
Frontiers in Cellular and Infection Microbiolo

Edited by:
Fany Reffuveille,

Université de Reims
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Periprosthetic infections are an eminent factor in patient care and also having significant
economic implications. The number of biofilm-infection related replacement surgeries is
increasing and will continue to do so in the following decades. To reduce both the health
burden of the patients and the costs to the healthcare sector, new solutions for implant
materials resistant to such infections are necessary. This study researches different
surface modifications of cobalt–chromium–molybdenum (CoCrMo) based implant
materials and their influence on the development of biofilms. Three smooth surfaces
(CoCrMo, CoCrMo TiN, and CoCrMo polished) and three rough surfaces (CoCrMo
porous coated, CoCrMo cpTi, and CoCrMo TCP) are compared. The most common
infectious agents in periprosthetic infections are Staphylococcus aureus and Coagulase-
negative staphylococci (e.g., Staphylococcus epidermidis), therefore strains of these two
species have been chosen as model organisms. Biofilms were grown on material disks for
48 h and cell number, polysaccharide content, and protein contend of the biofilms were
measured. Additionally, regulation of genes involved in early biofilm development (S.
aureus icaA, icaC, fnbA, fnbB, clfB, atl; S. epidermidis atlE, aap) was detected using RT-q-
PCR. All results were compared to the base alloy without modifications. The results show
a correlation between the surface roughness and the protein and polysaccharide content
of biofilm structures and also the gene expression of the biofilms grown on the different
surface modifications. This is supported by the significantly different protein and
polysaccharide contents of the biofilms associated with rough and smooth surface
types. Additionally, early phase biofilm genes (particularly icaA, icaC, and aap) are
statistically significantly downregulated compared to the control at 48 h on rough
surfaces. CoCrMo TiN and polished CoCrMo were the two smooth surface
modifications which performed best on the basis of low biofilm content.
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INTRODUCTION

Due to a general increase in life expectancy, improved surgical
techniques and medical care, the demand for implants (e.g., joint
replacement prosthesis) has increased greatly over recent
decades. Although new materials or surface modifications for
implants are constantly being developed, the struggle with
periprosthetic infections is far from coming to an end. As an
example, predictions for the US (compared to 2014) and
Germany (compared to 2016) show an increase in primary
total knee arthroplasty (TKA) by 2030 from 680,000 by 147%
(Sloan et al., 2018) and from ~170,000 by between 8 and 49%
(Rupp et al., 2020), respectively. Periprosthetic infections have an
incidence of approximately 1–4% after primary TKA (Phillips
et al., 2006). The incidence rate for a periprosthetic infection
following a TKA replacement has been reported to be
approximately 0.5% after 1 year, 0.8% after 5 years, and 1.4%
after10 years (Tsaras et al., 2012), with cost per patient associated
with TKA replacement of up to ~30,000 USD (Palsis et al., 2018).

Those periprosthetic infections can be caused by a number of
different organisms, most of which are bacteria. In most cases a
bacterial infection forms a biofilm on the surface of the implant
which makes it even harder to treat. In a 2020 literature review
on the topic of biofilms in periprosthetic infections Shoji and
Chen (2020) reported a prevalence of Staphylococcus aureus in
such infections of 21–43.6% followed by 20–31% Coagulase-
negative Staphylococcus. Biofilm building Staphylococcus species
have a large number of attributes allowing them to avoid host
defenses and antibiotic treatments. The extracellular polymeric
substances (EPS), also called extracellular matrix (ECM), build a
physical barrier for transport of chemicals (Singh et al., 2010;
Idrees et al., 2021) and immune-cells (Zimmerli et al., 1984) and
hold the biofilm structure together. In addition, quorum sensing
(Kavanaugh and Horswill, 2016; Kim et al., 2017), higher
mutation frequencies (Ryder et al., 2012), and dormant cells
(Venter et al., 2017; Lamret et al., 2020; Shoji and Chen, 2020)
contribute to the pathogenicity of those strains.

