., 2012; Celano et al., 2016; Edmondson
D, 2017). Furthermore, humans with PTSD experience
alterations in brain structure, such as a lower volumes in the
hippocampus and ventromedial prefrontal cortex (Pitman et al.,
2012), and chronic liver disease which is often coupled with
alcohol dependence thus exacerbating the problem (Samala et al.,
2018; Forehand et al., 2019). The increased body temperature
observed in the Agg-E SS mice has also been seen in other social
defeat models, suggestive of the chronic stress (Koolhaas et al.,
1997; Meerlo et al., 1997; Keeney et al., 2001).

Our previous microbiome study using the Agg-E SS model
examined the acute changes to the gut microbiome over the ten-
day Agg-E SS (Gautam et al., 2018), and the current study
utilized a more longitudinal approach also encompassing a
pre-stress control and post-stress time points, as we collected
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fecal samples from control and Agg-E mice before SS, during SS,
and one and four weeks after the termination of SS. The current
study also aimed to capture that the change in the microbiome,
as evidenced by SS, had the potential to cause increased intestinal
permeability. Stress affects the gastrointestinal tract in numerous
ways, but its effect on intestinal barrier function is mainly
through increased permeability allowing the movement of
harmful microorganisms, pro-inflammatory factors and
antigens (Farhadi et al., 2003; Camilleri, 2019). Animal models
of disease have documented a three point relationship consisting
of a disease phenotype, intestinal barrier change, and altered
microbiota, but the directionality of the relationship as it applies
to most diseases is not clear as to what may be the cause and what
is the effect, and most human models do not investigate all three
in tandem (Camilleri, 2019).

In this longitudinal study, we assessed the 16S ribosomal
RNA gene in fecal samples to determine the gut microbiota
composition in the presence of and during recovery from SS, in
an effort to gain valuable insight into characterizing the role of
the microbiome in PTSD and to work towards developing
therapeutic strategies. The objective of this study was to
understand the association between PTSD pathophysiology
and the long-term shift in microbiota. The ultimate objective is
to suggest potential mitigation strategies or nutraceutical
interventions to restore the pre-stress condition of microbiota
and thereby minimize the risk of PTSD prevalence.
2 MATERIALS AND METHODS

2.1 Mice
All animal experiments were approved in writing by the
Institutional Animal Care and Use Committee of the United
States Army Medical Research and Materiel Command and the
United States Army Center for Environmental Research and
were conducted in compliance with the Animal Welfare Act and
other Federal statutes and regulations relating to animals
and experiments involving animals, adhering to principles
stated in the Guide for the Care and Use of Laboratory
Animals (Council, 2011) in facilities fully accredited by
AAALAC International. All mice were purchased from Jackson
Laboratory, Bar Harbor, ME, USA. All mice had ad libitum
access to food and water and were kept in a temperature-
controlled room (21 ± 2°C) on reverse 12/12-hour light/dark
cycle (lights on at 06:00 PM and off at 06:00 AM). Mice were
randomly assigned to aggressor-exposed (Agg-E) and cage-
control groups (N=5 per group). The aggressor mice were SJL
albino male mice (5 to 6 weeks old, weighing 30-35g when
purchased) and were individually housed in polycarbonate cages
(48 x 27 x 20 cm). Male mice were chosen as aggressors since
they tend to be aggressive over a wide range of conditions
(Miczek et al., 2001), whereas female mice are minimally
aggressive when subjected to the isolation housing in this
protocol, outside of periods of pregnancy or suckling
(Newman et al., 2019). Aggressor mice were trained to be
hostile to the intruder following a protocol described earlier
(Hammamieh et al., 2012). Briefly, the aggressor mice were
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individually housed for 1 month prior to the experiment to
induce aggressiveness and territorial behavior due to isolation
and were trained to assault intruders to their home cage, and
their behavior was monitored. Those not meeting expectations of
aggressiveness were not included in the study. The control and
subject mice were male C57BL/6J mice (5 to 6 weeks old,
weighing 20-25g) and were individually housed in a different
room from the aggressor mice for one week prior to and during
the experiment under the same environmental conditions.

2.2 Aggressor Exposure
As done in our previous study, we used a modified “cage-within-
cage” resident-intruder protocol where Agg-E C57BL/6J mice
were placed in a wire mesh cage (17.5 x 14 x 7.5 cm) inside an
aggressors large plastic home cage for 6-hours a day for ten
consecutive days without access to food or water (Hammamieh
et al., 2012). Briefly, during the six-hour “cage-within-cage,”
Agg-E mice were randomly placed in physical contact with the
aggressor mouse, at random intervals, for 1 min or 10 strikes,
whichever came first. On average, the Agg-E SS mice received 10
strikes in 48 seconds during Agg-E (Hammamieh et al., 2012),
and the aggressor mice were rotated through the Agg-E SS mice,
to account for any variability in aggressiveness. We previously
validated the effectiveness of this social defeat model and
performed ethogram evaluations using a 5 min partition test at
1 day, 4 weeks, and 6 weeks following the 10-day Agg-E to
evaluate behavioral patterns in the control versus Agg-E SS mice
(Hammamieh et al., 2012), to ensure the Agg-E SS mice
developed PTSD-like features.

2.3 Sample Collection
Fecal pellet samples were collected from mice before the “cage-
within-cage session” each morning when the mice were being
weighed to minimize handling stress. The time points the fecal
pellets were collected were during social stress, and in the
morning for the Baseline, Week 1, and Week 4 post-SS
samples (Figure 1). The fecal pellets were stored at -80°C until
DNA extraction. Mice were euthanized by cervical dislocation,
alternating between Agg-E and control mice to control for time
of day effects. The ilea were removed, digesta was flushed out by
rinsing with sterile saline, and the tissues were flash frozen in
liquid nitrogen and stored at -80° C until DNA extraction.

