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A Jack of All Trades: The Role of
Pneumococcal Surface Protein A in
the Pathogenesis of Streptococcus
pneumoniae
Jessica R. Lane, Muralidhar Tata, David E. Briles and Carlos J. Orihuela*

Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States

Streptococcus pneumoniae (Spn), or the pneumococcus, is a Gram-positive bacterium
that colonizes the upper airway. Spn is an opportunistic pathogen capable of life-
threatening disease should it become established in the lungs, gain access to the
bloodstream, or disseminate to vital organs including the central nervous system. Spn
is encapsulated, allowing it to avoid phagocytosis, and current preventative measures
against infection include polyvalent vaccines composed of capsular polysaccharide
corresponding to its most prevalent serotypes. The pneumococcus also has a plethora
of surface components that allow the bacteria to adhere to host cells, facilitate the evasion
of the immune system, and obtain vital nutrients; one family of these are the choline-
binding proteins (CBPs). Pneumococcal surface protein A (PspA) is one of the most
abundant CBPs and confers protection against the host by inhibiting recognition by C-
reactive protein and neutralizing the antimicrobial peptide lactoferricin. Recently our group
has identified two new roles for PspA: binding to dying host cells via host-cell bound
glyceraldehyde 3-phosphate dehydrogenase and co-opting of host lactate
dehydrogenase to enhance lactate availability. These properties have been shown to
influence Spn localization and enhance virulence in the lower airway, respectively. Herein,
we review the impact of CBPs, and in particular PspA, on pneumococcal pathogenesis.
We discuss the potential and limitations of using PspA as a conserved vaccine antigen in a
conjugate vaccine formulation. PspA is a vital component of the pneumococcal virulence
arsenal – therefore, understanding the molecular aspects of this protein is essential in
understanding pneumococcal pathogenesis and utilizing PspA as a target for treating or
preventing pneumococcal pneumonia.
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INTRODUCTION

Streptococcus pneumoniae (Spn), or the pneumococcus, is a
Gram-positive bacterium that colonizes the nasopharynx.
From the nasopharynx, Spn can disseminate to normally sterile
sites to cause opportunistic infections. These sites include the
middle ear, where Spn causes otitis media (Bluestone et al., 1992).
Spn can also be aspirated into the lower respiratory tract to cause
pneumonia. These infections typically occur in infants, those
who are immunocompromised, or in the elderly (Brooks and
Mias, 2018). In approximately 30% of individuals with
pneumonia, Spn gains access to the bloodstream and the
ensuing bacteremia can result in sepsis and disseminated organ
damage (Askim et al., 2016; Asner et al., 2019). Within the
bloodstream, pneumococci encounter the blood-brain barrier
and in rare cases can cross this endothelial cell barrier to cause
meningitis (Ring et al., 1998; Thigpen et al., 2011). It is
important to consider that Spn is primarily an asymptomatic
commensal and severe infections are uncommon among
otherwise healthy adults. Clinical epidemiological studies show
that most affected individuals had at least one or more
underlying conditions placing them at higher risk of infection
(Bogaert et al., 2004). Pneumococcal infections, even among
those who are susceptible, are commonly preceded by prior viral
exposure (O'Brien et al., 2000; Jansen et al., 2008). Viral
infections, particularly influenza, have been shown to prime
mucosal epithelial cells for bacterial binding, enhance
carbohydrate and protein levels in airway secretions, and
disarm or deflect the immune system. These events enhance
the susceptibility of the lower airway for bacterial establishment
and, once pneumonia develops, can accelerate the progression
towards invasive disease (Hament et al., 1999; Diavatopoulos
et al., 2010; Loughran et al., 2019; Van Der Poll and Opal, 2009).

In 2018, the Centers for Disease Control and Prevention
reported that pneumococcal pneumonia resulted in 150,000
individuals being hospitalized in the United States, while
pneumococcal bacteremia and meningitis caused 3,500 deaths
(Centers for Disease Control and Prevention, 2018). Across the
globe, pneumococcal burden was estimated to be 26.7 incidences
per 1,000 people causing over one million deaths (Global Burden
of Disease Lower Respiratory Infections Collaborators, 2018).
Multiple vaccines are currently licensed to protect against Spn
disease and all are composed of capsular polysaccharide from
Spn’s most prevalent serotypes (Scott et al., 2021). Since the
introduction of a 7-valent conjugate vaccine in 2000, followed by
the 13-valent version in 2010, invasive pneumococcal disease
(IPD) in children <5 years has drastically decreased by as much
93% in the United States (Centers for Disease Control and
Prevention, 2018). In adults, there has been an overall
reduction of IPD incidence from 16 to 8 cases per 100,000
(Centers for Disease Control and Prevention, 2018). However,
the threat of vaccine escape, serotype 3 for which the vaccine has
poor efficacy, and remnant disease caused by non-vaccine
serotypes, has kept efforts to improve on these vaccines a top
priority (Scott et al., 2021). Along such lines and in 2021, 15- and
20-valent conjugate vaccines were approved, and these will most
likely further lower pneumonia rates in the near future (Hurley
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et al., 2020). Despite the tremendous success of the conjugate
vaccines, Spn remains a leading cause of community-acquired
pneumonia and invasive disease (Global Burden of Disease
Lower Respiratory Infections Collaborators, 2018).