Because treatment of already established biofilms is so
difficult, the development of surfaces which are less favorable
for the bacteria to attach to in the first place is an ongoing
research topic. Cobalt–chromium–molybdenum (CoCrMo)
based implants are regularly used not only for total joint
replacement but also in dentistry (Chen and Thouas, 2015).
The CoCrMo alloy has excellent biocompatibility and
mechanical properties, which makes it the preferred material
for knee and ankle replacements (Chen and Thouas, 2015).
Physical and chemical surface modifications of metallic
implant materials aim to improve their surface charge,
wettability, topography and chemistry (Munir et al., 2020) in
order to improve their osseointegration abilities and in the same
time lessen the number of biofilm infections. These
modifications can be achieved by mechanical treatment of the
surfaces like polishing processes and numerous coating methods
like plasma spraying, physical vapor deposition, cathodic arc
deposition, and sintering (Munir et al., 2020). For this study five
surface modifications have been applied to a casted CoCrMo
base alloy: titanium nitride (TiN), mechanical polishing, porous
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coating, commercially pure titanium coating (cpTi), and a
coating with tricalcium phosphate (TCP). Two bacterial
species, S. aureus and S. epidermidis, were used as model
organisms to monitor biofilm development after 48 h of
incubation on the different alloy surfaces. Total cell count,
protein and polysaccharide content of the biofilms were
measured and data on biofilm associated gene expression was
collected. The aim of the study is to understand the influence of
the different CoCrMo surface modifications on the biofilm
formation of S. aureus and S. epidermidis.
MATERIAL AND METHODS

CoCrMo Surface Modifications
All materials tested in this study were manufactured by
Implantcast GmbH (Buxtehude, Germany) and were produced
in a disc shape with a thickness of 1 mm and a diameter of
14 mm using a precision casting process. Gamma irradiation was
used for sterilizing all materials described hereafter. Special
coatings were produced and applied by DOT Ltd (Rostock,
Germany). The CoCroMo casting alloy is composed of 28.5–
29.5% Cr, 5.75–6.25% Mo, less than 1% each of Ni, Fe, C, Si, Mn,
W, P, N, Al, Ti; and Co (~61–64%) making up the balance. This
lies well within the specifications for this material given by the
ISO 5832-3 for CoCrMo casting alloy for surgical implants (ISO
5832-3, 2016). Mechanical properties of the base CoCrMo alloy
were tested according to ISO 6892-1 (2019) and are given as:
tensile yield point Rp0.2 ≥450 megapascal (MPa), tensile strength
Rm ≥665 MPa and elongation at fracture A ≥8%. Titanium
nitride (TiN) modified alloy surfaces show better properties in
terms of biocompatibility, wettability, surface roughness, friction
coefficient, corrosion resistance, minimized wear and increased
temperature resistance; the TiN coating also leads to a reduced
release of cobalt and chromium ions (Van Hove et al., 2015;
Thomas et al., 2016). The coating of the discs was achieved by
cathodic arc deposition. This technique is frequently used to
synthesize extremely hard films for protecting the surfaces of
materials. For the deposition a TiN target with ~99.4% titanium
and less than 0.25% each of Fe, O, C, N and H (all according to
ISO 5832-2 (2018)). The coating thickness was 5.5 ± 1.5 μm, the
adhesive tensile strength ≥22 MPa and the layer roughness <0.05
μm. On top of the TiN layer an additional layer of ≥0.02 μm gold
and cobalt (AuCo; with a maximum percentage of 0.2 ± 0.02%
cobalt) was applied using a PVD-DC-Magnetron sputter. The
density of the AuCo layer was 19.32 g/cm3, the specific electrical
resistance was 2.35 μW • cm and the tensile strength is sufficient
to prevent delamination of the coating when using an adhesive
film strip-test. Highly polished CoCrMo alloys are commonly
used, where the increased surface smoothness is associated with
improved corrosion and wear properties (Davis, 2003). The
porous coating was applied on the base material using
sintering. In this process three layers of 250–355 μm diameter
balls were applied on the material discs resulting in a coating
thickness of 700–1,060 μm. Porosity of the coating was 30–40%,
its tensile strength ≥34.5 MPa and its shear strength ≥20 MPa.
March 2022 | Volume 12 | Article 837124
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The porous structure allows bone cells to “penetrate” into the
implant, leading to a reduced rejection reaction. However, these
pores also provide the bacterial cells with an increased surface
area for adherence (Shoji and Chen, 2020; Idrees et al., 2021).
The commercially pure titanium (cpTi) coating with a layer
thickness of 300 ± 50 μm was sprayed onto the disc surfaces
using a vacuum plasma spray (VPS). The resulting coating had a
porosity of 30 ± 10%, an average roughness of 50 ± 15 μm, a
tensile strength of ≥22 MPa and a shear strength of ≥20 MPa.
cpTi covered materials show an improved osteogenic
differentiation potential (Lohberger et al., 2020a), since the
given porous upper layer in combination with the increase in
surface energy offers the bone cells an optimal structure for
adhesion (Geetha et al., 2009). Tricalcium phosphate coating
(TCP, Bonit®) led to a deposited layer of 20 ± 10 μm thickness
and to a tensile strength of ≥15 MPa (ISO 13779-2, 2018). TCP
consist of 70% brushite (CaHPO42•H2O) and 30%
hydroxyapatite (Ca5(PO4)3OH). The calcium phosphate
provides an advantage for osteoinduction to its surface as its
bioactivity is highly similar to that of bone material and it thus
facilitates improved cell growth and cytocompatibility (Dantas
et al., 2018).

