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Apicomplexan parasites transmitted by vectors, including Babesia spp. and Plasmodium
spp., cause severe disease in both humans and animals. These parasites have a complex
life cycle during which they migrate, invade, and replicate in contrasting hosts such as the
mammal and the invertebrate vector. The interaction of parasites with the host cell is
mediated by adhesive proteins which play a key role in the different cellular processes
regarding successful progression of the life cycle. Thrombospondin related anonymous
protein (TRAP) is a superfamily of adhesins that are involved in motility, invasion and egress
of the parasite. These proteins are stored and released from apical organelles and have
either one or two types of adhesive domains, namely thrombospondin type 1 repeat and
von Willebrand factor type A, that upon secretion are located in the extracellular portion of
the molecule. Proteins from the TRAP superfamily have been intensively studied in
Plasmodium species and to a lesser extent in Babesia spp., where they have proven to
be functionally relevant throughout the entire parasite’s journey both in the arthropod vector
and in the mammalian host. In recent years new findings provided answers to the role of
TRAP proteins and in some cases the function of these adhesins during the parasite’s life
cycle was redefined. In this reviewwewill discuss the current knowledge of the diverse roles
of the TRAP superfamily in vector-borne parasites from Class Aconoidasida. We will focus
on the varied approaches that allowed the understanding of protein function and the
relevance of TRAP- superfamily throughout the entire parasite’s cell cycle.

Keywords: thrombospondin-related anonymous protein, TRAP family, TRP family, Plasmodium, Babesia, adhesive
domains, thrombospondin type 1 repeat, von Willebrand factor type A
INTRODUCTION

The phylum Apicomplexa comprises obligate intracellular parasites of animals including species of
relevance in veterinary and public health. In particular, the class Aconoidasida includes those species
transmitted by bloodsucking invertebrate vectors and contains two main orders: Piroplasmida and
Haemosporida (Arisue and Hashimoto, 2015). In terms of human health, the most significant genus in
Haemosporida is Plasmodium, which causes malaria infection leading to over 627.000 deaths a year
gy | www.frontiersin.org April 2022 | Volume 12 | Article 8315921
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(World Health Organization, 2021). The order Piroplasmida
includes the genera Babesia and Theileria that cause disease in
production and companion animals being responsible for
significant economic losses worldwide (Bock et al., 2004). The
major economic impact of Babesia is on the cattle industry and
B. bovis, B. bigemina and B. divergens are among the most relevant
species. Babesia infection in humans was relatively uncommon
many years ago but recently there has been an increase in reports of
infections by B. microti and B. divergens in immunocompromised
patients, often causing death (Krause, 2019).

All species from Aconoidasida have a complex life cycle
alternating between an asexual phase in the vertebrate host and a
sexual phase in the invertebrate vector (Figure 1) (reviewed by
Jalovecka et al., 2019; Venugopal et al., 2020). In general terms, after
sexual replication in the vector (ticks in Piroplasmida and
mosquitoes in Haemosporida), infective sporozoites present in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
salivary gland of the vector are inoculated into the host during a
blood meal. Once inside the host, sporozoites infect liver cells
(Plasmodium) or lymphocytes and endothelial cells (Theileria).
Parasites mature and merozoites are released to invade new
erythrocytes, initiating the asexual multiplication cycle. In the case
of Babesia species, a pre-erythrocytic cycle is absent and sporozoites
immediately invade erythrocytes initiating the asexual phase
(Jalovecka et al., 2018). It is worth mentioning that despite having
the same names, some stages of parasites from Piroplasmida and
Haemosporida should not be considered identical and might
express different sets of proteins interacting with the host cells.

A distinguishable characteristic of all apicomplexans is a set of
apical specialized secretory organelles named rhoptries, micronemes
and dense granules. These organelles store different proteins that
play major roles mediating motility, invasion, and egress from host
cells (Cowman et al., 2017; Arredondo et al., 2021). Motility in
FIGURE 1 | Schematic representation of the life cycle of Plasmodium spp. highlighting the moments in which each TRAP- family protein intervene. Each TRAP-
family protein is indicated in black boxes.
April 2022 | Volume 12 | Article 831592
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apicomplexans relies on a unique substrate-dependent process
called gliding that allows parasites to actively move and penetrate
the host cell. This particular type of movement is powered by a
macromolecular complex called “glideosome”which is composed of
an actomyosin system anchored in the inner membrane complex of
the parasite (Soldati-Favre, 2008; Heintzelman, 2015; Frénal et al.,
2017). To generate the locomotive force that propels the parasite,
the glideosome interacts with host cell receptors through adhesive
proteins that are released from the organelles of the apical complex
and inserted into the parasite plasma membrane. These adhesin-
receptor complexes are translocated backwards generating a
forward movement (Keeley and Soldati, 2004; Asada et al., 2012;
Frénal et al., 2017). This interaction between the parasite and the
host cell is critical for the progression of infection, therefore
adhesins have been the subject of numerous studies aiming at
using them as vaccine candidates or drug targets to block invasion
(reviewed by Morahan et al., 2009; Boucher and Bosch, 2015;
Heintzelman, 2015; Frénal et al., 2017). Whereas the glideosome
machinery is quite conserved across the phylum Apicomplexa,
adhesins are species- and stage-specific, and expression of a broad
range of these proteins allows the parasite to invade a wide variety of
host cells (reviewed in Morahan et al., 2009).

Initial studies in Plasmodium revealed that a protein with
adhesive properties, named thrombospondin related anonymous
protein (TRAP), plays an essential role in gliding during
sporozoite cell invasion (Robson et al., 1988; Sultan et al.,
1997). Further on, other TRAP-like proteins were linked to
motility and invasion of other stages of Plasmodium (Trottein
et al., 1995; Kaiser et al., 2004; Baum et al., 2006; Heiss et al.,
2008; Moreira et al., 2008).

The first TRAP protein in Piroplasmida was identified in 2004
by Gaffar et al., who discovered and characterized a neutralization
sensitive protein at the apical end of B. bovis merozoites that
resembled the architecture of Plasmodium TRAP and was directly
involved in the recognition and invasion processes.

Many other proteins that share structural and functional
characteristics with TRAP were identified in Apicomplexa, and
based on the presence of some specific structural features, the TRAP
superfamily was divided into two groups, the TRAP- family and the
TRAP-related protein (TRP) family (Morahan et al., 2009).

In this review we will recapitulate the current knowledge and
latest findings on members of the TRAP- and TRP- protein
families in vector-borne parasites from Class Aconoidasida. We
make a special emphasis on the reverse genetics experiments that
lead to the discovery of protein function and on how novel
findings changed our conception of the role of these proteins.
TRAP- AND TRP- PROTEIN FAMILIES:
CLASSIFICATION AND DOMAIN
ARCHITECTURE

Members from the TRAP- and TRP- families are integral
membrane proteins with one or more adhesive domains in the
extracellular portion of the molecule. The adhesive domains that
can be found in TRAP- superfamily are thrombospondin type 1
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
repeat (TSR) and/or von Willebrand factor type A (vWA)
(Morahan et al., 2009).

TRAP- family proteins are stored in the micronemes of the
parasites prior to secretion and have a canonical architecture of
different domains (Figure 2A). This includes an initial signal
peptide that directs them towards the secretion pathway, a
variable number of vWA and/or TSR adhesive domains that
are exposed to allow binding of ligands after the protein is
released from the micronemes, a transmembrane domain near
the C-terminal end of the protein, and a short terminal
cytoplasmatic tail domain (CTD). The acidic nature of the
CTD together with the presence of a sub-terminal tryptophan
(W) residue within the amino acids of this domain are the
hallmark of the TRAP- family and both features are decisive for
classifying a protein as a member of it (Morahan et al., 2009). On
the other hand, members of the TRP- family share the adhesive
domains with TRAP- family proteins and are also involved in
recognition and invasion of target cells, but they lack the acidic
CTD and the W residue critical for TRAP function.