Spn has several virulence factors that aid its survival within
the host, one of these being its capsular polysaccharide which
protects it from phagocytosis by immune cells (Hyams et al.,
2010). Another being the toxin pneumolysin, which forms pores
in the membranes of host cells resulting in ion dysregulation and,
at higher concentrations, cell death by apoptosis or necroptosis
(Hirst et al., 2004; González-Juarbe et al., 2015). Pneumococcal
pneumonia is characterized by a strong inflammatory response
in the airway that results in lung consolidation and loss of gas
exchange. Pneumolysin, in addition to killing cells and causing
the release of alarmins, activates the classical complement
cascade (Mitchell and Dalziel, 2014). Lipoteichoic (LTA) and
cell wall teichoic acid (WTA) associated with the pneumococcus
are Toll-like receptor 1/2 ligands and therefore are also
inflammatory (Draing et al., 2006). Phosphorylcholine (PC)
residues that are present on LTA and WTA mimic the
molecular structure of host platelet-activating factor and bind
to platelet-activating factor receptor (PAFr) (Cundell et al.,
1995). This activates host cells, resulting in chemokine
production, and the PC residues on the surface of the
bacterium are targeted by C-reactive protein, which activates
complement and exacerbates inflammation (Pepys and
Hirschfield, 2003). The pneumococcus is generally protected
by its capsule from killing by infiltrated immune cells until the
host develops capsule-specific antibody, which then effectively
opsonizes the bacterium for phagocytosis.

Clinical isolates of Spn vary considerably in their genetic
content, as much as 10-15% between strains, and carry between
10-16 choline-binding proteins (CBP) (Hiller et al., 2007; Gisch
et al., 2013). With exception to serotype 1 (Cornick et al., 2017),
the majority of Spn produce pneumococcal surface protein A
(PspA), a 65 to 99-kDa CBP that protects the bacteria from C-
reactive protein-mediated activation of complement and from
killing by lactoferricin, a cationic antimicrobial peptide
(Hammerschmidt et al., 1999; Tu et al., 1999). Recent findings
from our group describe two new functions for PspA, as an
adhesin and means to co-opt host metabolic enzymes for its
benefit (Park et al., 2021a; Park et al., 2021b). Indeed, this
protein acts as a “Jack of All Trades.” In this review, we will
summarize how PC and CBPs contribute to pneumococcal
pathogenesis and the role PspA plays during infection. At
conclusion, we will discuss how our new understanding of
PspA virulence provides insight into Spn pathogenesis and
the implications towards new treatments and potentially
improved vaccines.

Phosphorylcholine on the Pneumococcal
Surface
Pneumococcal cell wall is located outside the cell membrane and
underneath the capsular polysaccharide layer of Spn. It is
composed of peptidoglycan chains cross-linked to each other
with interlaced teichoic acid (Galán-Bartual et al., 2015). The cell
wall also acts as an anchor point for capsule types that rely on the
February 2022 | Volume 12 | Article 826264

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lane et al. PspA in Pneumococcal Pathogenesis
Wxy/Wzy-dependent synthesis pathway (Geno et al., 2015). PC
is a small amino alcohol that is essential for eukaryotic cell
growth but also commonly found on the surface of bacterial
pathogens (Garcıá et al., 1998; Harnett and Harnett, 1999).
Choline is not synthesized by Spn, yet the bacteria is
dependent on it for growth or one of its structural analogues,
such as ethanolamine (Galán-Bartual et al., 2015). The lic
operon in Spn encodes the transporters and enzymes necessary
for the uptake and conversion of environmental choline into PC,
eventually incorporating it into either LTA or WTA (Zhang
et al., 1999).

LTA and WTA are composed of four to eight repeating units
of ribitol 5-phosphate, N-acetyl-D-galactosaminyl (GalNAc), 2-
acetamido-4-amino-2,4,6-trideoxy-D-galactose (AATGal), and
D-glucose (Behr et al., 1992; Jennings et al., 1980). The
number of PC residues on the pneumococcal surface varies
between strains and can also be influenced by phase-variation
(Weiser et al., 1994; Kim and Weiser, 1998). PC on the surface of
the pneumococcus functions as a mimetic of platelet-activating
factor and thereby binds PAFr on host cells (Cundell et al., 1995;
Ring et al., 1998). Its binding by pneumococcal PC results in
MAPK activation as well as recruitment of b-arrestin and
clathrin to the receptor base for its internalization (Ishii and
Shimizu, 2000; Radin et al., 2005; Stafforini, 2009; Asmat et al.,
2014). Subsequently, clathrin-mediated endocytosis occurs with
uptake of the receptor-bound bacteria into an endosome. Thus,
PC plays a vital role in pneumococcal adhesion and the invasion
of non-immune cells. Its lowered expression has been shown to
result in decreased levels of colonization of the upper airway in a
murine model of infection (Kharat and Tomasz, 2006).

PC on the surface of microorganisms is an important target
for the host response. C-reactive protein (CRP), which is made
by the liver in response to IL-6, binds to PC activating the
complement cascade (Volanakis and Kaplan, 1971; Thompson
et al., 1999). Classical complement proteins such as C1q, C4, and
C2 recognize and bind to PC-bound CRP with subsequent
activation of the cascade and opsonization of the bacterial
surface (Rupprecht et al., 2007). Additionally, an anti-
phosphorylcholine (anti-PC) IgM autoantibody is produced by
CD5+ B-cells that provides another layer of host defense against
Spn or other PC-bearing pathogens (Briles et al., 1981). Notably,
anti-PC antibodies are ubiquitous in human sera with up to 10%
of total IgM being reactive to PC (Su et al., 2006; Chou
et al., 2008).
CHOLINE-BINDING PROTEINS

CBPs generally consist of three major domains: a leader peptide,
a variable biologically functional domain sometimes followed by
a proline-rich domain (PRD), and a conserved choline-binding
domain (Bergmann and Hammerschmidt, 2006). The majority
of CBPs contain a choline-binding domain at the C-terminal end
with some exceptions such as LytB and LytC, where the domain
is present at the N-terminus, while for CbpL it is present in the
central region of the protein (Bergmann and Hammerschmidt,
2006). The choline-binding domain is modular with a variable
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
number of repeating units consisting of a ~20 amino acid-
sequence, i.e., choline-binding motifs. Only four to five
choline-binding motifs are required for interaction with PC on
LTA or WTA to occur and for the CBP to become docked onto
the pneumococcal surface (Yother and White, 1994). The
majority of Spn strains carry two PC residues per repeating
unit of AATGal and GalNAc on LTA or WTA and these are
linked via a phosphodiester bond to the O6 molecule of GalNAc
(Vollmer et al., 2019). Choline-binding motifs are spaced so that
the choline-binding domain becomes interlaced with the
repeating PC residues.