2.4 Nucleic Acid Extraction
The fecal samples were kept continuously frozen until extraction,
and the DNA was isolated from the fecal samples using the
DNeasy PowerSoil kit (QIAGEN, Inc., Hilden, Germany)
according to the manufacturer’s protocol. The extracted fecal
DNA was used for 16S rRNA sequencing and taxa
validation qPCR.

The ilea from the mice was homogenized using the Precellys
Evolution (Bertin Instruments, France) in TRIzol Reagent
(Thermo Fisher Scientific, Waltham, MA), the equivalent of
30mg of tissue in TRIzol Reagent was further homogenized,
used for RNA extraction using the RNeasy Mini Kit (QIAGEN,
Inc.) following the manufacturer’s protocol, and the RNA was
used for qPCR.
March 2022 | Volume 12 | Article 810815
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2.5 Library Preparation and Sequencing
We followed the Illumina 16S Metagenomics Library
Preparation manual (Illumina, Inc., San Diego, CA) according
to the manufacturer’s protocol. Briefly, we used previously
designed primers to isolate the hyper-variable V3 and V4
region of the 16S rRNA amplicon (Klindworth et al., 2013),
the samples were barcoded using Nextera indexes, and an
amplicon of approximately 460 bp was generated. The libraries
were pooled and sequenced on the Illumina MiSeq platform,
using paired-end 300 bp reads and Illumina MiSeq v3 reagents.
The end of each read was overlapped to generate high quality,
full-length reads of the V3 and V4 regions.

2.6 Quantitative Polymerase Chain
Reaction (qPCR)
2.6.1 Intestinal Permeability qPCR
A literature search identified intestinal permeability genes of
interest, and the genes of muc2, muc3, and muc5b (Gaudier
et al., 2004), tlr1, tlr2, and tlr4 (Sapone et al., 2011), mmp9 (van
Horssen et al., 2006), nfĸb and tnf-a (Ma et al., 2004), as well as the
housekeeping genes of gapdh, actb, and ubc were selected. Primers
were designed for the genes using the PrimerQuest Tool (IDT
Integrated DNA Technologies, Coralville, IA) (Supplemental
Table S1), and the extracted ileal RNA was used with the RT2

First Strand Kit (QIAGEN) for cDNA synthesis, followed by qPCR
using the RT² SYBR Green qPCR Mastermix (QIAGEN) on the
QuantStudio 7 Flex Real-Time PCR System (ThermoFisher
Scientific), following the cycling conditions of 95°C for 10 min
followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min, with
data acquisition at every cycle.

2.6.2 Taxa Validation qPCR
For Bifidobacterium pseudolongum, a literature search was
performed, and primers were identified for Bifidobacterium
pseudolongum, as well as the subspecies pseudolongum and
globosum (Supplemental Table S1) (Lugli et al., 2019). The
standards of Bifidobacterium pseudolongum subsp. pseudolongum
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Mitsuoka (ATCC® 25526) and Bifidobacterium pseudolongum
subsp. globosum (ATCC® 25865) were reconstituted in 1xPBS
(Gibco, ThermoFisher Scientific) and extracted using the DNEasy
UltraClean Microbial Kit (Qiagen, Inc.) according to the
manufacturer’s protocol. The extracted DNA was used as
standards and a dilution series was run with the samples on
qPCR to determine the concentrations of B. pseudolongum in the
fecal samples. The qPCR was done using the RT² SYBR Green
qPCR Mastermix on the QuantStudio 7 Flex Real-Time PCR
System, following the cycling conditions of 95°C for 10 min
followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min,
with data acquisition at every cycle.

The validation qPCR for Akkermansia muciniphila in the
fecal samples over the time course followed the protocol for RT-
PCR using the Microbial DNA qPCR Assay Kit (QIAGEN, Inc).
Briefly, 5 ng of DNA was used for the assay which included:
extracted genomic DNA, Microbial DNA Positive Control,
Negative Template Control, and a PCR Positive Control. The
qPCR was performed with the QuantStudio 7 Flex Real-Time
PCR System, following the cycling conditions of 95°C for 10 min
followed by 40 cycles of 95°C for 15 sec and 60°C for 2 min, with
data acquisition at every cycle. An Akkermansia muciniphila
standard (ATCC, Manassas, VA, USA, Cat#BAA835D-5)
dilution series was prepared and run with the qPCR to
determine the concentrations of A. muciniphila in the
fecal samples.