TSR Domain
Thrombospondin type 1 repeat is an ancient domain that was
initially identified in the glycoprotein thrombospondin I and is
present in the extracellular regions of numerous proteins from a
wide variety of organisms, from humans to Drosophila spp.,
Caenorhabditis elegans and Plasmodium spp. (Adams and
Tucker, 2000). TSR domains mediate adhesive interactions, and
the proteins that bear this domain are frequently involved in
regulating matrix organization, cell–cell interactions and cell
guidance (Tucker, 2004). The TSR can bind to sulphated sugar
residues, particularly glycosaminoglycans (GAGs) such as heparin,
heparan sulphate and chondroitin sulphate and to other
extracellular matrix components (Naitza et al., 1998). The TSR
is ~60 residues long with two consensus signature motifs, the N-
terminal tetrapeptide WXXW (where X can be any amino acid)
that can act as a heparin-binding motif and a C-terminal cluster of
basic residues (Matuschewski et al., 2002; Tossavainen et al., 2006).
The crystal structure of the TSR domain shows anti-parallel
strands that fold into a long, thin, spiraling domain (Figure 2B).
These strands are stabilized by stacked layers of conserved
tryptophan and arginine residues between cysteine disulfide
bonds (Tan et al., 2002). Based on the differences in these
disulfide bonds, Tan et al. (2002) divided the TSR domains in
two groups represented by the domains present in
Thrombospondin-1 (Group 1) and in the related extracellular
matrix protein F-spondin (Group 2). The majority of TSR
containing proteins identified so far in apicomplexan parasites
have a Group 2 pattern, with the exception of the TSR from
Plasmodium PTRAMP protein that belongs to the TRP- family
(see Thrombospondin-Related Protein Family in Plasmodium spp.)
(Thompson et al., 2004).

vWA Domain
The vWA domain was initially found in the blood glycoprotein
von Willebrand factor (Sadler et al., 1985) and was then detected
in an even wider range of organisms than the TSR domain, from
Eukaryota (Metazoa, fungi, plants, and protists) to Eubacteria
April 2022 | Volume 12 | Article 831592
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and Archaea (Whittaker and Hynes, 2002). The vWA domain is
present in mammalian adhesion and cell-surface proteins
including integrins, extracellular matrix, and complement
components, and mediate multiple functions such as cell
adhesion, migration, and signaling. This domain is ~200
amino acids long and folds in a Rossman-like tertiary structure
composed of a b-sheet with both faces surrounded by a-helixes
(Figure 2B). Its structural conformation is capable of
rearranging from a closed to an open state which alters the
affinity for the ligand (Schürpf and Springer, 2011). In a
subgroup of vWA domains, sometimes referred as I domains,
an invariant metal ion-dependent adhesion site (MIDAS) located
in the middle of the ligand binding site can be found (Liddington,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
2014). This motif is present in all vWA domains from
apicomplexan TRAP- and TRP- family proteins identified so far.

In summary, the number and position of TSR and vWA
adhesive domains vary between Plasmodium and Babesia
TRAP- and TRP- family proteins as shown in Figures 2C and 3.
Interestingly, synteny of the chromosomal regions encompassing
TRAP- family genes varies both between Plasmodium spp. and
Babesia spp. (Supplementary Figure 1). In thePlasmodium genus,
there is a high degree of conservation of the identity and order of
genes surrounding trap, ctrp, tlp and trep loci, while the
chromosomal region where mtrap sits is highly rearranged
between species. In the case of Babesia spp., synteny is observed
in the chromosomal regions containing trap-1 and trap-3 genes.
A

B

C

FIGURE 2 | (A) Schematic representation of the canonical architecture of TRAP- family proteins. (B) Cartoon diagram of the crystal structure of the adhesive
domains of Plasmodium vivax TRAP protein (PDB: 4HQL). a-helixes are shown in pink while b-strands are shown in yellow. The vWA and TSR domains are indicated
in circles and an arrow shows the MIDAS site. (C) Schematic representation of TRAP- family proteins in P. falciparum and B. bovis, two relevant species from
Haemosporida and Piroplasmida, respectively. SP, signal peptide; vWA, von Willebrand factor type A domain; TSR, thrombospondin type 1 repeat domain; TM,
transmembrane domain; acidic CTD, acidic cytoplasmatic tail domain; aa, number of amino acids in the protein. (n) denotes a variable number of vWA and TSR
extracellular domains. The W inside the acidic CTD hexagon indicates that there is a subterminal W residue within it. The accession number provided corresponds to
the VEupathDB database (https://veupathdb.org/veupathdb/app).
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https://veupathdb.org/veupathdb/app
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Paoletta and Wilkowsky TRAP Superfamily in Apicomplexan Parasites
As will be described in the following sections, independent
lines of evidence show that when both domains are combined
within other proteins, these have similar functions to TRAP,
being involved in cell recognition and adhesion.

PLASMODIUM PARASITES ENCODE
SEVERAL TRAP- FAMILY PROTEINS THAT
PLAY RELEVANT ROLES THROUGHOUT
THE LIFE CYCLE

Plasmodium parasites have a complex life cycle in which each
stage migrates, invades, and replicates in different environments
and encounter numerous cell types along its journey in the
mammalian and invertebrate hosts (reviewed by Venugopal
et al., 2020). Evidence shows that Plasmodium utilizes various
members of the TRAP- family for motility, cell invasion,
infectivity, and egress from host cells throughout the different
stages of its life cycle (Figure 1). Table 1 shows the stages in
which Plasmodium TRAP- family proteins are expressed, the role
they play in the different stages and the reverse genetics assays
performed to elucidate their function.

TRAP in Plasmodium spp. Is Involved in
Mosquito Salivary Gland Invasion and in
the Establishment of Infection in the
Mammalian Host
Plasmodium infection in the mammalian host initiates when an
infected mosquito inoculates infective sporozoites within its
saliva into the host. These highly motile sporozoites migrate
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
through the dermis, enter the bloodstream, and infect liver cells
to start intracellular replication (Figure 1).

The TRAP protein can be considered as the founding member
of the TRAP- family and it was first identified more than 30 years
ago in sporozoites from the human malaria parasite P.
falciparum (Robson et al., 1988; Cowan et al., 1992). TRAP
localizes in the micronemes and has a vWA domain with a
MIDAS motif, a TSR domain (Figure 2C), a rhomboid cleavage
motif within the transmembrane region and an Arginine-
Glycine-Aspartate (RGD) cell adhesion sequence located
between the TSR and transmembrane domains. Accession
numbers of this and the other proteins mentioned in this
review are shown in Figure 2.

An extensive genetic diversity was described for P. falciparum
trap gene in clinical isolates from many endemic regions, being
higher in areas with high transmission intensity. It was
demonstrated that trap gene is under positive selection, likely
due to immune system pressure since nucleotide changes are
often non-synonymous leading to high antigenic diversity
(Mehrizi et al., 2020).

TRAP plays a fundamental role in sporozoite motility and
invasion of salivary glands in the vector as well as of vertebrate
hepatocytes (Figure 1). The functional conservation along
different Plasmodium species was demonstrated in experiments
with the murine parasite P. berghei. When the endogenous TRAP
was replaced with the human P. falciparum TRAP (PfTRAP), the
wild type phenotype could be recovered throughout the entire
life cycle indicating that the key domains for TRAP activity are
widely conserved among the genus and they do not limit the host
range infectivity (Wengelnik et al., 1999).
FIGURE 3 | Schematic representation of TRP- family proteins in P. falciparum and B. bovis. SP, signal peptide; Repeat region, CSP central region with a variable
number of repeats; TSR, thrombospondin type 1 repeat domain; TM, transmembrane domain, non acidic CTD, non acidic cytoplasmatic tail domain; EGF- like, type
II EGF- like domain; GPI anchor site, glycosylphosphatidylinositol (GPI) anchor site; vWA, von Willebrand factor type A domain; aa, number of amino acids in the
protein. The accession number provided corresponds to the VEupathDB database (https://veupathdb.org/veupathdb/app).
April 2022 | Volume 12 | Article 831592
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TABLE 1 | TRAP- family proteins in Plasmodium.