Scanning Electron Microscopy (SEM)
SEM investigations were performed on a FEI Quanta 250 FEG
(Thermo Fisher Scientific, Hillsboro, OR) under high vacuum
conditions and 20 kV high tension. The micrographs were
recorded in secondary electron (SE) mode with the Everhart–
Thornley detector. The disc surfaces of the material were sputter
coated with a gold layer (10 nm) to provide adequate electrical
conductivity. The energy-dispersive X-ray spectroscopy (EDX)
data collection measurements took 60 s each at 20 kV high
tension and a Spotsize of 4.5 with a 30 mm² Octane Elect Plus
Silicon Drift Detector (EDAX Ametek, NJ, USA) and the APEX
Standard Software (V1.3.1, 07/2019) was used.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
Bacterial Cultures
For each experimental run, one overnight culture was prepared for
each S. aureus subsp. aureus strain Newman D2C (ATCC 25904,
Wesel, Germany; also referred to as NCTC 10833 or S. aureus subsp.
aureus Rosenbach) and S. epidermidis (ATCC 14990, Wesel,
Germany; also referred to as NCTC 11047). Luria–Bertani broth
(LB broth) containing 10 g/L tryptone, 5 g/L yeast extract (both Carl
Roth), and 5 g/L sodium chloride (Merck, Darmstadt, Germany) was
used as growth medium. Per strain one CRYOBANK® pearl (MAST
Group, Reinfeld, Germany) was inoculated into 100 ml LB and
cultures were incubated at 37°C at 90 rpm.

Biofilm Assay
The material discs (4 discs per material, all 6 materials) were
placed in 24-well untreated clear polystyrene plates (Corning®,
Wiesbaden, Germany) as shown in Figure 1. The bacterial cells
from the overnight culture were distributed into 1.5 ml
Eppendorf tubes and collected by centrifugation (14,000 rpm,
2 min). The supernatant was discarded and the cells where
resuspended and washed in 1.5 ml of phosphate buffered
solution (PBS). Cells were centrifuged again (14,000 rpm,
2 min) and then freshly inoculated into LB broth. The cell
number was adjusted to 1.5 × 108 CFU/ml in LB broth and
1.5 ml of the adjusted cell solution was added to each well. The
plate was then sealed with a Breathe Easy® sealing membrane
(Merck, Darmstadt, Germany) and incubated for 48 h at 37°C
and 90 rpm. A total of 4 discs per material and species were
prepared for each of the 21 experimental runs (biological
replicates). Growth controls (bacteria without discs) and sterile
controls (sterile LB media on material discs) were run in parallel
for every experimental run.