2.7 Data Analysis
The initial data quality assessment, processing and chimera
detection on the sequencing reads were processed using
QIIME2 v.2019.4 (Bolyen et al., 2019) following a standard
procedure on demultiplexed sequences. Raw sequence reads
were joined using the join-pairs method with the q2-vsearch
plugin (Rognes et al., 2016) followed by initial quality filtering
based on quality scores and denoising with Deblur (Amir et al.,
2017) with a trim length of 438 nt. All amplicon sequence
variants (ASVs) were aligned with mafft (Katoh et al., 2002)
FIGURE 1 | Overall Experimental Strategy. Agg-E SS C57BL/6J male mice were exposed to trained aggressor SJL mice for 6-hours/day in a “cage-within-cage”
model. Fecal pellets were collected at Baseline, Day 6 and Day 10 during the Agg-E SS, and at Week 1 and Week 4 post-SS from Agg-E SS and control mice, and
stored at -80°C. Ileum samples were collected at Week 4 post-SS. (Ctrl, control; Agg-E, aggressor-exposed; SS, social stress; light blue, daily 6-hour/day Agg-E SS;
dark blue, control mice undergoing “cage-within-cage” 6-hour/day but no Agg-E SS; white, no “cage-within-cage” or Agg-E SS).
March 2022 | Volume 12 | Article 810815
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(via q2‐alignment) and used to construct a phylogeny with
fasttree2 (Price et al., 2010) (via q2‐phylogeny). Alpha-
diversity metrics [Chao1 (Chao, 1984), Shannon (Shannon and
Weaver, 1949), Faith’s Phylogenetic Diversity (Faith, 1992), and
Simpson indexes (Simpson, 1949)], beta diversity metrics of
Weighted UniFrac (Lozupone et al., 2007), and Principle
Coordinate Analysis (PCoA) were estimated using q2‐diversity
after samples were rarefied (subsampled without replacement) to
2251 sequences per sample. Prism (GraphPad, San Diego, CA)
was used to make the alpha diversity plots and to determine
alpha group significance using a 2-way analysis of variance
(ANOVA), and Tukey ’s test was used for multiple
comparisons. The Adonis plugin in QIIME2 (Anderson, 2001;
Oksanen et al., 2018) was used to run an analysis of variance
using distance matrices, which is directly analogous to
multivariate analysis of variance (MANOVA) for beta group
significance. The plugin q2-longitudinal (Bokulich et al., 2018)
was used in QIIME2 to on the alpha and beta diversity metrics to
generate the linear mixed effects models and to see the volatility.
To assign taxonomy to the ASVs, a Naïve Bayes Classifier was
trained on the 16S rRNA V3-V4 region with the specific primers
and the GreenGenes v13.8 99% operational taxonomic unit
(OTU) database of reference sequences (McDonald et al.,
2012) using q2-feature-classifier (Bokulich et al., 2018) via
classify-sklearn (Pedregosa et al., 2011). The GreenGenes v13.8
database was released in 2013 and does not include the most
recent updates to the microbial tree but was chosen because our
previous manuscript investigating the microbiome of the social
stress mouse model (Gautam et al., 2018) was analyzed using this
database. Prism was used for the analysis and plotting temporal
taxa data for the control and Agg-E SS mice. Rank abundance
profiling at the genus level was performed on the 52 genera
identified from QIIME2, and the top 20 genera were ranked for
both Agg-E SS and control samples irrespective of time point,
using their relative abundance. Rank abundance profiling at the
species level was performed on the 57 species identified from
QIIME2, and the top 10 species were ranked based on their
relative abundance, irrespective of time and SS. The top two
identified species were selected for use for taxa validation qPCR:
Bifidobacterium pseudolongum and Akkermansia muciniphila.
MetaCyc pathway abundances (Caspi et al., 2014) were predicted
based on 16S rRNA sequencing ASVs using Phylogenetic
Investigation of Communities by Reconstruction of
Unobserved States (PICRUSt2) (Ye and Doak, 2009; Louca and
Doebeli, 2018; Barbera et al., 2019; Czech et al., 2020; Douglas
et al., 2020). The PICRUSt2 pathways and the sequencing-
derived taxonomic ASVs were analyzed using the
Bioconductor package DESeq2 (Love et al., 2014) in R (version
4.0.2). The DESeq2 results of significant MetaCyc pathways were
fed into Linear discriminant analysis effect size (LEfSe) to
generate cladograms; LEfSe was not used for analysis.

The qPCR for intestinal permeability markers were
normalized by the housekeeping genes, and fold change of
each Agg-E SS sample expression relative to the expression in
healthy controls was calculated by the 2^(-DDCt) method (Livak
KJ, 2001), and was graphed in Prism. The qPCR for the taxa
validation was analyzed and graphed in Prism.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
3 RESULTS

3.1 Taxonomic Changes Due to
Social Stress
To explore the longitudinal relationship between SS-induced
changes on the microbiome, we characterized the fecal
microbiota by sequencing the fecal 16S rRNA from the feces of
the control and Agg-E mice over the time course (Supplemental
Figure 1). The number of sequencing reads and the number of
amplicon sequence variants (ASVs) for the samples are outlined
in Table S2 and Supplemental Figure S1. The average read
count was approximately 166,000 for the raw reads, with 46,000
average reads after initial filtering, processing, and read joining.
There was an average of 171 ASVs per sample, and 1490 different
ASVs were identified. Around 78% of the ASVs were common
between control and Agg-E SS mice. The average Q-score for
forward reads was 36 and was 32 for forward and reverse reads.