Protein Stage Location Function in
vector

Function in host Reverse genetic assays

TRAP Sporozoites Microneme Motility and
invasion of
salivary glands

Motility and
invasion of
hepatocytes

- Sultan et al. (1997):
Disruption of PbTRAP results in non-gliding sporozoites with a defect for salivary
gland invasion and liver infection.
- Wengelnik et al. (1999):
Replacement of endogenous Pb TRAP with PfTRAP results in complete
complementation of PbTRAP function.
Single point mutation in vWA (Asp162) or a 45 aa deletion in TSR results in poor
invasion of salivary glands and impaired gliding but normal hepatocyte invasion.
- Kappe et al. (1999):
Point mutations in the CTD render parasites uncapable of invading mosquito salivary
glands and mice liver. Mutants show an altered movement pattern.
Replacing TRAP CTD with the equivalent domain of TgMIC2 has no effect on protein
function.
- Matuschewski et al. (2002):
Point mutations in PbTRAP vWA (Thr126 or Asp157) or charge changes in conserved
motifs of the TSR domain decrease sporozoite invasion of host cells but do not affect
sporozoite gliding and adhesion to cells.
- Ejigiri et al. (2012):
Point mutations in rhomboid-cleavage site of PbTRAP results in non-motile and non-
infectious parasites.
- Klug et al. (2020):
Complete deletion of PbTRAP vWA domain inhibits productive motility, salivary gland
invasion and mice infectivity.
Replacement of endogenous vWA domain with the equivalent domain of MIC2 from
T. gondii results in less motile sporozoites still capable of invading salivary glands and
mice.
Point mutations in vWA that revert its charge results in parasites that normally invade
salivary glands but are incapable of gliding and infecting mice.
- Beyer et al. (2021):
Generation of double and triple KO of PbTRAP, PbTLP and PbTREP to study
interaction between adhesins revealed that they play functionally distinct and
independent roles during motility and infection.

MTRAP Merozoite/
gametocyte

Microneme ND Egress of
gametocytes from
parasitophorous
vacuole

- Bargieri et al. (2016):
Pb and PfMTRAP KOs have a normal blood stage phenotype, but gametes are
incapable of developing and egressing from the PV.
- Kehrer et al. (2016):
PbMTRAP KO results in a defect in gametocyte egress and oocyst formation.

CTRP Ookinete Microneme Motility and
invasion of
mosquito midgut
epithelium

ND - Dessens et al. (1999):
PbCTRP disruption results in parasites with defective motility and incapable of
invading the midgut epithelium to form oocysts.
- Yuda et al. (1999):
PbCTRP disruption produced ookinetes that could not penetrate the midgut
epithelium.
- Templeton et al. (2000):
PfCTRP disruption results in normal blood stage development and
gametocytogenesis but impaired mosquito midgut development.
- Ramakrishnan et al. (2011):
Mutant PbCTRP parasites lacking all of the A domains show highly reduced motility,
fail to associate with the midgut in vivo and are incapable of invading the midgut to
form oocysts.
Removal of all of the TS domains of PbCTRP render parasites fully motile and
capable of developing efficiently into oocysts in mosquitoes.

TLP Mainly in
salivary gland
sporozoites

Microneme ND Migration through
tissues to reach
hepatocytes

- Heiss et al. (2008):
Disruption of PbTLP does not affect blood stage development or midgut and salivary
gland invasion but parasites show reduced locomotion.
- Moreira et al. (2008):
Disruption of PfTLP and PbTLP results in parasites with normal motility, blood stage
phenotype, gametocyte development and salivary gland invasion. KO parasites show
a defect in migration through hepatocytes and decreased liver infectivity.
- Beyer et al. (2021):
See above

(Continued)
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Many reverse genetic assays in which either the entire protein
or its domains were deleted or modified allowed us to understand
how TRAP performs its function (Table 1). For example, P.
berghei knock out (KO) parasites lacking the complete TRAP
protein were able to differentiate into sporozoites but could not
reach the salivary gland. Moreover, when these KO sporozoites
were injected intravenously into mice, they were unable to
accomplish a productive infection (Sultan et al., 1997; Klug
et al., 2020). These results evidence the importance of the dual
function of TRAP in the cellular interaction with both host
and vector.

The importance of the MIDAS motif of TRAP’s vWA domain
was also demonstrated in experiments with P. berghei
sporozoites. The MIDAS motif comprises five non-contiguous
amino acids and as little as a single point mutation in these
specific residues rendered parasites deficient in salivary gland
invasion as well as in infectivity to the mammalian host, but had
no consequences on sporozoite gliding (Matuschewski et al.,
2002; Klug et al., 2020). Moreover, Pihlajamaa et al. (2013)
showed that addition of metal chelating agents partially
inhibited the binding of recombinant PfTRAP to hepatic cells,
further confirming that MIDAS is relevant for parasite invasion.
In a recent work done by Klug et al. (2020), the authors showed
that when the complete vWA domain was removed from TRAP,
the sporozoites lost their motility in a similar way as in the
complete TRAP KO. Altogether these results indicate that the
various biological functions of TRAP are dependent on its vWA
domain and, while MIDAS is dispensable for motility, another
region of the vWA domain must be implicated in this process.
Surprisingly, when the vWA domain of P. berghei TRAP
(PbTRAP) was replaced with the vWA domain of MIC2 (the
TRAP ortholog in the distant apicomplexan Toxoplasma gondii
with only a 28% of amino acidic identity), sporozoites were less
motile but still invaded mosquito salivary glands (Klug et al.,
2020). Furthermore, mice challenged with these MIC2 mutants
became infected but with a reduced parasite burden in the liver.
Additionally, amino acid mutations distal from the MIDAS site
that reverted the net electrical charge of the vWA domain
resulted in parasites that could normally invade salivary glands
but were uncapable of gliding in vitro and infecting mice,
suggesting that the basic charge of the vWA domain is critical
for its function during transmission from the vector to the host
(Klug et al., 2020).

With respect to the TSR domain, its entire deletion or the
modification of the consensus sequences generated parasites that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
were not able to reach the salivary gland (Wengelnik et al., 1999;
Matuschewski et al., 2002). Interestingly, mutant parasites
in which most of the conserved portion of TSR was deleted
had a severe gliding defect (Wengelnik et al., 1999). More
detailed experiments by Matuschewski et al. (2002) showed
that the introduction of mutations that changed the charge of
the amino acids of this conserved motif had no impact on the
parasite’s gliding capacity. It remains to be determined which are
the key amino acids responsible for the optimal function of the
TSR domain.

In sporozoites the TSR domain is glycosylated (Swearingen
et al., 2016) on the CXX(S/T)C motif by the protein O-
fucosyltransferase 2 (POFUT2) (Lopaticki et al., 2017). This
modification is important for the stabilization and correct
trafficking of TRAP to the sporozoite membrane.

The CTD of TRAP plays a fundamental role connecting the
adhesive domains that extracellularly bind to the substrate, with
the internal actin-myosin motor of the parasite. Modifications in
the CTD residues cause alterations in parasite´s motility as well
as rendering them uncapable of infecting both mosquito salivary
glands and mice liver cells (Kappe et al., 1999). Additionally, it
was demonstrated that TRAP CTD could be replaced by the
equivalent domain of T. gondii MIC2, suggesting that both
interact with analogous proteins (Kappe et al., 1999).