Biofilm Processing
For the collection of the samples the medium was first gently
removed without disturbing the biofilm and 1.5 ml PBS was
FIGURE 1 | Cell culture plate with the different alloy discs.
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added into each well. The discs were picked up using tweezers,
shaken within the PBS and the biofilm from all sides of the disk
was scraped into a fresh PBS filled well with a mini cell scraper
(Biotium, Freemont, CA, USA). At the end of the process the
scraper was vigorously rotated in the well to ensure that no
biofilm residues remained on the scraper. The content of two
wells per material was pooled in a 3.5 ml tube and vortexed until
no biofilm parts were visible. This step took up to 30 min on the
vortexer in continuous mode and random samples were checked
microscopically to ensure that there were no more biofilm parts
in the samples before further processing. The growth controls
were re-suspended in the medium and then transferred into
3.5 ml tubes; the sterile controls were also pipetted into the
individual collection tubes directly. The resulting 3 ml sample
volume (per biofilm pool and controls) was divided to provide
the volumes needed for the four different measurement protocols
(see below). Samples for genetic analysis were frozen at −80°C
until further processing, all protein and polysaccharide samples
were stored in the fridge at 4°C for no longer than 24 h before
analysis, flow cytometry was performed directly after biofilm
processing and samples were kept at 4°C until loading onto
the instrument.

Polysaccharide Quantification
Polysaccharides of the total biofilm were quantified using an
adapted version of an sulfuric acid phenol extraction method
(Cuesta et al., 2003). Approximately 250 μl of each sample, 250 μl
99.5% phenol, and 750 μl 95–98% sulfuric acid were added to
heat-resistant glass tubes, sealed with aluminum foil (not air
tight) and vortexed for at least 20 s. Incubation took place in a
water bath at 100°C for 10 min. In an additional water bath
samples were cooled to 25°C, vortexed again and 250 μl was
transferred into uncoated U-bottom 96-well plates (BRAND®,
Sigma-Aldrich, Darmstadt, Germany). Absorbance was read at
490 nm in the Multiskan Sky Microplate Spectrophotometer
(Thermo Fisher Scientific). Each sample was measured twice and
the statistical mean was compared to a standard glucose curve
(Merck; 0–1.5 μg/ml).

Protein Quantification
The ‘Pierce ™ BCA Protein Assay Kit’ (Thermo Fisher Scientific,
Waltham, MA, USA) was used to measure the total protein
content of the biofilms. The 562 nm absorbance values of the
samples (25 μl sample in 200 μl working reagent from the kit) in
uncoated U-bottom 96-well plate were read on a Multiskan Sky
Microplate Spectrophotometer. Each sample was measured twice.
The standard curve was prepared with bovine serum albumin
(BSA, supplied with the BCA kit; 0–2,000 μg/ml, Thermo Fisher
Scientific, Waltham, MA, USA) and the arithmetic mean of the
duplicate measurement was compared to the curve.

Live Dead Assay
Flow cytometric cell counts were performed applying the ‘LIVE/
DEAD® BacLightTMViability Kit (Invitrogen, Carlsbad, CA, USA)
for microscopy and quantitative assays’. The Syto9® and propidium
iodide dye mixes were freshly prepared for each measurement in a
ratio of 1:1. Per sample, 1 ml was stained with 1 μl of the dye
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
mixture and incubated in the dark for 15 min at room temperature
and 100 μl per sample were analyzed on a Cyflow® Cube 6 flow
cytometer (Sysmex Europe GmbH, Norderstedt, Germany). The
flow rate was set at 2 μl/s and a 488 nm laser was used. All samples
were measured twice and to avoid signal carryover, cleaning was
performed between all measurements.

Statistics
SPSS (IBM, version 25) was used for statistical analyses of
protein, polysaccharide, and flow cytometry data. The data was
found to be non-Gaussian (Kolmogorov–Smirnov test with
Lilliefors correction). Consequently, the Kruskal–Wallis H test
was applied. Statistical differences were tested in a pairwise
comparison format and the Bonferroni correction for the
Kruskal–Wallis test was used.