Following the social stress, the Chao1 alpha diversity within
the entire sample set was significantly altered in response to time
(2-way ANOVA, p<0.05) (Supplemental Figure S2A). In
addition, there was an initial decreasing trend in the alpha
diversity in the Agg-E SS samples, as highlighted by the decline
in the Chao1 index measurement between Baseline and Day 6 (t-
test, p = 0.05) during the Agg-E SS. However, no significant
differences of SS or time were seen in the alpha diversity metrics
of the Shannon diversity index (Supplemental Figure S2B)
(which places more weight on species richness) Simpson’s
Index (Supplemental Figure S2C) (which places more weight
on species evenness) and Faith’s Phylogenetic Distance
(Supplemental Figure S2D) (which is a qualitative measure of
biodiversity that incorporates phylogenetic difference between
species using the sum of branch lengths). The alpha diversity
metrics were also explored using the QIIME2 longitudinal
plugin, and the linear mixed effects models and volatility plots,
respectively, of control and Agg-E SS mice over the time course
are shown in Supplemental Figure S3 for Chao1 (Supplemental
Figures S3A, E), Shannon’s Index (Supplemental Figures S3B, F),
and Simpson’s Index (Supplemental Figures S3C, G). The
volatility plots are used to examine how the diversity changed
over time in each subject, and the results indicated that for
Chao1, both control and Agg-E SS mice experienced a similar
rate of phylogenetic transition, as they both decreased at Day 6,
increased at Day 10, then experienced a slow decreasing plateau
with decreased variance by Week 4 post-stress (Supplemental
Figure S3E). The Shannon’s Index (Supplemental Figure S3F)
in Agg-E SS mice decreased to Day 6, then increased to Day 10,
followed by a plateau whereas control mice gradually decreased
to Week 1, followed by a slow increase. Simpon’s Index
(Supplemental Figure S3G) showed little variation between
control and Agg-E SS mice, as both experienced a slight
decrease during SS, with a convergence of lines by Week 4.
Furthermore, we measured beta diversity levels using Weighted
UniFrac and visualized the output using Principal Coordinate
Analysis (PCoA) (Figure 2A and Supplemental Figure S2E).
The relative abundance profiles for all of the phyla showed
56.21% variance at Principle Component (PC) 1 and 15.47%
variance in the PC2 scale. The linear mixed effects model and
March 2022 | Volume 12 | Article 810815
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volatility plots for the Weighted UniFrac are shown in
Supplemental Figures S3D, H, respectively. The volatility plot
decreased in both control and Agg-E SS mice from Day 6 to Day
10, with control mice then decreased to Week 1, then increased
whereas Agg-E SS mice increased after Day 6. There was also
increased variability following Day 6. The gut microbial
communities demonstrated a significant time-independent
difference between the control and Agg-E SS samples revealing
shorter distances between intra-group samples than between
group samples. A multi-factor Adonis test (an analysis of
variance using distance matrices) showed the clear separation
between control and Agg-E SS mice on the basis of social stress
(p = 0.001) and also on time (p<0.05). The interaction between
time and stress emerged insignificant.

The rank abundance profile of the bacterial taxa of the Agg-E
SS and control samples, respectively, were dominated across all
time points by the phyla Firmicutes (43 and 49%, respectively)
and Bacteroidetes (30 and 30%, respectively), followed by
Verrucomicrobia (24 and 13%, respectively), Actinobacteria (2
and 7%, respectively), and Proteobacteria (0.7 and 0.9%,
respectively) across the time points (Supplemental Figure S4).
Most phylum relative abundances were comparable between
control and Agg-E SS mice, but the percent relative abundance
of the phyla Verrucomicrobia and Actinobacteria (2-way
ANOVA, p <0.001 and p <0.05, respectively) were both
significantly correlated to SS over the time course, although
the interaction of stress and time was not significant
(Figures 2B–D). In the phylum Verrucomicrobia, there was
significant differences between the control and Agg-E SS mice
at Week 1 (p <0.05) and Week 4 (p = 0.005). The change in the
elevations of slopes of the linear regression lines between control
and Agg-E SS mice for Verrucomicrobia (Figure 2B, slopes: F =
1.053, p = 0.3345, elevations or intercept: F = 20.38, p = 0.0027)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
and Actinobaceria (Figure 2C, slopes: F = 4.591, p = 0.0759,
elevations or intercept: F = 8.556, p = 0.0222) were significant. In
the phylum Verrucomicrobia, the change elevations in slopes in
the linear regression lines between control and Agg-E mice
from acute (Day 10) to post-stress (Week 1 and Week 4) were
significant (slopes: F = 1.530, p = 0.3416, elevation or intercepts:
F = 31.19, p = 0.0113). In the phylum Actinobacteria, the change
in elevation of slopes in the linear regression lines between
control and Agg-E mice from acute (Day 10) to post-stress
(Week 1 and Week 4) was significant (slopes: F = 0.01227, p =
0.9219, elevation or intercepts: F = 35.60, p = 0.0094).
When comparing the sum of the percent abundance of
Verrucomicrobia and Actinobacteria, SS was significant
(p<0.05), and the change in slopes between Control and Agg-E
mice was significant (slopes: F = 0.006262, p = 0.9395, elevation
or intercept: F = 10.33, p = 0.0148) (Figure 2D). The taxonomic
data also showed that the ratio of the phyla Firmicutes
(Supplemental Figure S5A) and Bacteroidetes (Supplemental
Figure S5B) individually did not show the impact of time or
social stress, but was still vulnerable to PTSD-eliciting stress, as
the Firmicutes/Bacteroidetes Log10 ratio (Supplemental Figure
S5C) was impacted by SS and time (2-way ANOVA, p < 0.001
and p<0.05, respectively). The ratio initially increased from
Baseline to Day 6, where it remained steady until it decreased
closer to the Baseline values by Week 4 post-stress.

There were significant taxonomic differences between Agg-E SS
mice and control mice at Day 10 of SS (Figure 3A), Week 1
(Figure 3B), andWeek 4 (Figure 3C). Furthermore, the abundance
of order Turcibacterales was increased in Agg-E SS mice at Day 10,
andWeek 1 andWeek 4 of post-stress, and family Turicibacteraceae
was increased in Agg-E SS mice at Week 1 andWeek 4 (Figure 3D
and Supplemental Table S3). In Day 10 and Week 1 post-SS, the
phylum Actinobacteria , c lass Actinobacteria , order
A B