The identity of the molecule that serves as a link between
adhesins and the actin-myosin motor remains controversial. For
many years the consensus among researchers was that CTD
attachment to actin filaments was mediated by the enzyme
fructose 1,6-bisphosphate (F1,6P) aldolase (Jewett and Sibley,
2003; Bosch et al., 2007) and that locomotion resulted from the
translocation of this TRAP-aldolase-actin assembly from the
anterior to the posterior end of the parasite (a schematic
representation can be found in Nemetski et al., 2015). Even
though the CTD lacks a conserved structure, the presence of
acidic amino acids as well as a conserved subterminal W residue
were considered critical for this interaction and the correct
performance of TRAP functions (Buscaglia et al., 2006),
explaining why the classification of proteins into the TRAP-
family heavily relies on the presence of this single amino acid
(Morahan et al., 2009). However, more recent results performed
in T. gondii demonstrated that the disruption of aldolase has no
effect on motility or invasion when parasites grow in the absence
of glucose, suggesting that the negative effects previously
observed in glucose-containing media were due to a metabolic
defect that resulted in the accumulation of toxic metabolites,
TABLE 1 | Continued

Protein Stage Location Function in
vector

Function in host Reverse genetic assays

TREP Early mosquito
stages and
midgut
sporozoites

Microneme Motility and
invasion of
salivary glands

ND - Combe et al. (2009):
PbTREP disruption show reduced salivary gland invasion and display a severe defect
in gliding motility.
- Steinbuechel and Matuschewski (2009):
PbTREP disruption causes a gliding motility defect and an impairment in salivary
gland invasion.
- Beyer et al. (2021):
See above
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rather than a defect in motility and invasion themselves (Shen
and Sibley, 2014). Later on, a glideosome-associated connector
(GAC) protein was identified in T. gondii and proposed as the
link between adhesins and the actin filaments (Jacot et al., 2016).
A GAC homologue is present in all P. berghei stages and adopts
an apical distribution in invasive and motile stages (Jacot et al.,
2016). Conclusive biochemical results about the molecular
interaction of GAC with TRAP are still lacking.

After translocation to the posterior end of the parasite, TRAP
molecules are cleaved by the calcium-independent rhomboid
protease ROM4 (Silvie et al., 2004; Baker et al., 2006) releasing
the adhesive domains that remain bound to the substrate
generating the characteristic gliding trail. Mutations in the
rhomboid cleavage site prevented TRAP processing and caused
detrimental effects on gliding motility and cell invasion in
mosquito and mammalian hosts (Ejigiri et al., 2012).

The mechanism involved in gliding mediated by TRAP is
only partially understood. Studies by Münter et al. (2009) suggest
that TRAP plays an essential role in the initial parasite adhesion
and then coordinates the formation and turn-over of contact
sites to allow continuous motility. Using traction force
microscopy, they showed that the formation and rupture of
these adhesion sites build up elastic energy that drives parasite
motility. In line with these findings, the dynamics of formation of
adhesion sites was studied by Hegge et al. (2012) demonstrating
that TRAP plays a relevant role both in the initial parasite
adhesion from the apical pole as well as in the formation of
second and third adhesion sites necessary for productive gliding.
The authors also suggest that TRAP contributes to gliding by
generating traction forces in the orthogonal direction. Moreover,
Song et al., 2012 showed that TRAP exists in two conformational
states with different free energy and suggest that the attaching
and detaching of the adhesion sites might be regulated by force-
activated changes in TRAP affinity for the ligand.

As shown so far, TRAP is a multifunctional key player for
gliding motility and invasion in very different host and vector
environments. This fact arises the question of which are the
target cell receptors to which TRAP can bind. As mentioned
before, initial studies suggested that recombinant TRAP binds to
sulfated GAGs and that the vWA interacts with heparin and
heparan sulphate present in the hepatic cells (Müller et al., 1993;
Robson et al., 1995; McCormick et al., 1999). In vitro studies
showed that TRAP binds to human hepatocyte-derived cell lines
including both heparin and non-heparin mediated interactions
(Akhouri et al., 2008). Regarding the role of TRAP in the vector,
Ghosh et al. (2009) demonstrated that P. berghei and P.
falciparum TRAP have a high affinity binding to saglin, a
specific surface protein of the mosquito salivary gland that is
not modified with GAGs. Authors showed that this binding is
mediated by the vWA domain and is essential for sporozoite
invasion of the salivary gland.

Recently, Dundas et al. (2018) identified the human integrin
avb3 as a host receptor for PfTRAP through protein interaction
assays. The authors conclude that the interaction is mediated by
both the vWA domain, including the MIDAS site, and the RGD
motif and state that the TRAP-integrin interaction has a minor
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
role in hepatocyte invasion, contrasting the aforementioned
studies. The authors propose that integrin acts as an indicator
for the parasite to stop gliding motility and switch to cell
traversal or invasion behaviors. This conclusion also
contradicts the assumption made by Klug et al. (2020) who
state that TRAP acts as a poly-specific receptor providing
traction for sporozoite migration and that it does not
determine tissue tropism. Therefore, further studies should be
done to clarify if there is a single or multiple ligands of TRAP and
the exact role of the protein-ligand interaction since many
questions remain to be answered towards the elucidation of
its function.

Merozoite TRAP (MTRAP), Responsible for
Merozoite Invasion or Involved in
Gametocyte Egress?
After sporozoites infect liver cells, they replicate and maturate
into schizonts. Then, the hepatocyte ruptures releasing
merozoites, which initiate the asexual multiplication cycle in
the erythrocytes. Some merozoites differentiate into sexual
gametocytes that, if ingested by mosquito, begin the sexual
multiplication phase known as the sporogonic cycle (Figure 1).

Merozoite TRAP (MTRAP) was first described by Baum et al.
(2006). The protein also localizes to the micronemes and has the
capacity of interacting in vitro with aldolase (Baum et al., 2006).
MTRAP has two TSR domains, a putative rhomboid-protease
cleavage sequence and the acidic CTD with the conserved
penultimate W residue which places it among the TRAP-
family proteins (Figure 2C). The functional similarity of
MTRAP to TRAP was demonstrated by Diaz et al. (2014) and
Diaz et al. (2016) which showed that MTRAP CTD domain has
the capacity of stimulating actin polymerization and that
substitutions in the conserved W of the CTD abolish its
binding to aldolase. Remarkably, MTRAP lacks the vWA
domain and, unlike the majority of TRAP- family members,
the TSR domain has a more compact structure (Uchime et al.,
2012). The fact that MTRAP has many structural and functional
similarities to TRAP made different authors assume that this
protein might be implicated in merozoite invasion of
erythrocytes and named it accordingly.

In this sense, the identification of the human erythrocyte
surface protein Semaphorin-7A (a.k.a. CD108) as a receptor for
P. falciparumMTRAP provided additional evidence to its role in
merozoite red blood cell invasion (Bartholdson et al., 2012).
However, when the authors tried to disrupt the MTRAP-
Semaphorin-7A interaction, no defect on erythrocyte
internalization was found. In addition to these findings, Riglar
et al. (2016) performed a detailed analysis of the localization of
MTRAP during erythrocyte entry and observed that MTRAP
was not present at the merozoite tight junction, where actin and
aldolase regularly are located.