Most strains of Spn encode more than 10 CBPs in their
genome (Hakenbeck et al., 2009). Among those best
characterized are the cell wall hydrolytic enzymes LytA, LytB,
and LytC, the pneumococcal surface protein A (PspA),
pneumococcal choline-binding protein A (PcpA), and the
choline-binding proteins CbpA and CbpC (Figure 1)
(Hakenbeck et al., 2009). For a complete list of pneumococcal
CBPs and their function during colonization and pathogenesis
see Table 1. Unfortunately, the nomenclature of CBPs becomes
complicated as proteins have more than one name and related
proteins have similar names and abbreviations. For instance,
choline-binding protein A (CbpA) and pneumococcal surface
protein C (PspC) are the same protein (Rosenow et al., 1997;
Gosink et al., 2000). Herein, we will discuss PspA and CbpA, and
will use these names to maintain distinction.

Structure and Variability of PspA
PspA is an abundant surface-exposed virulence factor. It is found
in nearly all clinical isolates of Spn, but not in other Streptococci
(Crain et al., 1990). Transcriptomic studies suggest it is expressed
across all anatomical host sites and organs during infection
(D'Mello et al., 2020). Based on the sequence variations among
strains and differences in reactivity with antibodies, it is now
recognized that PspA proteins are mosaics. The size of mature
PspA ranges from 65 to 99 kDa across various strains consisting
of the three major domains: the N-terminal alpha-helical, the
proline-rich, and the C-terminal choline-binding (Figure 2).

The N-terminal region of PspA is 280-380 amino acids (aa)
long, immunogenic, and highly variable. It is composed of an
antiparallel coiled-coil alpha-helical charged domain (aHD) in
an elongated rod-like shape. The charge on the aHD is
significantly polarized being electropositive at the C-terminal
end and electronegative at the N-terminal end (Lamani et al.,
2000). This polarization helps the interaction between PspA and
the negatively charged capsule while also decreasing the
antibacterial phagocytic activity (Nomura and Nagayama,
1995). The C-terminal 100 aa’s of aHD consist of a clade-
defining region (CDR) which is the basis for the classification
of PspA into 3 families (Hollingshead et al., 2000). Each family is
divided into clades, with Family 1 comprised of clade 1 and 2;
Family 2 comprised of clades 3, 4 and 5; and Family 3 comprised
of the rarer clade 6. Primary amino acid sequences within the
same clade exhibit ≥90% identity compared to only ≤55%
identity across different families. The first 100 N-terminal aa’s
and the last 100 C-terminal aa’s of the aHD can also elicit a
protective antibody response against Spn (McDaniel et al., 1994;
February 2022 | Volume 12 | Article 826264
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Roche et al., 2003; Vadesilho et al., 2014) and for this reason are
thought to be highly variable between strains. Even though there
is significant cross-reactivity of antibodies against different
families of PspA, protection is not always guaranteed across
different families, an important consideration for its inclusion in
any future vaccine formulations.

The PRD domain consists of repeats of a 6-7 aa motif and can
occur several times in any sequence with their diversity well-
characterized by Mukerji et al. (2018). Based on the primary
amino acid sequence of PspA in 123 pneumococcal isolates, PRD
has been divided into three distinct groups. A common motif
that is present in many PRD is PAPAPAPA; in some cases, this
motif is truncated or interrupted by other amino acids or overlap
with other motifs. Another short amino acid motif present in
PRD sequences is PKPEQP, occurring in 96% of Group 1 and
73% of Group 3 strains, while it is absent in Group 2 (Mukerji
et al., 2018). There are also other differences in motif patterns, for
example, in Group 3 the repetition of motifs occurs less
frequently and are more dispersed across the PRD, while in
Group 1 only a few of the motifs were repetitive, QPAPA or
PAPA. Another distinguishing feature of Group 3 PRD-domains
in relation to other groups is the presence of a 22 aa non-proline
block (NPB) “QQAEEDYARRSEEEYNRLTQQQ”. The NPB is
highly conserved, however, a significant single amino acid
polymorphism was observed within the NPB immediately
preceding ‘‘QQQ”. There were other significant variations
observed in the flanking regions of NPB (Mukerji et al., 2018),
however the biological significance of these variations is
unknown. Both the NPB and the PKPEQP motifs of PRD
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
elicited an immune response and provided protection in mice
from a fatal pneumococcal infection caused by isolates that
carried a version of PspA with these motifs (Daniels et al.,
2010). Notably, the PRD motif is not exclusive to PspA and is
also found in CbpA (Rosenow et al., 1997). CbpA, like PspA, has
N-terminal alpha-helical domains with the PRD motif
positioned between these and the CBD (Luo et al., 2005).

Due to its surface exposure and the fact that antibodies
against PspA help eradicate the bacteria, PspA is under
considerable immunological pressure. Accordingly, the
presence of mosaic gene structure and diversity in PspA
sequences across various Spn are indicative of intraspecies
horizontal gene transfer and genetic recombination. These
derivatives, in turn, are positively selected within the host as
they are a means to evade the adaptive immune response against
PspA. Notably, the conserved nature of PspA’s repeat motifs
imply a direction of evolution where these motifs not only
provide antigenic variability, but also confer functions to PspA
that impact its virulence. One clear example of this is the NPB
(detailed below).
ESTABLISHED ROLES FOR PSPA IN
PNEUMOCOCCAL VIRULENCE