DC

FIGURE 2 | Beta diversity and abundance of phyla. (A) Beta diversity metric Weighted UniFrac Principal Coordinate Analysis (PCoA) plot of Control (○) and Agg-E
SS (▪) samples. (2-way PERMANOVA: Stress p < 0.001, Time p < 0.05). (B) Percent abundance of phylum Verrucomicrobia. (2-way ANOVA: Time p = 0.06, Stress
p < 0.001) (C) Percent abundance of phylum Actinobacteria. (2-way ANOVA: Stress p < 0.05). (D) Percent abundance of the summation of phyla Verrucomicrobia
and Actinobacteria. (2-way ANOVA: Stress p < 0.05) (Agg-E SS, aggressor-exposed social stress mice, #p-value: 0.1<# < 0.05, *p-value < 0.05, **p-value < 0.01.
white bars, control; dark gray bars, Agg-E SS). The whiskers represent the minimum and maximum values.
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Bifidobacteriales, and genera of Bifidobacterium and Allobaculum
were decreased in Agg-E SS mice. Additionally, specific taxa were
impacted exclusively at a particular post-stress time point, as at
Week 1 the genus Turicibacter was increased in abundance in
Agg-E SS, and families Bifidobacteriaceae and Erysipelotrichaceae,
the class Erysipelotrichi, and the order Erysipelotrichales were
decreased in Agg-E SS mice (Figure 3D). At Week 4 post-stress,
the genus Clostridium and an undetermined genus of the family
S24-7 were increased in Agg-E SS, whereas the genus Bacteroides
was decreased in Agg-E SS (Figure 3D). The specific details for the
Deseq2 results for the taxonomy are provided in Supplemental
Table S3. When considering time only, one taxa emerged as
significant, the phylum Firmicutes, which had decreased
abundance in the Agg-E SS mice (Supplemental Table S4).

Rank abundance profiling at the genus level was performed
(Supplemental Table S5), and the control mice had 15 of the top
20 genera (out of 52 identified genera) originated from the
phylum Firmicutes, and the top two genera were Lactobacillus
and Bacteroides. The Agg-E SS mice had 14 of the top 20 genera
originated from Firmicutes, and the top two genera were
comprised of Akkermansia and Lactobacillus. We selected a
few of the most abundant species identified by sequencing
(Supplemental Table S6), which consisted of Bifidobacterium
pseudolongum and Akkermansia muciniphila, and conducted
real-time PCR using primers corresponding to the species and
bacterial DNA as a standard control. For B. pesudolongum, we
compared the number of reads of the sequencing data
(Supplemental Figure S6A) to the RT-PCR data for Agg-E SS
and control mice for the subspecies B. pesudolongum subspecies
pseudolongum (Supplemental Figure S6B) and B. pesudolongum
subspecies globsum (Supplemental Figure S6C) and found a
very similar trend, corroborating the sequencing data.
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B. pesudolongum abundance in control mice increases to Week
1, and then decreases, whereas it remains relatively steady in
abundance throughout the time course in the Agg-E SS mice.
Furthermore, we compared the observed sequencing data from
Akkermansia muciniphila (Supplemental Figure S7A) to the RT-
PCR data (Supplemental Figure S7B) and found a similar trend
of an abundance of A. muciniphila in the Agg-E SS and control
mice over the time course. The abundance of A. muciniphila
decreased from Baseline to Day 6, then increased to Week 1 and
then decreased again at Week 4 in the sequencing reads. For the
qPCR data in the control mice, A. muciniphila decreased from
Baseline to Day 6, and then continued steadily until it increased at
Week 4. Whereas, in the Agg-E SS mice, A. muciniphila increased
from Baseline to Day 6, then remained steadily through Week 4.

3.2 Pathway Analysis
Seven differentially regulated pathways were detected out of 267
identified pathways (Deseq2, padj < 0.1) after correcting for baseline
and time (Figure 4 and Supplemental Table S7). The time points
of Day 6, Day 10, Week 1, and Week 4 had three pathways in
common that were activated in Agg-E SS mice, consisting of 1,4-
dihydroxy-6-naphthoate biosynthesis I, 1,4-dihydroxy-6-
naphthoate biosynthesis II, and the Superpathway of menaquinol-
8 biosynthesis II. Day 6 of acute stress had an activation in Agg-E SS
mice of the Superpathway of glycerol degradation to 1,3-
propanediol. Week 1 of post-SS had an activation in Agg-E SS
mice of the Thiazole biosynthesis II (Bacillus) and the Superpathway
of thiamin diphosphate biosynthesis II, and had an inhibition of
Starch degradation V. There were a number of differentially
regulated time-dependent pathways corrected for Baseline
(Supplemental Table S8), with 36 pathways being inhibited in
Agg-E SS mice and 31 pathways being increased in Agg-E SS mice.
A B

D

C

FIGURE 3 | Significant taxonomy cladograms, Agg-E SS vs Control, normalized by baseline. Deseq2 analysis of taxonomic ASVs were fed into Linear discriminant
analysis effect size (LEfSe) to generate cladograms to graphically represent the significant taxa in their taxonomic tree; LEfSe was not used for analysis. (A) Day 10:
Acute Stress. (B) Week 1: Post-stress. (C) Week 4: Post-stress. (D) Significant taxa at time points for Agg-E SS versus Control mice, normalized by baseline from
Deseq2 (padj < 0.1). Taxa exclusive to a particular time point are listed above the center timeline, whereas taxa in common between time points are listed below the
timeline. (light red, decreased abundance in Agg-E SS; light green, increased abundance in Agg-E SS; Agg-E SS, aggressor-exposed social stress; Ctrl, control).
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3.3 Intestinal Permeability
Ileum samples from the mice were collected at Week 4 post-stress
and used for RT-PCR using genes related to intestinal permeability
markers. The data was normalized by the three housekeeping
genes of gapdh, actb, and ubc, and the Log2 fold change between
the control and Agg-E SS mice was calculated (Figure 5).
The intestinal permeability markers of muc5b (p = 0.05), nfkb
(p = 0.04), tlr1 (p < 0.01), and tlr2 (p = 0.04) were significant.
4 DISCUSSION