Nonetheless, a study in which both P. berghei and P.
falciparum MTRAP KO parasites were successfully generated,
challenged the idea that MTRAP played an equivalent role as
TRAP but in the merozoite stage (Bargieri et al., 2016). In this
work, the authors demonstrate that MTRAP is not necessary for
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merozoite invasion but instead is crucial for the egress of
gametocytes from the parasitophorous vacuole that surrounds
Plasmodium parasites while developing inside host cells
(Figure 1). These findings suggest that MTRAP is a key factor
for transmission into mosquitoes and are consistent with the
detection of MTRAP in gametocytes (Bargieri et al., 2016). These
results were further supported by an independent research done
by Kehrer et al. (2016) who concluded that MTRAP is redundant
for erythrocyte stages but plays a key role for gamete egress.
Altogether, these findings support a role of MTRAP in
gametocyte egress but do not rule out a role of MTRAP related
to parasite motility since it is possible that the actin-myosin
motor is still involved in membrane rupture to facilitate egress.
Bargieri et al. (2016) propose that MTRAP might link actin in
gametes with an unknown ligand in the parasitophorous vacuole
and, through motility, enable membrane disruption allowing the
parasite’s exit. As in the case of TRAP, further research is needed
to unequivocally determine the precise role and ligands of
MTRAP in Plasmodium.

The Circumsporozoite and TRAP-Related
Protein (CTRP) Is Implicated in Ookinete
Motility and Crossing the Mosquito Gut
Epithelium
Inside the mosquito, gametes fuse generating zygotes that
differentiate into motile and elongated ookinetes which invade
the midgut of the mosquito and develop into oocysts. These
oocysts then release sporozoites, which migrate and invade the
mosquito’s salivary glands being ready for perpetuating the life
cycle (Figure 1).

The Circumsporozoite and TRAP-Related Protein (CTRP)
was first reported by Trottein et al. (1995) and plays an
important role in ookinete stages where it localizes inside the
micronemes (Dessens et al., 1999; Yuda et al., 1999; Templeton
et al., 2000).

Strikingly, the architecture of CTRP contains six vWA and
seven TSR domains, both contiguous, being the TRAP- family
protein with the largest number of adhesive domains
(Figure 2C). Four copies of the vWA domain are canonical
and contain a MIDAS site (Kaneko et al., 2006) meanwhile only
three out of the seven TSR have a canonical sequence (Trottein
et al., 1995). CTRP has a predicted cleavage site that could be
processed in vitro by the P. falciparum protease ROM4 (Baum
et al., 2006), and the characteristic acidic CTD with the
conserved W residue. It has been also demonstrated that
CTRP can bind to aldolase (Heiss et al., 2008).

The role of CTRP was first explored through reverse genetics
experiments in P. berghei and P. falciparum (Dessens et al., 1999;
Yuda et al., 1999; Templeton et al., 2000). All studies
demonstrated that CTRP KO parasites had a normal asexual
phenotype and could generate regular numbers of gametocytes
and ookinetes, but the latter were unable to invade mosquito
midgut epithelium and develop into oocysts. CTRP is essential
for midgut epithelium invasion (Figure 1) and KO parasites that
showed no locomotion were impaired to reach or penetrate the
target cells and, in consequence, were uncapable of transitioning
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
from ookinete to oocyst. Klug et al. (2018) generated a CTRP KO
mutant in which TRAP was expressed in ookinete stages. The
authors observed that TRAP can complement the gliding defect
of CTRP KO parasites, however the ookinetes were still
uncapable of establishing invasion in mosquitos, highlighting
that CTRP plays an additional role in this process, possibly
related to the recognition of midgut specific ligands that trigger
cell invasion.

Later on, the CTRP structure was dissected by removing
either the six vWA or the seven TSR adhesive domains. Results
revealed that when the protein lacked all the TSR domains,
parasites generated normal oocysts in the mosquito but when all
vWA were removed, ookinetes did not transition to oocysts
(Ramakrishnan et al., 2011). Regarding the multiplicity of vWA
domains, the authors hypothesize that the receptors of vWA in
mosquito target cells might have a lower affinity that the
corresponding receptors in the vertebrate host, so increasing
the number of domains might augment attachment.
Furthermore, parasites that had a CTRP without its vWA
domains displayed a reduced motility while the movement of
those that lacked the TSR domains was indistinguishable from
the wild type (Ramakrishnan et al., 2011). These results are in
agreement with the studies done in TRAP Klug et al. (2020) that
showed that vWA was necessary for gliding motility. However,
the apparent dispensability of TSR domains in CTRP contrasts
with the important role of TRAP’s TSR domain in sporozoite
invasion of salivary gland, raising the question of what evolutive
forces favored the selection of this peculiar multi-TSR protein
in Plasmodium.

TRAP-Like Protein (TLP), an Adhesin
Implicated in Cell Transversal
TRAP-like protein (TLP) was initially identified by a similarity
search based on the TSR domain of TRAP (Figure 2) (Baum et al.,
2006). TLP is structurally like TRAP having a single vWA including
a MIDAS motif and a TSR domain (Figure 2C), together with a
potential rhomboid cleavage site at the extracellular side of the
transmembrane domain. TLP has a second cryptic vWA domain
that is poorly conserved. The acidic CTD of TLP can also bind to
aldolase in vitro, and once again the conservedW is essential for this
binding (Heiss et al., 2008).

TLP transcription in vector and mammalian stages was
assessed in two independent publications released almost
simultaneously (Heiss et al., 2008; Moreira et al., 2008). Both
studies agreed that tlp gene is mainly transcribed in salivary
gland sporozoites and to a lower extent in gametocytes and
midgut sporozoites. However, both reports disagree regarding
the presence of TLP transcripts in merozoites.

The functional role of TLP was also investigated in both
publications using reverse genetics. Both groups demonstrated
that TLP is dispensable for asexual life cycle progression in vivo,
and that the KO parasites showed normal gliding motility and were
capable of infecting mosquito midgut and salivary glands.
However, while Heiss et al. (2008) concluded that TLP plays a
redundant role connecting the actin-myosin motor to the
substrate, Moreira et al. (2008) demonstrated that TLP is
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involved in the parasite’s migration through tissues to finally reach
the hepatocytes (Figure 1). During their life cycle, sporozoites that
encounter a cell can proceed either invading it by forming a
parasitophorous vacuole in which they reside or migrating
through the cell causing a membrane rupture, a process known
as cell transversal. This migration is characteristic of sporozoites
prior to establishing infection in a selected hepatocyte (Mota et al.,
2001; Coppi et al., 2007). Moreira et al. (2008) suggest that TLP
might act linking the actin-myosin motor to specific receptors in
different skin cells and endothelial barriers in the mammalian host.
This hypothesis was further supported by experiments in which
TLP KO parasites could glide but with less continuity than wild
type sporozoites and that this defect could be rescued applying
external forces that pushed parasites onto the substrate (Hegge
et al., 2010). Furthermore, Hellmann et al. (2011) evaluated the
migration capacity of the TLP KO sporozoites both in vitro using
obstacle arrays and through in vivo imaging. The authors show that
the KO parasites glided at a slower speed and underwent longer
resting phases, probably due to an adhesion impairment, resulting
in an inefficient dispersal. Finally, Quadt et al. (2016) studied the
movement dynamics in TLP KO parasites and concluded that TLP
serves as a linker between the substrate and the actin filaments and
that it transduces the force from actin filaments towards the
substrate. The authors also speculate that TLP might be
implicated in the organization of actin filaments to generate the
force needed for motility. Overall, the abovementioned evidence
strongly suggests that TLP might act during migration and cell
transversal by establishing and stabilizing parasite adhesion.