RNA Isolation
RNA from the samples of three independent experimental runs (3
biological replicates) was extracted with the Monarch® Total RNA
Miniprep Kit (New England BioLabs, Ipswich, MA, USA). The
enzymatic approach step of the manufacturer’s protocol was adapted:
additionally, 0.1 mg/ml lysostaphin (Sigma-Aldrich, Darmstadt,
Germany) was added to the 3 mg/ml lysozyme which was provided
with the kit. Samples were incubated for 25 min at 350 rpm at 37°C
before carrying out the rest of the protocol according to the guidelines.
Final elution volume was 30 μl per sample.

RT-qPCR
Using the iScript cDNA Synthesis Kit (BioRad Laboratories Inc.,
Veenendal, The Netherlands) 1 μg RNA was reverse-transcribed
with a mixture of oligo (dT) and random hexamer primers. The
samples were amplified with the SsoAdvanced Universal SYBR
Green Supermix and subsequently measured on a CFX96 Touch
(BioRad Laboratories Inc.), as described elsewhere (Lohberger
et al., 2020b). A standard 3-step PCR temperature protocol was
used with an annealing temperature of 60°C followed by a
melting curve protocol to confirm a single gene-specific peak
and to detect primer dimerization. The ΔΔCt method was
applied for the calculation of the relative quantification of
expression levels by means of the geometric mean of the
internal control (16s rRNA gene for S. aureus and also for S.
epidermidis; for primer sequences see Table 1). The expression
levels (Ct) of the target genes were normalized to the reference
genes (ΔCt). The ΔΔCt value was calculated using the difference
between the ΔCt value of the test sample and the ΔCt of the
control sample. The final expression ratio was expressed as
2ΔΔCt (Livak and Schmittgen, 2001). Primers used for RT-
qPCR were purchased from Eurofins Genomics (Ebersberg,
Germany) and primer sequences are listed in Table 1.
RESULTS

Material Surface Characteristics
The surface characteristics of the different modifications to the
CoCrMo alloy discs have been studied using both SEM and EDX
March 2022 | Volume 12 | Article 837124
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analyses. The topographic characteristics of materials are well
known to have a substantial influence on the adhesive properties
of bacterial cells and therefore the microscopic investigation is
helpful for understanding the data collected in this study. While
the base alloy CoCrMo without modifications shows a rather
smooth surface at ×100 magnification (Figure 2A), a closer look
(×10,000, Figure 2A inlay) reveals only some cracks and some
unevenness and the surface modification with TiN and the
polished surface are even smoother. However, the porous
coated surface and the cpTi and TCP covered surfaces show
very distinct topographic characteristics. While the porous
coated surface consists of a thick layer of evenly distributed
(Figure 2D) and rather smooth balls (surface of the ball in the
inlay of Figure 2D), the cpTi layer is rougher (Figure 2E) and the
higher magnification also reveals that this characteristic is also
true at the small μm range (inlay Figure 2E). Very distinctly
different from the rest, the TCP layer forms sharp crystalline
structures protruding from the alloy surface (Figure 2F).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
Looking at the surface characteristics, the surfaces can be
categorized as either smooth (CoCrMo, CoCrMo TiN, and
CoCrMo polished) or rough (CoCrMo porous coated,
CoCrMo cpTi, and CoCrMo TCP).

The corresponding EDX data supports the material
descriptions given in the material and methods section,
showing the elemental composition of the materials as
spectrograms and in weight and atom percentages (Figures 3A–
E; data not available for TCP).