The longitudinal dynamics, physiological effects, and the
magnitude of the gut microbiome in response to stress is
poorly understood. Our previous study (Gautam et al., 2018)
explored the acute effects of PTSD on the gut microbiome,
through the same 10-day experimental setup of mice
undergoing 6-hours/day SS. Expanding from this result, the
current study aimed to probe the long-term effects of Agg-E
SS. Our ultimate objective is to find potential mitigation
strategies of PTSD by suggesting modifications of the
microbiome through nutraceutical interventions. A model
estimating the shift in microbial composition could be used as
a diagnostic marker of the host stress response, offering precision
treatment through regulation of the microbiome, without
spending time and money on novel interventions. Potential
nutraceutical interventions may include prebiotics and
probiotics consisting of special diets or dietary supplements, or
postbiotics, which may include molecules that are able to
influence the gut microbiome signals (Osadchiy et al., 2019).

There was a temporal change in the microbiome between
control and Agg-E SS mice, as evidenced by the significant Chao1
alpha diversity metric. The Chao1 Index decreased between
Baseline and Day 6 in both the Agg-E SS and control mice, but
then increased, which could be attributed to the 6-hours/day of
food and water deprivation. The beta diversity Weighted
UniFrac PCoA showed evidence of change based upon both
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
time and social stress. Incorporating the alpha and beta diversity
is important in evaluating the microbial community over time
(Wagner et al., 2018). In this study, SS is the driving force
between the cohorts, but SS in alpha diversity was insignificant.
Alpha diversity metrics capture the within sample changes but
do not express changes in the community composition, as a
March 2022 | Volume 12 | Article 8108
FIGURE 5 | Intestinal Permeability Markers Fold Change at Week 4 post-
stress in Aggressor-exposed social stress ileal samples. The qPCR for intestinal
permeability markers were normalized by the housekeeping genes, and fold
change of each Agg-E SS sample expression relative to the expression in
healthy controls was calculated by the 2^(-DDCt) method. Error bars are mean
with the SEM (Standard Error of Mean). (#p-value 0.1<#<0.05, *p-value<0.05,
**p-value<0.01).
FIGURE 4 | Significant pathways between Agg-E SS vs Control mice, normalized by baseline from Deseq2 (padj < 0.1). Those pathways exclusive to a particular
time point are listed above the center timeline, whereas pathways in common between time points are listed below the timeline (light red, inhibited in Agg-E SS; light
green, activated in Agg-E SS; Agg-E SS, aggressor-exposed social stress).
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community can undergo a complete compositional shift over
time, but still have similar alpha diversity metrics (Wagner et al.,
2018). These results seem to suggest that in Agg-E SS, there is a
driving force that is reflected as a between communities shift,
since comprehensive changes were seen between Agg-E SS and
controls, thus giving insight into the severity and uniqueness of
PTSD. A number of other studies corroborate our findings of no
significant changes in alpha diversity, in PTSD in humans
(Hemmings et al., 2017), in humans with psychological distress
(Peter et al., 2018), and in our previous study of Agg-E SS mice
(Gautam et al., 2018).

The phyla Verrucomicrobia and Actinobacteria experienced
social stress-related changes, especially at the post-SS period where
significant changes were observed at Week 1 and Week 4 post-SS.
This showed a trend in the changing microbial populations due to
delayed effects of Agg-E SS. Another study found that decreased
abundance of Actinobacteria, Lentisphaerae, and Verrucomicrobia
was associated with PTSD status in a human study of South
African PTSD-affected individuals and trauma-exposed controls
(Hemmings et al., 2017). In the present study, our Agg-E SS mice
had increased Actinobacteria, but decreased Verrucomicrobia. We
previously reported that Verrucomicrobia, Actinobacteria, and
Proteobacteria were among the top enriched phyla during the
10-day study of Agg-E SS (Gautam et al., 2018). Our previous
study also showed an immediate and persistent decrease in
Verrucomicrobia over the ten days of SS (Gautam et al., 2018),
and our current study had a decrease in Verrucomicrobia in Agg-E
SS mice, with significance as compared to controls at the post-SS
time points.

In regard to the rank abundance profile of the top genera, our
previous study found Akkermansia to be the top genera in Agg-E
SS mice (Gautam et al., 2018), as did the current study.
Akkermansia is a genus in the phylum Verrucomicrobia and
has had anti-inflammatory effects in a mouse model of chronic
colitis (Zhai et al., 2019). A. muciniphila is a mucus colonizer and
it uses mucin as its sole carbon and nitrogen source, but there is
conflicting evidence of the beneficial nature of Akkermansia in
Irritable Bowel Disease (IBD), as several studies found
Akkermansia to be decreased or unaltered in IBD, while there
is evidence it is increased in mice with colitis (Zhai et al., 2019).

In addition, Firmicutes and Bacteroidetes are the most
abundant members of the mouse gut microbiome, and the
ratio can change over time, in response to different factors. SS
effected the Firmicutes/Bacteroidetes Log10 ratio although the
difference between the phyla individually were not significant at
any specific time points, but Firmicutes was significantly affected
by time. In our previous manuscript (Hammamieh et al., 2012),
we found that the average body weight increased overall, and the
Agg-E SS mice gained significantly more weight during the 10-
day social stress. Control mice decreased in weight initially after
Day 4 of the 6-hours/day food and water deprivation, but the
Agg-E SS mice weight steadily and significantly increased during
the 10-day social stress. After 2 weeks of post-stress rest, the
weight difference between control and Agg-E SS mice was no
longer significant. Hormones such as leptin and ghrelin are
involved in the process of food intake, weight, and energy
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balance, as leptin suppresses food intake and induces weight
loss whereas ghrelin has a role in initiating food intake (Klok
et al., 2007). An increase in Firmicutes and the Firmicutes/
Bacteroidetes ratio is associated with weight gain, and the
change in the Firmicutes/Bacteroidetes ratio may be accounted
for by social stress, which is differentiating the two groups and
affecting the microbiome (Gautam et al., 2018).