TRAP-Related Protein (TREP) Is Required
for Productive Gliding and Invasion of the
Salivary Gland
TRAP-related protein (TREP) sometimes referred to as
sporozoite-specific protein 6 (S6) or UOS3, is the fifth and last
known TRAP- family member in Plasmodium and was identified
in a sporozoite-enriched transcriptome (Kaiser et al., 2004).
TREP transcripts are mostly found in early mosquito stages
and midgut sporozoites but show very low transcript levels in
salivary gland sporozoites. TREP is by far the largest TRAP-
family protein and curiously, despite having an extensive
extracellular cysteine-rich globular region, it has only one TSR
domain and none vWA domain (Figure 2C). As the other
members of the TRAP- family, TREP localizes on the
micronemes and upon release it relocates to the sporozoite
plasma membrane (Steinbuechel and Matuschewski, 2009).

Once again for this protein, two independent publications
that used a reverse genetics approach to characterize TREP
function were published simultaneously (Combe et al., 2009;
Steinbuechel and Matuschewski, 2009). In this case, both studies
arrived at the same conclusions: TREP is dispensable for
erythrocytic stage development, gametocytogenesis ,
transmission to the mosquito, and oocyst formation in
midguts. However, TREP KO sporozoites were drastically
impaired in salivary gland invasion. When these KO parasites
were injected into mice, they were able to achieve a productive
infection reinforcing the idea that TREP does not play a relevant
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
role in liver and erythrocytic stages. Both groups also
demonstrated that KO parasites showed a defective gliding
motility and therefore they conclude that TREP is important
for sporozoite gliding and salivary gland invasion (Figure 1).
Finally, Hegge et al. (2012) showed that TREP KO sporozoites
are able to establish the first out of the three adhesion sites
required for gliding but fail to establish the second and third ones
which could explain the observed impairment in salivary
gland invasion.

Plasmodium TRAP- Family Adhesins: Are
They Linked?
As shown so far, TRAP- family proteins are expressed in
different stages of the parasite’s life cycle with important roles
in within them. Interestingly, three out of the five TRAP- family
proteins (TRAP, TLP and TREP) are expressed simultaneously
during sporozoite stages (Table 1). This arises the question of
whether there is an interaction between each other to fulfill their
function, or if they all act independently.

This question was recently addressed by Beyer et al. (2021) by
generating the three possible double KO combinations as well as
a triple KO line. As expected, all four parasite lines showed
normal blood stage development and oocyst formation, which is
consistent with the fact that neither of these proteins are
expressed during these stages. After analyzing the adhesion
capacity, productive gliding and transmission to mice of the
mutant lines, the authors conclude that all adhesins act
independently since the phenotypes of the double and triple
KOs were equivalent to that of the dominant gene. The authors
only observed a pronounced adhesion defect in the double
TRAP/TREP KO and this distinct phenotype is in accordance
with the results reported by Hegge et al. (2012) indicating that
both adhesins are responsible for the formation of adhesion sites
needed for productive gliding. The fact that the triple KO, despite
not achieving productive gliding, was still capable of performing
a waving movement and patch gliding demonstrates that other
proteins are involved in sporozoite adhesion to the substrate.
Some of these proteins could be members of the TRAP-related
protein family and will be discussed in the following section.
THROMBOSPONDIN-RELATED PROTEIN
FAMILY IN PLASMODIUM SPP.

The members of this second protein family, named
thrombospondin-related protein (TRP) family, share some
functional domains with TRAP proteins related to host-cell
recognition and invasion, but they lack the characteristic acidic
CTD domain with the W residue (Figure 3) that appears to be
determinant for interaction with the actin-myosin motor.

Circumsporozoite Protein (CSP)
The most studied member of the TRP- family is Plasmodium
circumsporozoite protein (CSP) that is the major sporozoite
surface protein and the target antigen of one the most advanced
malaria vaccines, RTS,S and R21.
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CSP structure contains an N-terminal domain that binds
heparan sulphate proteoglycans, a protease cleavage site
(region I), a central region with a variable number of repeats,
a short-conserved region (region III), and a TSR domain in the
C-terminal end with a string of positively charged amino acids
(region II+) followed by a glycosylphosphatidylinositol (GPI)
anchor site (Figure 3). The crystal structure of the TSR domain
shows a dissimilar fold containing a hydrophobic pocket
formed by highly conserved amino acids and which
biological implications are yet unknown (Doud et al., 2012).
Likewise to TRAP, the TSR domain of CSP is subjected to O-
fucosylation by the enzyme POFUT2, however the biological
implications of this modification is still unclear (Lopaticki
et al., 2017).

CSP plays a critical role during vertebrate and mosquito
stages. In the mosquito, CSP is involved in sporozoite
formation and exit from the midgut oocysts, and invasion of
salivary glands (Ménard et al., 1997; Myung et al., 2004; Wang
et al., 2005). In the mammalian host, CSP is necessary for
hepatocyte invasion (Cerami et al., 1994). Even though there is
some evidence that suggests that CSP may influence gene
expression of the infected hepatocyte providing a favorable
environment for parasite development (Singh et al., 2007), a
deeper characterization of this function is still necessary.

Several authors have provided evidence that suggests that CSP
can adopt two different conformations (Coppi et al., 2005; Coppi
et al., 2011; Herrera et al., 2015). Both studies propose a model in
which the open form is present in sporozoites as they develop
within the mosquito midgut and later on is processed adopting a
close conformation that conceals the TSR domain. This collapsed
conformation is maintained throughout the journey to the liver,
and then, prior to hepatocyte invasion and during sporozoite
development in the mosquito, it reverts to the open form
exposing the TSR domain. Furthermore, Coppi et al. (2011)
showed that when the TSR domain is prematurely exposed,
sporozoites are retained in the dermis and cannot reach the liver.
This model is consistent with reverse genetics assays done by
Wang et al. (2005) that show that mutations in four positively
charged amino acids from region II+ prevents the exit of
sporozoites from oocysts and in consequence salivary gland
invasion. It was also demonstrated that in the mammalian
host, this region is also required for hepatocyte invasion. These
results are in agreement with the work done by Tewari et al.
(2002) in which they generated P. berghei mutants where the
endogenous CSP was replaced by the P. falciparum counterpart,
either complete or depleted from region II+. The authors showed
that while both lines have a defect in salivary gland invasion, this
was significantly higher in those sporozoites that lacked region II
+. Also, the region II+- depleted sporozoites had a marked defect
in infection of the vertebrate host.

The importance of the central repeat region was addressed by
Ferguson et al. (2014) who demonstrated that when this specific
part was removed from CSP, mutant parasites could still form
oocysts, yet sporozoites failed to develop in a normal fashion and
instead presented abnormalities such as a disorganized inner
membrane complex formation and agglutination.
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The RTS,S malaria vaccine includes a fragment of the central
repeat domain of CSP together with the C-terminal end that
contains T- and B-cell epitopes, coupled with the N-terminal end
of the hepatitis B surface antigen. This vaccine aims at directing
the immune system against sporozoites immediately after
entering the bloodstream and therefore preventing hepatocyte
invasion. The highly repetitive nature of the vaccine design also
provides an enhanced presentation of the antigen to the immune
system. The RTS,S vaccine has successfully provided a 18-36%
protection against clinical malaria during Phase III trials (RTS,S
Clinical Trials Partnership, 2015) and has recently begun a large-
scale vaccination program in areas with high malaria
transmission. Based on the outcome of this ongoing
implementation, in October 2021 the WHO recommended the
RTS,S vaccine for broad use among young children in areas with
moderate to high transmission of P. falciparum malaria (World
Health Organization, 2021). The design, immunogenicity and
outcomes of the RTS,S vaccine were recently reviewed in detail
(Laurens, 2020; Martins de Almeida et al., 2021).

As previously described for TRAP, there is also a high
variability in csp alleles which makes this gene a good
molecular marker that has been exploited in the study of P.
falciparum isolates to better understand epidemiology and
infection dynamics (Lerch et al., 2017). On the down side, this
high degree of polymorphism threatens the efficacy of CSP-based
RTS,S malaria vaccines against genotypic variants.