PspA was discovered by McDaniel et al. as a result of studies that
identified a monoclonal antibody against Spn that was not
specific against its capsule but was protective against bacterial
challenge (McDaniel et al., 1984). The antigen was subsequently
FIGURE 1 | Major virulence factors of Streptococcus pneumoniae including choline-binding proteins. Inset picture shows PspA bound to phosphorylcholine on wall
teichoic acid and lipoteichoic acid as part of the cell wall and membrane, respectively. Key (left to right): Pneumolysin (Ply), Immunoglobulin A1 protease (ZmpB),
Pneumococcal serine-rich repeat protein (PsrP), Neuraminidase (NanA), Pneumococcal surface adhesin A (PsaA), Pneumococcal iron acquisition A (PiaA),
Pneumococcal iron uptake A (PiuA), Choline-binding protein D (CbpD), Choline-binding protein A (CbpA), Choline-binding protein E (CbpE), Pneumococcal choline-
binding protein A (PcpA), Pneumococcal surface protein A (PspA), Wall teichoic acid (WTA), Phosphorylcholine (PC), Lipoteichoic acid (LTA).
February 2022 | Volume 12 | Article 826264
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recognized as being a surface protein, opening the possibility of
protein-based vaccines against the pneumococcus. Subsequent
studies by McDaniel and others showed that PspA was required
for pneumococcal virulence and that PspA was a CBP. Further
studies over the next decade by McDaniel along with Briles and
Yother introduced details about the complexity of PspA and
established its critical role in pneumococcal pathogenesis
and virulence (McDaniel et al., 1987; Briles et al., 1988; Crain
et al., 1990; Yother and Briles, 1992; Yother and White, 1994;
Briles et al., 1996).

PspA Regulation
The gene encoding PspA is in the chromosome and not part of a
polycistronic operon. Upstream of pspA in strain TIGR4 is a 289
bp intergenic region that presumably regulates its expression
(Tettelin et al., 2001; Ribeiro et al., 2012). Two-component
signal transduction systems (TCSTS) function to sense
environmental cues and regulate pneumococcal gene
expression (Gómez-Mejia et al., 2018). It has been reported
that pspA expression is positively regulated via the VicRK
TCSTS and that the phosphorylated VicR (YycF) response
regulator increases its binding upstream of the gene (Ng et al.,
2005). The binding of VicR-P protected these regions from
digestion by DNase I, suggesting enhanced transcription
regulation of PspA (Ng et al., 2005). Additionally, there is a
second TCSTS in Spn that regulates PspA called RR/HK06,
which also regulates CbpA (Standish et al., 2007). pspA
expression was repressed when the response regulator RR06
was phosphorylated and overexpressed (Standish et al., 2007).
A recent report by Im et al. also showed pspA gene expression is
influenced by carbon-catabolite repression and nutrient
availability (Im et al., 2021). Altogether, one can infer that the
regulation of pspA is multifaceted and complex.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Importantly, there have been numerous reports that show
pspA expression is responsive to the host environment (Gupta
et al., 2009; Ogunniyi et al., 2002; Orihuela et al., 2004a;
Lemessurier et al., 2006). Current efforts to characterize in vivo
PspA gene expression include dual species RNA-seq of infected
organs from mice using multiple bacterial strains (D'Mello et al.,
2020). Using Spn serotypes 2, 4, and 6A, our group found that
pspA was one of the 100 most highly expressed genes overall and
that this high level of expression was shared across all anatomical
sites of infection including the nasopharynx, lungs, blood, heart,
and kidneys (D'Mello et al., 2020). Viral infections can enhance
dispersal of pneumococci from biofilms under different
conditions, such as during a fever. Interestingly, increased
expression of pspA was observed when pneumococci were
exposed to influenza A virus (IAV). This occurred when
pneumococci were grown either planktonically or as a biofilm
(Pettigrew et al., 2014). Expression of pspA was also observed to
be increased in pneumococci that had recently dispersed from a
biofilm versus those growing as a biofilm (Pettigrew et al., 2014).

Complement Evasion
Complement is an enzymatic, self-amplifying cascade that
involves the deposition of opsonizing proteins on the surface
of bacteria that facilitate their recognition and uptake by
phagocytes along with the release of chemotactic and activating
factors that attract and recruit immune cells to the site of
infection. Complement culminates in the formation of the
membrane-attack complex (MAC) which has bactericidal
effects, although the thick Gram-positive cell wall of the
pneumococcus is resistant to this process (Loughran et al.,
2019). Regarding the classical cascade, immunoglobulins such as
IgA, IgG, and IgM recognize and bind to specific moieties on the
bacterial surface (Andre et al., 2017). Recognition is to antigens
TABLE 1 | Choline-binding proteins of Streptococcus pneumoniae.

Name Abbreviation Function

Autolysin A LytA N-acetylmuramoyl-L-alanine amidase; fratricide; caspsule shedding; lysis-mediated release of pneumolysin (Tomasz
and Westphal, 1971; Mitchell et al., 1997; Kietzman et al., 2016)

Autolysin B LytB Separation of daughter cells via N-acetylglucosamine (Garcıá et al., 1999; Gosink et al., 2000)
Autolysin C LytC Lysozyme; fratricide; binds extracellular DNA to facilitate biofilm formation (Gosink et al., 2000; Eldholm et al., 2009)
Choline-binding protein A CbpA (also PspC) Binds laminin receptor; binds polymeric immunoglobulin receptor; mediates bacterial uptake and translocation across

epithelial and endothelial layers; binds C3, binds serum factor H (Zhang et al., 2000; Duthy et al., 2002; Orihuela
et al., 2004b; Orihuela et al., 2009; Brown et al., 2014)

Choline-binding protein D CbpD Competence-mediated fratricide (Gosink et al., 2000; Eldholm et al., 2009)
Choline-binding protein E
(also phosphorylcholine
esterase)

CbpE (also Pce) Curates PC residues on pneumococcal surface (Gosink et al., 2000; Hermoso et al., 2005)