Polysaccharide Content
As all Staphylococci can produce polysaccharides in their EPS
when forming biofilms (Arciola et al., 2015), an approach that is
often applied is to break the polysaccharides down into
monosaccharides and measure the content compared to a
glucose standard curve (Cuesta et al., 2003). Following this
procedure, we found (Table 2 and Figure 4) that the biofilms
grown on the smooth surfaces (CoCrMo, CoCrMo TiN, and
A B

D E F

C

FIGURE 2 | Scanning electron microphotographs of CoCrMo and the different surface modifications. Magnification factor ×100, and inlays ×10,000. (A) CoCrMo;
(B) CoCrMo TiN; (C) CoCrMo polished; (D) CoCrMo porous coated; (E) CoCrMo cpTi, (F) CoCrMo TCP.
TABLE 1 | Primes used in RT-q-PCR.

Strain Gene Primer forward Primer reverse Reference

S. aureus icaA 5-GAGGTAAAGCCAACGCACTC-3 5-CCTGTAACCGCACCAAGTTT-3 Atshan et al. (2013)
icaC 5-CTTGGGTATTTGCACGCATT-3 5-GCAATATCATGCCGACACCT-3 Atshan et al. (2013)
fnbA 5-AAATTGGGAGCAGCATCAGT-3 5-GCAGCTGAATTCCCATTTTC-3 Atshan et al. (2013))
fnbB 5-ACGCTCAAGGCGACGGCAAAG-3 5-ACCTTCTGCATGACCTTCTGCACCT-3 Atshan et al. (2013)
clfB 5-AACTCCAGGGCCGCCGGTTG-3 5-CCTGAGTCGCTGTCTGAGCCTGAG-3 Atshan et al. (2013)
atl 5-TTTGGTTTCCAGAGCCAGAC-3 5-TTGGGTTAAAGAAGGCGATG-3 Yin et al. (2018)
16S rRNA 5´-GGGACCCGCACAAGCGGTGG-3´ 5´-GGGTTGCGCTCGTTGCGGGA-3´ Atshan et al. (2013)

S. epidermidis atlE 5-TGTCCTGCTTTCACGTATGA-3 3-TCTTTGGAATTGGTGCATTT-5 Patel et al. (2012)
aap 5-TGATCGGATCTCCATCAACT-3 3-AAGGTAGCCAAGAGGACGTT-5 Patel et al. (2012)
16S rRNA 5´TACACACCGCCCGTCACA 5´CTTCGACGGGCTAGCTCCAAAT Vandecasteele et al. (2001)
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CoCrMo polished) show a tendency to form less polysaccharide
in their EPS compared to those grown on the rough surfaces
(CoCrMo porous coated, CoCrMo cpTi, and CoCrMo TCP).
The highest polysaccharide levels for S. aureus were measured in
biofilms grown on CoCrMo cpTi discs with a mean value of 5.69 ±
1.5 μg/ml, the lowest values were measured in biofilms from the
CoCrMo TiN and the CoCrMo polished discs with 4.15 ± 0.71 μg/
ml and ±0.8 μg/ml respectively (Table 2). S. epidermidis biofilms
showed the highest polysaccharide values on CoCrMo cpTi (6.21 ±
3.06 μg/ml) and the lowest ones on CoCrMo TiN (4.11 ± 0.78 μg/
ml) (Table 2). In both species the polysaccharide content of the
biofilms grown on CoCrMo porous coated, CoCrMo cpTi and
CoCrMo TCP shows a highly significant difference (p <0.001)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
compared to that of the CoCrMo alloy itself (Figure 4). Table 3
summarizes all group comparisons (each alloy compared to each)
where a clear statistical difference can be seen whenever a smooth
surface is compared to a rough surface. One exception here is the
comparison of S. epidermidis biofilms on CoCrMo porous coated
with biofilms from CoCrMo cpTi surfaces where, in the overall
group comparison (adjusted p-value for multiple comparisons), no
statistical difference is found (adj. p-value = 0.055). However, if the
multiple comparison is disregarded, which is possible in a direct
comparison of the two groups in question, the difference becomes
significant again (p = 0.004). This leads to the conclusion that the
CoCrMo porous coated surface is the best performer (smallest
biofilm content) in the rough surface group. Additionally, in the
March 2022 | Volume 12 | Article 83712
A
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FIGURE 3 | Energy-dispersive X-ray analysis. Inlay tables showing the elemental composition related to the energy level (K-, L- and M-line). Instrument values are
given in panel (A) and apply also to (B–E). (A) CoCrMo; (B) CoCrMo TiN; (C) CoCrMo polished; (D) CoCrMo porous coated; (E) CoCrMo cpTi.
TABLE 2 | Mean, minimum and maximum values and standard deviations (SD; 95% confidence interval) of protein and polysaccharide measurements.