PTSDmay affect the gut-brain axis, causing dysbiosis through
psychological and physiological stress. In a previous study
(Gautam et al., 2015), we found that 24hrs after Day 10 of
social stress, there were significant changes in the plasma
proteins of Agg-E SS mice, including haptoglobin,
myeloperioxidase, and serum amyloid P-component that are
known to be affected by inflammation, as well as mRNA data
showing signs of liver inflammation 24hrs post-stress exposure.
In addition, we previously found activation of inflammatory
pathways in the hemibrain, blood, and spleen observed ten days
and 42 days post-SS [10], and plasma protein levels of gut-
derived metabolites were modified 24-hours post-SS and
remained altered 4-weeks post-SS (Gautam et al., 2015). In the
gastrointestinal tract, inflammation may lead to intestinal
permeability (Maes et al., 2001; Klindworth et al., 2013). The
current study looked into known markers for intestinal
permeability in ileum samples collected at Week 4 post-SS, and
the Log2 fold change of muc5b, nfkb, tlr1, and tlr2 were
significant when comparing Agg-E SS mice to the control
mice. The other markers of intestinal permeability that were
not significant between Agg-E SS and control mice may be due to
the fact that the ileum samples were collected at Week 4 post-
stress, and their effects may have been more pronounced during
stress or earlier during post-stress. For example, mmp-9 is a
protease known to degrade extracellular matrix components, is
increased in response to stress and may cause inflammation
(Aguayo et al., 2018; Al-Sadi et al., 2019; Martinelli et al., 2021),
and increased levels of mmp-9 cause increased intestinal
permeability (Al-Sadi et al., 2019). We had previously found
that mmp-9 was elevated in the blood directly after 5-days and
10-days of social stress (Muhie et al., 2017), but here it was down-
regulated in the ileum samples at Week 4 post-stress.

The mucin genes of muc2, muc3, and muc5b were all down-
regulated in Agg-E SS mice and are involved in preserving the
mucus layer that covers the gastrointestinal tract, which is the
first line of defense against the contents of the lumen (Gaudier
et al., 2004). The mucus layer pays a major protective role, and
intestinal permeability may increase through stress by the
decrease in mucus production (Soderholm et al., 2002; Barreau
et al., 2004). Therefore, at Week 4 post-SS the mucin genes are
down-regulated, which may point to a compromise in the
intestinal barrier. A. muciniphila, a known mucin-degrading
bacteria that utilizes mucin as its sole carbon and nitrogen
source, is increased in Agg-E SS mice, and may be affecting the
mucin gene expression.

Toll-like receptor (TLR) signaling in the gut is involved in
maintaining homeostasis, however, under inflammatory
conditions, the mucosal epithelial TLR expression is increased
which contributes to both the induction of the inflammatory
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response and immune tolerance (Sapone et al., 2011). The Log2
fold change of the TLR genes of tlr1, tlr2, and tlr4 were all down-
regulated in the Week 4 ileum samples in Agg-E SS mice. Due to
usingWeek 4 post-stress ileum samples, we may have overlooked
earlier activation of the TLR genes in the ileum of Agg-E SS mice.
Our previous manuscript regarding Agg-E SS on brain
transcriptomics, found that tlr1 was predicted to be up-
regulated in the hippocampus immediately following 5 days of
SS and both tlr1 and tlr4 were predicted to be down-regulated in
the septal region and amygdala, respectively, at 6 weeks post-10
day SS (Muhie et al., 2015). Another of our previous studies
(Gautam et al., 2015) found Lipopolysaccharide (LPS) to be to
topmost activator in Agg-E SS differentially expressed genes in
the liver at 24 hours-post stress, but it trended towards being
inhibited at 1.5 weeks and 4 weeks post-stress. LPS is a ligand of
TLR activation, and may lead to the activation of nfkb gene
expression (Savinova et al., 2009). We did find that nfkb was
significantly up-regulated in Agg-E SS mice. The transcription
factor nfkb plays a key role in immunity and inflammation and is
damaging agent that is part of potential mechanisms of oxidant-
induced intestinal barrier disruption. In our previous study, at
later time points of 10-days post-stress and 6 weeks post-stress,
pathways related to nfkb-regulated transcriptions were activated
in the blood, brain, and spleen (Muhie et al., 2017). nfkb1 was
up-regulated in the corpus striatum after ten-days SS followed by
24 hours of rest, and in the amygdala nfkb1 was down-regulated
and nfkb2 was up-regulated after ten-days SS followed by 42 days
post-stress rest (Muhie et al., 2015). Nfkb1 and Nfkb2 proteins
p105 and p100 serve both as nfkb precursors and inhibitors of
nfkb dimers (Savinova et al., 2009). The binding of nfkb to the
DNA promoter region in the nucleus leads to up- or down-
regulation, and nfkb was shown to regulate tnf-alpha, which led
to increased intestinal permeability (Ma et al., 2004).