Recently, Noe et al. (2021) applied computational vaccinology
approaches to predict conserved epitopes across reported
sequence variants to help improve CSP- based malaria vaccines.

Other TRP- Family Proteins
Several other TRP- family proteins have been characterized in
Plasmodium spp. (Figure 3). An example is Plasmodium
thrombospondin-related protein 1 (TRP-1), which is expressed
by sporozoites and localizes at the outer side of their plasma
membrane (Lindner et al., 2013). The protein has a single TSR
domain, a TM domain and a CTD without the subterminal W
residue (Figure 3). TRP-1 plays an important role during
mosquito stages allowing the parasite to exit from the oocysts
and enter mosquito hemolymph to reach and invade the salivary
gland (Klug and Frischknecht, 2017).

Another member of this group is the Secreted Protein with
Altered Thrombospondin Repeat (SPATR). This protein has a
distorted TSR domain and a cysteine-rich motif that resembles a
type II EGF- like domain, also known to be involved in adhesion
and protein-protein interactions (Figure 3). SPATR is expressed
during sporozoite, merozoite and gametocyte stages
(Chattopadhyay et al., 2003; Mahajan et al., 2005) and localizes
in the rhoptries of the parasite (Gupta et al., 2020). A recent
reverse genetics study demonstrated that SPATR is not essential
neither for parasite development in mosquito nor for liver
infection but plays an essential yet unknown role during blood
stages since SPATR KO parasites failed to establish blood stage
infections (Gupta et al., 2020).

A fourth member is the Plasmodium thrombospondin-related
sporozoite protein (TRSP) which contains a TSR domain and a
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transmembrane domain followed by a short nonacidic CTD
(Figure 3). It is expressed in sporozoites and localizes in the
rhoptries (Kaiser et al., 2004; Labaied et al., 2007). The role of the
protein in Plasmodium lifecycle is unclear since two independent
works showed contrasting results. Labaied et al. (2007) showed
that depletion of TRSP caused a defect in hepatocyte invasion.
However, Costa et al. (2018) demonstrated that TRSP KO
parasites were able to reach and infect liver cells and suggest
that discrepancies with the prior research might be due to the
differences in the genetic background of the parasite strains used
in both studies.

The fifth member or the TRP-family is the Plasmodium
thrombospondin-related apical merozoite protein (PTRAMP).
This protein is expressed in merozoite stages and localizes in the
rhoptry bulbs (Siddiqui et al., 2013). PTRAMP has a TSR domain
(the only Plasmodium TSR classified as a Group 1 domain), a TM
domain and a short, acidic CTD that lacks the characteristic W of
TRAP- family proteins (Figure 3). Attempts of disrupting the
ptramp gene were unsuccessful suggesting that this is an essential
gene for parasite survival (Thompson et al., 2004). Antibodies
against P. falciparum TRAMP inhibited RBC invasion and
limited parasite growth in vitro, supporting the idea that the
protein is critical for invasion (Siddiqui et al., 2013).

A sixth TRP- family protein, named von Willebrand factor A
domain-related protein (WARP) is expressed in ookinetes and
localized in the micronemes as a soluble protein. This protein has
a vWA domain and lacks both TSR and TM domains (Figure 3)
therefore it is either secreted or remains attached to the
membrane by interacting with other membrane attached
proteins (Li et al., 2004). The generation of a WARP KO line
showed that the lack of WARP had only a minor effect on the
number of oocysts formed and these produced a normal number
of infective sporozoites, demonstrating that this protein is not
essential for development in mosquitos (Ecker et al., 2008).
TRAP- SUPERFAMILY PROTEINS IN
BABESIA SPP. AND THEILERIA SPP.

The first TRAP- family protein in Piroplasmida was
characterized in Babesia bovis in 2004 by the work of Gaffar
et al., more than 15 years later than the report of the Plasmodium
ortholog. Its later discovery, together with the fact that Babesia
and Theileria parasites are less studied than Plasmodium, limits
our current knowledge on the repertoire of Piroplasmida
adhesive proteins. The successful genetic manipulation of
Babesia and Theileria has been challenging and well
established protocols for stable transfection in parasites of this
order have become available more than 10 years later than those
for Plasmodium and Toxoplasma (Suarez et al., 2017). Up to date,
there are no reverse genetics studies of TRAP proteins in
Piroplasmida and most of protein functions are hypothetically
assigned based on orthology with Plasmodium and Toxoplasma.

However, with the advance of genome sequencing
technologies, multiple genes encoding TRAP- superfamily
proteins were identified in several Piroplasmida genomes. The
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first description was done by Montenegro et al. (2020) who
performed an exhaustive search for TRAP- and TRP- family
proteins in all available Babesia and Theileria genomes,
identifying a variable number of protein coding sequences in
the different species. The only Babesia spp. and Theileria spp.
TRAP protein that has a direct ortholog in Plasmodium is TRAP-
1. A phylogenetic analysis on all the Piroplasmida TRAP- family
members demonstrated that TRAP-1 from all species cluster
together, while a separate branch clusters the paralogs TRAP-2
and -3 together (Montenegro et al., 2020). Interestingly, even
though the size of P. falciparum genome is almost two times
larger than the B. bovis genome (22.8 Mbp vs. 8.2 Mbp, Brayton
et. al, 2007) the number of TRAP- superfamily proteins is similar
between both reference species (Figures 2C and 3).

The architecture of TRAP proteins in Piroplasmida is similar
to those of Haemosporida, combining different number of TSR
and vWA domains in the extracellular portion of the protein and
conserving the acidic CTD with the characteristic W residue
(Figure 2C). Nonetheless, while in Plasmodium the subterminal
W is invariably in the penultimate position, in Babesia and
Theileria this residue occupies the fifth or sixth position from the
C-terminal end (Montenegro et al., 2020).

Among Piroplasmida, B. bovis has four TRAP- family
proteins (Terkawi et al., 2013). The analysis from two
transcriptomic datasets (Pedroni et al., 2013; Ueti et al., 2020)
showed that all genes are transcribed in both merozoites and
kinetes (the parasitic stages located in ticks hemolymph). TRAP-
1 is overexpressed in kinetes while the other three members are
overexpressed in merozoites (Figure 4). While TRAP-1
transcription remains unaltered in blood stages of strains with
contrasting virulence phenotypes, TRAP-2, -3 and -4 have higher
transcription rates in blood stages of virulent strains (Figure 4),
suggesting a relevant role in the parasite’s virulence.

In Babesia, TRAP-1 has been studied in B. bovis (Gaffar et al.,
2004), B. bigemina (Montenegro et al., 2020) and B. orientalis
(Yu et al., 2018) mainly upon expression of recombinant forms
of the protein and in vitro invasion assays. Overall, results
between species are consistent and show that Babesia TRAP-1
has a comparable modular structure to that of Plasmodium
TRAP (Figure 2C), including the MIDAS site in the vWA
domain and the putative rhomboid cleavage site. B. bovis
genome encodes five homologues of rhomboid proteases that
might be responsible for this cleavage (Terkawi et al., 2013), but
this has not been experimentally tested so far.