Choline-binding protein F CbpF Immunity protein protects against autolysis by LytC (Molina et al., 2009)
Choline-binding protein G CbpG Serine protease; adhesin (Gosink et al., 2000; Mann et al., 2006)
Choline-binding protein I CbpI Adhesin; immune evasion (Garcıá et al., 1988; Frolet et al., 2010)
Choline-binding protein J CbpJ Adhesin; immune evasion (Frolet et al., 2010; Yamaguchi et al., 2019)
Choline-binding protein K CbpK Adhesin (Gosink et al., 2000; Tettelin et al., 2001)
Choline-binding protein L CbpL Invasion; immune evasion (Frolet et al., 2010; Gutiérrez-Fernández et al., 2016)
Choline-binding protein M CbpM Adhesin; immune evasion (Frolet et al., 2010; Afshar et al., 2016)
Pneumococcal surface
protein A

PspA Blocks C-reactive protein; binds lactoferricin; binds GAPDH; binds LDH (McDaniel et al., 1984; McDaniel et al., 1986;
McDaniel et al., 1987; Shaper et al., 2004; Mukerji et al., 2012; Park et al., 2021a; Park et al., 2021b)

Pneumococcal
choline-binding protein A

PcpA Adhesin; aggregation (Sánchez-Beato et al., 1998)
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previously seen by the host during prior infection episodes or to
components where naturally occurring antibody is generated, for
example PC within WTA (Winkelstein and Tomasz, 1978).
Regarding the alternative cascade, degradation of serum protein
C3 results in the generation of C3a and C3b. C3b recognizes
teichoic acid and binds to bacterial surface components initiating
activation of the pathway (Hummell et al., 1981; Andre et al.,
2017). The complement cascade can be blocked by serum Factor
H, which the pneumococcus binds to via CbpA, which in turn
binds Factor I and degrades C3b (Hyams et al., 2013). Other
ways to activate complement are certain serum proteins, such as
lectins, which act through the classical and lectin cascades. One
of which is aforementioned CRP (Thompson et al., 1999). Many
excellent reviews on the complement cascade and other serum
factors that mediate host-defense are available (Ehrnthaller et al.,
2011; Merle et al., 2015b; Merle et al., 2015a).

Studies by Ren et al., have shown that PspA inhibits
complement deposition on Spn and this feature is vital for Spn
virulence (Ren et al., 2004). PspA, due to its being one of the
most abundant CBPs, competes with CRP for the recognition of
PC residues on the pneumococcal cell surface (Mukerji et al.,
2012). Isogenic deficient mutants of PspA were observed to elicit
greater activation of the classical complement cascade with
increased deposition of Clq and C3b proteins on the bacterial
surface compared to wildtype Spn (Li et al., 2007). Consistent
with this, it has been shown by multiple investigators that PspA-
deficient pneumococci are cleared more quickly from the
bloodstream and are bound to a greater extent by complement,
whether initiated by the alternative or classical cascade, when
compared to wildtype bacteria (Tu et al., 1999; Ren et al., 2004;
Mukerji et al., 2012). PspA is also able to inhibit immune
adherence, where complement-bound bacteria become
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
attached to erythrocytes and are subsequently targeted by
macrophages for clearance (Li et al., 2007). By reducing the
effectiveness of the complement pathways, PspA reduces the
clearance of Spn during infection and accordingly enhances
pneumococcal virulence.

Lactoferricin Inhibition
Human lactoferrin (hLF) is an iron-binding globular
glycoprotein ~80 kDa present in mucosal secretions with a
high affinity for ferric (Fe3+) iron (Hammerschmidt et al.,
1999). Lactoferrin can be divided between an iron-bound
“closed” hololactoferrin and the iron-free “open” apolactoferrin
(Baker and Baker, 2005). Apolactoferrin is capable of
bacteriostatic activity through iron-chelation which binds up
any free exogenous iron thereby inhibiting the use of the metal by
bacteria. Apolactoferrin is also capable of direct bactericidal
activity via its breakdown and the formation of a small peptide
called lactoferricin. This peptide has a large concentration of
positively charged residues, similar to other cationic
antimicrobial peptides, and serves to destabilize the negatively
charged bacterial cell membrane (Shaper et al., 2004).
Lactoferricin also interrupts the interactions between bacterial-
sequestered cations, such as Ca2+ and Mg2+, and the lipoteichoic
acids in Gram-positive bacteria, leading to the de-stability and
increased permeability of the cell membrane (Baker and
Baker, 2005).

The aHD of PspA contains a lactoferrin-binding region
within aa residues 168-288 (Håkansson et al., 2001). This
region serves to protect the bacterium from lactoferricin-
mediated killing (Pérez-Dorado et al., 2012; Shaper et al.,
2004). PspA showed comparably stronger affinity towards
human lactoferrin compared to that from other species
FIGURE 2 | Domain structure of PspA. Illustration shows the N-terminal signal sequence (SS), 280–380 aa a-helix region (aHD), the ~90 amino acid proline rich domain
(PRD), and the ~200 aa choline binding repeat domain (CBD) with its short 17 aa C-terminal tail. The clade-defining region (CDR) within the aHD is represented as light
blue. The GAPDH binding region (240-327) and Lactoferrin (LF) binding region (222-317) within aHD of WU2 serotype 3 are represented as red and cyan lines,
respectively. The non-proline block (NPB)/Lactate dehydrogenase (LDH) binding region within PRD domain is boxed as pink (based upon Mukerji et al., 2018). The PRD
composition of PspA from TIGR4, GA44128 and WU2 strains representing each group of PRD are shown in inset (adapted from Park et al., 2021a).
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(Hammerschmidt et al., 1999). Håkansson et al. also reported
that the ability of Spn to bind lactoferrin was entirely dependent
on PspA. PspA versions belonging to Family 1 and Family 2 both
bound to lactoferrin as demonstrated using PspA deficient
pneumococci (Håkansson et al., 2001). The conservation of
this trait, despite PspA’s considerable variability, highlights its
importance. Accordingly, Andre et al. showed that antibodies
that blocked PspA’s interaction with lactoferrin enhanced
bacterial killing (André et al., 2015).
NEWLY DISCOVERED FUNCTIONS
OF PSPA

Recent publications by our group have identified new facets of
Spn virulence involving PspA and its ability to utilize the
complex host environment to its advantage. Continued
elucidation of how PspA enhances pneumococcal pathogenesis
will provide key information and direction towards the
development of novel therapeutic or prophylactic strategies.