Pathway analysis of predictedMetaCyc pathways showed that all
of the pathways significant between AggE-SS and control mice were
involved in biosynthesis and degradation/utilization/assimilation
superclasses, which are complimentary processes of bioenergetic
networks. Biosynthesis comprises the pathways involved in the full
spectrum of the biosynthetic capabilities of cells that stimulate their
growth and interactions, and degradation/utilization/assimilation
contains the pathways by which various organisms degrade
substrates to serve as energy and nutrients. Human PTSD
patients have a known energy imbalance, as evidenced in studies
by a lower mitochondrial DNA copy number in PTSD, which may
reflect impaired energy metabolism and represent a novel aspect of
PTSD pathophysiology (Bersani et al., 2016; Mellon et al., 2018;
Bersani et al., 2020). Metabolic profiling identified significant
differences between PTSD positive and negative humans in the
biochemical pathways involved in glucose metabolism, energy
utilization, and lipid metabolism (Mellon et al., 2019), further
illustrating the energy needs in PTSD. We had previously found
that in our Agg-E SS mouse model, lipid metabolites were elevated
in plasma at 24hrs, 1.5 weeks, and 4 weeks post-stress, which may
indicate increased fat utilization due to increased energy needs
during and after Agg-E SS (Gautam et al., 2015). Therefore, PTSD
may cause an increased energy utilization, which leads to the need
for more energy. As the energy needs increase in the Agg-E SS mice,
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they may start using energy salvage pathways and non-conventional
energy networks to overcome their energy needs. The pathways of
1,4-dihydroxy-6-naphthoate biosynthesis I and 1,4-dihydroxy-6-
naphthoate biosynthesis II were predicted to be up-regulated at
Day 6, Day 10, Week 1, and Week 4 in Agg-E SS mice and are
alternate pathways of methaquionone synthesis via futalosine,
which is an important component of the electron-transfer system
in prokaryotes (Seto et al., 2008; Zhi et al., 2014). Also, the
Superpathway of menaquinol-8 biosynthesis II was predicted to
be up-regulated at these time points, and is the well-characterized
route to synthesize menaquinone from chorismate (Hiratsuka et al.,
2008). Day 10 of acute stress had a predicted activation in Agg-E SS
mice of the Superpathway of glycerol degradation to 1,3-
propanediol, which is an alternate pathway for glycerol and
occurs in the absence of an external oxidant, thus glycerol is
fermented by a dismutation process (Rush et al., 1957). Week 1
had a predicted up-regulation of the Superpathway of thiamin
diphosphate biosynthesis II and the component pathway of thiazole
biosynthesis II (Bacillus); both are involved in the synthesis of the
thiazole complex of thiamin, which is part of thiamin diphosphate
(vitamin B1) synthesis (Lawhorn et al., 2004). Week 1 had a
predicted inhibition of Starch Degradation V, which is an
alternate pathway where starch is degraded extracellularly by
amylopullulanase (Lee et al., 2006; Labes and Schönheit, 2007).
Therefore, the pathway analysis identified a potentially perturbed
cluster of bioenergetic networks, which became increasingly
enriched with the time since the termination of Agg-E SS.

In addition to building upon our previous microbiome study
(Gautam et al., 2018) by exploring the long-term effects of the 10-day
Agg-E SS on the gut microbiota, we also sought to validate the
findings from our previous experiment in an effort to identify
sustained alterations in the fecal microbiome that need to be
examined further. Regarding sample diversity, both studies showed
no significant change in the alpha diversity metrics of the Shannon
and Simpson’s Indexes, and time and SS influenced beta diversity.
The phyla most highly ranked in abundance were Firmicutes and
Bacteroidetes, followed by Tenericutes, Verrucomicrobia,
Actinobacteria and Proteobacteria in the previous study, whereas
the current study had the same order of phyla abundance, except
Tenericutes followed Proteobacteria in rank. In addition, the phyla
Verrucomicrobia and Actinobacteria were significantly different
between control and Agg-E SS mice and the Firmicutes/
Bacteroidetes ratio was affected by SS. Furthermore, Akkermansia
was identified to be the top genera in Agg-E SS mice in both studies.
This study focusedon long-termeffects following stress anduseddata
from the pre-stress, post-stress and recovery time points.
5 CONCLUSION

The current longitudinal study illustrated that exposure of mice
to social conflicts cause lasting shift in the gut microbiome.
Hence, microbial signatures could be valuable tools in managing
long-term impacts of social stress. The ultimate objective is to
identify potential mitigation strategies for PTSD. The alpha and
beta diversity data, as well as the taxonomy alterations illustrated
that PTSD-like Agg-E SS is making comprehensive changes
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between communities, which indicates that therapeutic,
nutraceutical interventions (prebiotics, probiotics, and
postbiotics) could be a viable solution, since there are distinct
differences between control and SS mice. Regarding the gut
microbiome, our understanding of the complex processes at
work is still lacking, and more work needs to be done to
elevate our comprehension. In addition, this study involved
16S rRNA sequencing, which is more limited than in-depth
whole genome shotgun sequencing at identifying bacteria at the
species level of classification, as well as identifying the complete
microbial composition to include the other kingdoms of viruses
and fungi. Furthermore, this study only looked at feces and did
not take into account the rest of the gut microbiome over the
length of the intestinal tract nor the mucosal population. In
addition, this study stopped at Week 4 post-SS, and examining
the microbiome further post-stress would be beneficial, to
examine the lasting impacts or complete recovery and
stabilization of the microbiome post-SS. It is important to
characterize the fecal, luminal, and mucosal populations and
their relationships to attain the complete picture. Mouse ecology
does vary from humans, so there is a need to test in
phylogenetically higher orders of animals or human, to gain
more confidence in the results. Nevertheless, this study does
illustrate the effect of life-changing trauma simulating PTSD
does have a long-term effects on the microbial community, as we
did observe changes at Week 4 post-stress in a mouse model,
which equates to approximately two human years.
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