Alloy S. aureus S. epidermidis

Proteins [µg/ml] Polysaccharides [µg/ml] Proteins [µg/ml] Polysaccharides [µg/ml]

mean [min; max]
(n = 42)

SD mean [min; max]
(n = 44)

SD mean [min; max]
(n = 42)

SD mean [min; max]
(n = 44)

SD

CoCrMo 124.56 [68.10; 214.10] 34.89 4.46 [3.47; 7.74] 0.91 101.95 [36.5; 203.5] 34.78 4.23 [3.25; 6.47] 0.75
CoCrMo TiN 97.55 [55.40; 148.60] 28.12 4.15 [3.27; 5.82] 0.71 77.65 [26.7; 162.4] 32.12 4.11 [3.15; 7.13] 0.78
CoCrMo polished 96.57 [41.80; 179.40] 30.8 4.15 [3.3; 6.75] 0.8 76.43 [31; 145.6] 30.22 4.12 [3.25; 7;50] 0.87
CoCrMo porous coated 225.33 [64.40; 301.70] 41.88 4.89 [3.77; 6.73] 0.78 207.32 [149; 275.5] 35.68 5.59 [3.77; 29.57] 3.88
CoCrMo cpTi 202.87 [121.20; 269.70] 35.5 5.69 [4.17; 9.01] 1.5 190.23 [115.1; 341.1] 42.79 6.21 [3.76; 22.69] 3.06
CoCrMo TCP 240.08 [153.10; 455.60] 58.6 5.24 [3.95; 8.53] 1.14 215.51 [113.3; 356.6] 56.42 5.27 [3.67; 8.51] 1.19
4
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direct comparison of CoCrMo with CoCrMo polished (p = 0.006), a
statistically significant difference is also detected, showing a better
performance (less polysaccharides) compared with biofilms grown
on the polished CoCrMo surface (again no significant difference in
the adj. p-value = 0.086). Overall, CoCrMo polished performs the
best with respect to polysaccharide formation of biofilms.

Protein Content
Proteins in the bacterial EPS function as glue which sticks the
biofilms to the surface. Measurements of proteins often employ
colorimetric methods using the reduction of Cu2+ to Cu1+ copper
ions in alkaline medium and compare the protein content to a
bovine serum albumin (BSA) standard. Using a variation of this
method (Pierce™ BCA Protein Assay Kit) we found that the
highest protein levels in S. aureus occurred in biofilms (namely,
EPS and cells) grown on CoCrMo TCP discs with a mean value
of 240.08 ± 58.6 μg/ml. The lowest values for S. aureus were
measured in biofilms from the CoCrMo polished discs with 96.57 ±
30.8 μg/ml (Table 2). S. epidermidis biofilms showed the highest
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
polysaccharide values on CoCrMo TCP as well (215.51 ± 56.42 μg/
ml) and the lowest ones on CoCrMo polished (76.43 ± 30.22 μg/ml)
(Table 2). All S. aureus and all S. epidermidis biofilms from rough
surfaces (CoCrMo porous coated, CoCrMo cpTi, CoCrMo TCP)
have statistically significantly higher protein values (p <0.001) when
compared to the base alloy (Figure 5). Again, all smooth surfaces
have a statistically significantly better outcome compared to the
rough surfaces (Table 3) when comparing them against each other
separately. Additionally, in the case of S. aureus, CoCrMo polished
and CoCrMo TiN perform statistically significantly better than
CoCrMo (p = 0.004 and p = 0.005; meaning lower protein content)
in the single comparison of groups (this significance however is not
applicable for the multiple comparison; p = 0.058), leading overall to
the best performance of CoCrMo polished. For the direct group
comparison of S. epidermidis biofilm on CoCrMo compared to
CoCrMo polished (less protein) this also applies (p = 0.006; adj p =
0.086). When considering the cpTi rough surfaces and S. aureus,
CoCrMo cpTi results in less biofilm protein compared to CoCrMo
TCP (p = 0.023; adj p = 0.341).
A B