Host Lactate Utilization
During pneumococcal colonization and pneumonia, host
molecules that are normally intracellular are released as a result of
pneumolysin-mediated necroptosis of host cells (Labbé and Saleh,
2008; Gonzalez-Juarbe et al., 2018). These include molecules that
Spn directly co-opts to its advantage (Van Der Sluijs et al., 2004).
One newly appreciated factor is the host enzyme lactate
dehydrogenase (LDH); a tetrameric protein abundant in
mammalian cells composed of combinations of LDH-A and
LDH-B. LDH-A converts pyruvate to lactate to generate NAD+

from available NADH while LDH-B acts in the reverse (Burgner
and Ray, 1984). We have recently shown that Spn binds to host
LDH-Aduring lung infection (Figure 5) (Park et al., 2021b).When
mice were challenged with Spn that had incubated with mouse
LDH-A, there was a 10-fold increase in bacterial titers collected
from the lungs and an increase in bacteremia within a period of 24
hours post-infection (Park et al., 2021b).The binding site ofPspA to
LDH-A was determined to be the conserved 22-amino NPB that is
sometimes found within the PRD (Park et al., 2021b). Spn that do
not contain the NPB fragment within their version of PspA were
unable to bind to LDH-A and did not benefit from co-incubation
prior to mouse challenge. NPB is also found in some versions of
CbpA and Spn having the NPB only in CbpA also benefitted from
LDHco-incubation (Park et al., 2021b). Notably, it was determined
that the enzymatic activity of LDH-A was crucial for enhancement
of pneumococcal virulence. Mice challenged with Spn incubated
with an enzymatically inactive version of LDH-A did not become
hyper-virulent. Moreover, incubation of Spn with lactate was
sufficient to confer the same effect as mixture with LDH-A. These
results suggest that the NPB of PRDon PspA or CbpA co-opts host
LDH-A with lactate potentially serving as a virulence-
amplifying nutrient.

Adhesion to Dying Host Cells
Recent findings indicate that PspA can also function as an
adhesin (Figure 3). This property of PspA is novel as it only
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mediates binding to dying host cells (Park et al., 2021a).
Following mammalian programmed cell death, including both
necroptosis and apoptosis, the inner membrane of the host cell
undergoes a process where phosphatidylserine residues are
flipped outward. These residues serve as “eat me” signals to
macrophages who take up the cells but also are bound by free
host glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
(Fadok et al., 1992; Martin et al., 1995). Using pull-down
assays and liquid chromatography/mass spectrometry (LC-
MS), it was discovered that PspA binds to mammalian
GAPDH, specifically by the amino acids 230-281 in the aHD
(Park et al., 2021a). It was subsequently shown that PspA uses
GAPDH to adhere to dying lung cells during infection, which
impacted the bacterium’s localization within the airway thereby
enhancing pneumococcal virulence during pneumonia (Park
et al., 2021a). Spn in particular seemed to take advantage of
this trait during co-infection with IAV, which sensitized cells to
pneumolysin-mediated necroptosis (Gonzalez-Juarbe et al.,
2020), and a condition which enhances pspA expression (Park
et al., 2021a). It is noteworthy that the identified GAPDH-
binding motif on PspA overlaps with the lactoferrin-binding
domain. What is more, GAPDH binds to both apo- and holo-
lactoferrin by which the host cell either egresses or acquires iron,
respectively (Sheokand et al., 2014; Chauhan et al., 2015). Given
the importance of lactoferrin binding, this overlap in PspA’s
domains raises the possibility that Spn uses GAPDH as a bait to
acquire iron from lactoferrin, or GAPDH may serve as a sink for
lactoferrin bound to PspA thereby preventing its cleavage to
lactoferricin. These vital questions require further investigation.

Other Interactions
In our studies that identified PspA as having affinity to lactate
dehydrogenase and GAPDH, it was observed that PspA also had
affinity to numerous other host proteins (Park et al., 2021a; Park
et al., 2021b). Among these was the filamentous protein
vimentin, which has been implicated as a key ligand for group
B Streptococci and E. coli with regard to their ability to gain
access to the central nervous system (Deng et al., 2019). Other
host molecules include keratin (types I-III), pyruvate kinase,
alpha-enolase, and beta-tubulin (Park et al., 2021a; Park et al.,
2021b). Multiple interactions between pneumococcal surface
proteins and the host is a common feature. For example,
CbpA specifically binds to laminin receptor, polymeric
immunoglobulin receptor, C3, and serum Factor H (Smith and
Hostetter, 2000; Lu et al., 2003; Lu et al., 2006; Orihuela et al.,
2009). These multiple roles reveal the efficiency of the bacterium,
the highly versatile nature of the aHD of PspA and CbpA, and
suggest our understanding of PspA’s interactions is most
likely incomplete.
POTENTIAL OF PSPA AS A VACCINE
ANTIGEN