TRAP-1 was detected at the apical end of the merozoites in
the different Babesia species, consistent with a micronemal
localization (Gaffar et al., 2004; Yu et al., 2018). Contrary to
Plasmodium, Babesia TRAP-1 is also expressed during the
erythrocytic stages and antisera raised against the recombinant
protein showed a significant degree of inhibition of erythrocytic
infection both for B. bovis and B. bigemina, suggesting that
TRAP-1 would play an important but not essential role in red
blood cell invasion, probably mediating adhesion to a membrane
receptor (Gaffar et al., 2004; Montenegro et al., 2020). Both
findings in Babesia differ from what was found for Plasmodium
spp. (Gantt et al., 2000). It is worth mentioning that Babesia
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parasites do not undergo a liver stage prior to initiating the
erythrocytic stage so the sporozoites inoculated by the tick bite
directly target the erythrocyte. This difference in the life cycle in
addition to different vectors and modes of transmission may
explain the differential expression of TRAP orthologs in both
orders. The increased transcription of TRAP-1 in kinetes
suggests that this protein might be more relevant in vector
stages than in blood stages, as seen for Plasmodium TRAP. In
addition, no significant differences were found in transcription
patterns (Figure 4) between blood stages of virulent and
attenuated strains, reinforcing the hypothesis that TRAP would
be more relevant in vector stages.

The other TRAP- family member studied so far in Piroplasmida
is TRAP-2 (sometimes referred to as P18). In vitro assays using the
recombinant B. gibsoni protein demonstrated that TRAP-2 can bind
to erythrocytes (Zhou et al., 2006), and the CTD is able to bind
aldolase through the subterminal W residue playing a major role
(Goo et al., 2013). Yet, further experiments will be required to
confirm if aldolase or a GAC ortholog are the link to the actin-
myosin motor in Piroplasmida.

Studies on B. bovis TRAP-2 performed by Terkawi et al.
(2013) show that the protein localizes in the apical end of
intracellular merozoites and is then translocated to the surface
of extracellular forms. Consistent observations were reported for
the B. orientalis ortholog (Zhan et al., 2019). Furthermore,
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truncated forms of B. bovis TRAP-2 were detected in the
supernatant of the culture, indicating that this protein is
proteolytically processed and shed from the parasite, as seen in
Plasmodium. Also, the same authors show that TRAP-2 is
capable of binding erythrocytes and that sera raised against the
recombinant protein significantly inhibit merozoite invasion of
the host cell and that the reduced invasion was not due to an
impairment in gliding motility. These findings are supported by
the transcription data from B. bovis TRAP-2 that shows that the
number of transcripts in blood stages is significantly higher than
in tick stages, and that TRAP-2 transcripts in the virulent strain
double the number of those in the attenuated counterpart
(Figure 4). Despite not being direct evidence of the protein
function, all the above-mentioned findings support the idea that
TRAP-2 functions in the attachment of the merozoite prior to
invasion and to a possible role in virulence.

The conserved protein domain architecture and the results described
here suggest that Piroplasmida TRAP- family members are also involved
in the events of invasion and motility, in a similar way as Plasmodium
TRAP- family proteins. Still, further research is necessary to unequivocally
assign function by reverse genetics or other studies and determine in
which developmental stages these proteins are involved.

Regarding the TRP- family in Piroplasmida, the only evidence
so far is the identification of either 2 or 3 genes in the genomes of
different Babesia and Theileria species (Montenegro et al., 2020).
Since there are no functional studies on the role of these proteins
in Piroplasmida, insights of their relevance can only be obtained
based on transcription analysis (Figure 4). According to this, we
could hypothesize that in B. bovis TRP-1 might play a relevant
role in blood stages from virulent strains while TRP-3 could act
during tick stages.
THE TRAP-SUPERFAMILY PROTEINS IN
OTHER APICOMPLEXANS

Members of the TRAP- superfamily were also identified in other
parasites from the phylum Apicomplexa that are not transmitted
by vectors. Interestingly, in these species the number of TRAP-
superfamily proteins is reduced to one or two members, which
could be related to the fact that the parasite needs to move and
invade in less diverse environments.

The genome of the human pathogen Toxoplasma gondii codes
for a single TRAP homologue named MIC2 that comprises one
vWA domain, six TSR domains and the acidic CTD with the
conserved W residue (Boucher and Bosch, 2015). As shown by
KO assays, TgMIC2 plays an important, yet non-essential role in
motility and host cell invasion, being involved in mediating the
formation of attachment sites (Gras et al., 2017). Interestingly,
TgMIC2 is constantly associated to TgM2AP forming a hetero-
hexameric complex and disruption of TgM2AP causes an
incorrect localization of TgMIC2 and an invasion defect
(Huynh et al., 2003). As previously mentioned, the interaction
of TgMIC2 with the actin-myosin motor is believed to be
mediated by a glideosome-associated connector (GAC) (Jacot
et al., 2016).
A

B

FIGURE 4 | Transcription of Babesia bovis genes coding for TRAP- and
TRP- family proteins. (A) Transcription patterns from blood and tick stages
(normalized reads, log scale). (B) Transcription patterns from virulent and
attenuated strains (normalized reads, linear scale). Gene transcription was
considered significantly and differentially regulated if |log fold change (FC)| ≥ 1
and false detection rate (FDR) < 5%. Error bars represent S.D. Significant
differences were obtained for all genes except for TRAP-1 and TRP-3.
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In other apicomplexan parasites of medical or veterinary
importance, several TRAP- family proteins were identified but
no reverse genetics assays were done to unequivocally assign
their function. In the bovine parasite Neospora caninum, two
TRAP- family proteins were identified, named NcMIC2 and
NcMIC2-like1 (Lovett et al., 2000; Pereira et al., 2011). Both
localize in the micronemes, and antisera raised against the
adhesive domains of NcMIC2-like1 inhibited the in vitro
invasion which suggests a role in invasion process. Avian
pathogens from the Eimeria genus also have two TRAP family
proteins, named MIC1 and MIC4, that localize in micronemes
(Tomley et al., 2001) and show a differential expression during
the life stages of the parasites. Finally, a bioinformatics analysis
done on the human pathogen C. parvum genome identified a
total of 12 TRAP-family proteins with TSR domains (Deng et al.,
2002). Two of them, TRAP-C1 and TSP8, were characterized to
some extent and demonstrated to be located in the apical end of
the parasite (Spano et al., 1998; Putignani et al., 2008).
DISCUSSION

Vector borne apicomplexan parasites are a major constraint in
terms of human and veterinary health and the development of novel
drugs and more efficient vaccines is an urgent need, especially in the
context of global changes in climate, use of land and closer human-
animal interfaces. To improve the control strategies on vector-borne
diseases, it remains indispensable to gain a deeper knowledge of
fundamental processes involved in parasite´s life cycle progression
and virulence, particularly the proteins involved in initial
attachments, internalization, and cell transversion.

Adhesins from TRAP- and TRP- families are key players in
the gliding and invasion of target cells in Aconoidasida as well as
other members of Apicomplexa and, as demonstrated in this
review, are functionally relevant throughout the entire parasite’s
journey both in the arthropod vector and in the mammalian
host. Using the same adhesive domains in different host and
tissue contexts, parasites can fulfill various tasks including
migration, invasion and egress from diverse epithelia and cell
types. Therefore, these adhesins could be attractive targets for
developing specific control measures to avoid the above-
mentioned processes.

Despite the great interest of the research community in the
study of TRAP- and TRP- family proteins, there are still
controversies and knowledge gaps that need to be addressed to
have a better understanding of their precise role in parasite’s
fundamental processes. On the one hand, the definition of the
ligands that interact with these proteins is critical not only for the
comprehension in parasite’s biology but also to analyze if
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blocking such interaction is a feasible alternative for disease
control. On the other hand, the role of adhesins in Piroplasmida
is still in early stages and should be further studied through
reverse genetic approaches. In addition, complementation
studies using TRAP proteins from Plasmodium could be an
interesting way to evaluate the conservation of protein function
between Piroplasmida and Haemosporida. Even though the
genetic manipulation of Babesia and Theileria has historically
been a limitation for such studies, with the advent of new tools
like CRISPR-Cas9 that benefits from versatility, simplicity, and
low costs we can now address new questions and unequivocally
assign the role of TRAP proteins in Piroplasmida.
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