Several epidemiological studies were conducted across different
countries to evaluate the distribution of PspA families among
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different isolates. On average, 43.6% of isolates belonged to
family 1, 53.5% of isolates belonged to family 2, 0.2% of
isolates belong to family 3, and the rest are non-typable.
Although there are differences in the proportions of the
distribution of PspA families in different populations in the
world, the vast majority are composed predominantly of
families 1 and 2 (Table 2 and Figure 4). Pneumococcal
isolates from pediatric patients, including from middle ear
fluid or nasopharyngeal secretions, reveal that the majority of
PspA proteins fall into either family 2 or family 1 (Vela Coral
et al., 2001; Mollerach et al., 2004; Melin et al., 2008; Jiang et al.,
2021). While in adults over 50 years of age, differences in the
PspA family distribution show that the majority (> 50-55%) of
PspA proteins are in family 2 (Hollingshead et al., 2006). In
meningitis isolates from Germany, PspA proteins were evenly
distributed over families 1 and 2 with clades 1 and 3 (Heeg et al.,
2007). Recent studies in Japan reported that >55% of isolates
from adults over the age of 15 years old are in PspA family 1 and
>55% isolates from pediatric patients under the age of 16 years
are in PspA family 2 (Kawaguchiya et al., 2018; Chang et al.,
2021). Additionally, epidemiological surveillance in Brazil
conducted during 1977–2002 revealed 50.5% of the isolates
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
belonged to family 1, 43.2% were members of family 2, and
6.3% were not classified. Across all studies, Family 3 was
consistently the least common version of PspA. Its greatest
reported prevalence came from one Japanese study that
showed 3.2% of pneumococcal isolates from the upper
respiratory tract belonged to Family 3 (Hotomi et al., 2013). In
all, it is evident that were PspA to be used as a vaccine antigen
versions must be used that provide protection against both
family 1 and 2 while also considering that family 3 or other
unclassifiable versions of PspA have the potential to
emerge thereafter.

The aHD of PspA has several properties that make it
attractive as a vaccine protein candidate including high
expression of the protein at important anatomical sites for
colonization and transmission (D'Mello et al., 2020),
immunogenicity and cross-reactivity of elicited antibodies
(Nabors et al., 2000), accessibility for antibody binding at the
cell surface (Vadesilho et al., 2014; Scott et al., 2021),
and demonstrated protection in animal models of severe
infection (Hollingshead et al., 2000; Miyaji et al., 2015). The
PRD of PspA has also been shown to elicit an antibody response
and protection against Spn infection (Mukerji et al., 2018).
FIGURE 3 | Proposed model of PspA-mediated binding to host-derived GAPDH on necroptotic cells. hGAPDH binds to dying cells via phosphatidylserine (PS)
residues flipped from the inner to outer membrane during programmed cell death. Host cell death during Spn infection is primarily due to pneumolysin-mediated
necroptosis. PspA binds to hGAPDH during this process. New data indicates that sensitivity of lung cells to pneumolysin-mediated necroptosis is drastically
exacerbated by concomitant influenza A virus (IAV) infection (Gonzalez-Juarbe et al., 2020).
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Notably, and as we continue to identify subdomains of PspA
that have independent biological roles, this information can
be used to select versions of PspA which are not only cross-
protective as result of opsonization, but also because they
are capable of neutralizing the biological activities of PspA.
For example, antibodies that prevent PspA interactions
with lactoferrin/GAPDH or lactate dehydrogenase, have
the potential to alter bacterial resistance to host killing, its
localization in the airway, and nutrient acquisition, respectively.

In addition to PspA, multiple other pneumococcal surface
proteins have been studied as potential vaccine candidates
(Miyaji et al., 2015; Masomian et al., 2020; Scott et al., 2021).
One promising option are multivalent protein vaccines. These
combine multiple antigens to increase antigen delivery and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
induce broader protection in the host. Candidate proteins
worthy of consideration for protection against Spn include a
pneumolysin toxoid, CbpA, and the pneumococcal histidine
triad protein D (PhtD) among others (Chen et al., 2015; Scott
et al., 2021). PspA in combination with pneumolysin is in
particular intriguing given the importance of induced cell
death on PspA binding and cell death-mediated accessibility to
host-derived lactate dehydrogenase. Along such lines, it has been
shown that these two proteins are synergic in regard to the
protection they incur in mice when used together (Briles
et al., 2000).

The major concerns regarding the use of PspA in
a pneumococcal vaccine stem from the lack of cross-reactivity
between all the clades. Antibody against clades 1 and 2
TABLE 2 | Distribution of PspA families across different countries.

Country Number of
Isolates

Family
1

Family
2

Family
3

Non-
typable

Year of
Isolates

Source of Isolates Reference

China 81 29.6 69.1 1 0 2014-2018 Pediatric patients with the median age of patients being 1.08
(0.79–3.20)

Jiang et al.,
2021

Japan 1,939 55.5 43.50 0.3 0.2 2014–2019 Adult over the age of 15 years old Chang et al.,
2021

Japan 678 42.3 56.6 0.6 0 June-
November

2016

Pediatric outpatients under the age of 16 years (median age 2.0
years; mean ±SD, 2.9±2.4 years)

Kawaguchiya
et al., 2018

Korea 185 30.8 68.6 0.5 0 1991-2016 Children <18 years of age Yun et al., 2017
Japan 251 44.6 49.4 3.2 1.6 January and

May 2003
Upper respiratory tract infections in patients from 0 to 68 years
old

Hotomi et al.,
2013

China 171 29.90 70.1 0 0 2006-2008 Children <14 years of age Qian et al., 2012
Spain 112 39.3 59.8 0 0.3 1997 -2007 Healthy children carriers and patients with invasive disease Rolo et al., 2009
Finland 81 48.1 48.1 0 1.23 1994-1997 Nasopharyngeal carriers from children < 2 years of age Melin et al.,

2008
Finland 154 50.6 44.8 0 3.8 1994-1997 Acute otitis media from children < 2 years of age Melin et al.,

2008
Germany 40 50 50 0 0 1997-2003 Pneumococcal meningitis from children < 16 years of age Heeg et al.,

2007
Japan 141 55.3 41.1 0 3.5 2003-2004 Patients over 15 years old diagnosed with community acquired

pneumonia
Ito et al., 2007

Poland 156 37.8 57.7 0 4.5 1997 -2002 Meningitis patients among different age groups Sadowy et al.,
2006

Brazil 183.0 35.5 44.3 0 20.2 2000-2001 Nasopharyngeal isolates from children < 5 years of age Pimenta et al.,
2006

France 215 24.2 74.0 0 0.5 1995-2002 Isolates from adults over 50 years of age collected in seven
countries

Hollingshead
et al., 2006

Canada 148 37.2 61.5 0 0.0 1995-2002 Isolates from adults over 50 years of age collected in seven
countries

Hollingshead
et al., 2006

Spain 150 38.0 60.0 0 1.3 1995-2002 Isolates from adults over 50 years of age collected in seven
countries

Hollingshead
et al., 2006

Sweden 67 41.8 58.2 0 0.0 1995-2002 Isolates from adults over 50 years of age collected in seven
countries

Hollingshead
et al., 2006

USA 930 41.0 58.0 0 0.4 1995-2002 Isolates from adults over 50 years of age collected in seven
countries

Hollingshead
et al., 2006

UK 237 50.6 49.4 0 0.0 1995-2002 Isolates from adults over 50 years of age collected in seven
countries

Hollingshead
et al., 2006

Australia 100 54.0 46.0 0 0.0 1995-2002 Isolates from adults over 50 years of age collected in seven
countries

Hollingshead
et al., 2006

Brazil 366 50.5 43.2 0 6.3 1977–2002 Epidemiological surveillance Brandileone
et al., 2004

Argentina 149 54.4 41.6 0 4.0 1993-2000 Isolates from children < 6 years of age Mollerach et al.,
2004

Colombia 40 62.5 35 0 1 1994-1998 Isolates from children <5 years of age Vela Coral et al.,
2001
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are cross protective, however, cross protection is reduced
with consideration to clades 3, 4, and 5 (Sempere et al., 2021).
This concern overlaps the mosaic nature of PspA with regard to its
ability to evade the host immune response and indicates that to
avoid “PspA replacement” or emergence of a non-typable PspA
version, any multi-valent PspA vaccine should be developed that
covers conserved regions under both positive and negative
pressure by the host (Yamaguchi et al., 2019). The risk of this can
also be diminished by including more than one protein in any
vaccine formulation, such as pneumolysin (Sempere et al., 2021).
Another concern was raised when it was found that PspA has low
sequence homology with human cardiac myosin, which may elicit
the production of autoantibodies against cardiac tissue leading to
inflammation and tissue damage along with autoimmune
disease (Ginsburg et al., 2012). To avoid this risk, antigen design
can purposely exclude the region of PspA with the low
myosin homology.

PspA vaccine clinical trials are ongoing. Recently, a phase I
clinical trial was completed with a recombinant PspA oral
vaccine developed using three different avirulent strains
of Salmonel la typhi (RASV) each expressing PspA
(ClinicalTrials.gov Identifier: NCT01033409). A similar study
showed promising results in mice using an oral attenuated
RASV-expressing PspA vaccine (Seo et al., 2012). The future of
pneumococcal vaccine design may rely less on using the capsule
polysaccharides as antigenic targets and more on bacterial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
surface proteins such as PspA for broader and sustained
protection with less risk of serotype escape.
CONCLUSION

Spn continues to be a leading cause of respiratory diseases such
as community-acquired pneumonia with transmission rates
high amongst substantial portions of the population. Current
treatment options against pneumococcal infections rely on
antibiotics, which are dwindling due to the spread of
resistance, whereas prophylactic options are centered on
the polysaccharide-based vaccines, with serotype escape
beginning to impact overall efficacy. Spn has virulence factors
that allow it to invade, colonize, and infect its host and these
have been studied extensively over the years. Surface proteins on
Spn such as PspA have garnered renewed interest as potential
vaccine candidates due to its presence on nearly all clinical
isolates along with high expression across different anatomical
sites in the host. Reports have shown promising results in
animal models of Spn infection where immunization against
PspA protects against severe disease and enhances clearance of
the bacteria via opsonophagocytosis. Vaccine designs using
PspA will have to consider low homology with cardiac myosin
to avoid undue inflammation or activation of autoantibodies.
Other CBPs are also in consideration, highlighting the move
FIGURE 4 | Distribution of PspA families across several countries. The proportion of PspA family 1(blue), 2 (orange), 3 (grey), and non-typable (NT-Yellow) from each
study is represented as percentage (%). The origin of Spn and the number of isolates from each study are detailed in Table 2 along with the corresponding reference.
For some studies, not all Spn strains examined carried the gene for PspA. In these instances the % distribution of PspA is less than 100%.
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away from dependence on capsule-based antibody recognition
by the host and more towards protein-based formulations. New
information regarding PspA virulence and its ability to act as a
“Jack of all Trades” have improved our understanding of this
complex protein and help guide future research questions
(Figure 5). As such, continued studies into the molecular
mechanisms of PspA during pneumococcal dissemination and
infection will be necessary to fully elucidate the vital role this
virulence factor plays in Spn pathogenesis and possible targeting
for development of novel therapies.
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Park, S.-S., Gonzalez-Juarbe, N., Martıńez, E., Hale, J. Y., Lin, Y.-H., Huffines, J. T.,
et al. (2021a). Streptococcus pneumoniae Binds to Host Lactate Dehydrogenase
via PspA and PspC To Enhance Virulence. mBio 12 (3), 1–13, e00673–e00621.
doi: 10.1128/mBio.00673-21

Park, S.-S., Gonzalez-Juarbe, N., Riegler, A. N., Im, H., Hale, Y., Platt, M. P., et al.
(2021b). Streptococcus pneumoniae Binds to Host GAPDH on Dying Lung
Epithelial Cells Worsening Secondary Infection Following Influenza. Cell Rep.
35. doi: 10.1016/j.celrep.2021.109267

Pepys, M. B., and Hirschfield, G. M. (2003). C-Reactive Protein: A Critical Update.
J. Clin. Invest. 111, 1805–1812. doi: 10.1172/JCI200318921
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