FIGURE 4 | Polysaccharide concentration of S. aureus (A; n = 42) and S. epidermidis (B; n = 44) biofilms. Statistically significant differences to CoCrMo are marked ***
(adjusted significance < 0.001, Bonferroni correction for the Kruskal–Wallis test).
TABLE 3 | Statistical pairwise comparison of alloys according to the protein and polysaccharide content of the S. aureus and S. epidermidis biofilms.

Alloy 1 Alloy 2 S. aureus S. epidermidis

Proteins Polysaccharides Proteins Polysaccharides

p-value adj. p-value p-value adj. p-value p-value adj. p-value p-value adj. p-value

CoCrMo CoCrMo TiN 0.005 0.074 0.036 0.539 0.011 0.162 0.255 1.000
CoCrMo CoCrMo polished 0.004 0.058 0.012 0.178 0.006 0.086 0.212 1.000
CoCrMo CoCrMo porous coated 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000
CoCrMo CoCrMo cpTi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CoCrMo CoCrMo TCP 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000
CoCrMo TiN CoCrMo polished 0.939 1.000 0.675 1.000 0.850 1.000 0.912 1.000
CoCrMo TiN CoCrMo porous coated 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000
CoCrMo TiN CoCrMo cpTi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CoCrMo TiN CoCrMo TCP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CoCrMo polished CoCrMo porous coated 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CoCrMo polished CoCrMo cpTi 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CoCrMo polished CoCrMo TCP 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
CoCrMo porous coated CoCrMo cpTi 0.042 0.632 0.006 0.086 0.076 1.000 0.004 0.055
CoCrMo porous coated CoCrMo TCP 0.806 1.000 0.199 1.000 0.995 1.000 0.270 1.000
CoCrMo cpTi CoCrMo TCP 0.023 0.341 0.139 1.000 0.077 1.000 0.072 1.000
March 2022 | Vo
lume 12 | A
P-values (Kruskal–Wallis test); adjusted p-values (Bonferroni correction for the Kruskal–Wallis test of multiple comparisons; a = 5%); smooth surfaces (CoCrMo, CoCrMo TiN, CoCrMo
polished) underlaid in light blue; rough surfaces (CoCrMo porous coated, CoCrMo cpTi, CoCrMo TCP) underlaid in gray; p < 0.05 also marked in green.
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Flow Cytometric Cell Enumeration
Flow cytometric measurements on the samples were meant to
show a live-dead count. However, it seems that within 48 h of
growth, the dead cell count is negligible which is why the flow
cytometry data are only used for cell enumeration. For both
species no statistical differences in the number of bacterial cells
have been detected (Figure 6).

RT-qPCR
Many genes are involved in the biofilm development of S. aureus
and S. epidermidis. A few of them have been chosen to
understand the genetic reaction of both species to the different
CoCrMo surfaces. Again, the different surface modifications
were statistically compared to the base alloy in terms of gene
expression levels of the biofilms harvested after 48 h of
development (Figure 7). For S. aureus, icaA, and icaC were
selected from the intercellular adhesion group of genes (ica)
which is of specific interest for the starting phase in biofilm
development. Only CoCrMo TCP showed a significantly
decreased level of gene expression for both genes (Figures 7A, B).
Looking at the fibronectin binding protein fnbA gene, our data also
shows a significantly increased level for CoCrMo TCP biofilms.
However, the closely connected fnbB was significantly elevated only
in CoCrMo TiN. The clfB (bacterial ligand clumping factor) gene of
S. aureuswas, with p <0.05, decreased in CoCrMo TCP, whereas the
major autolysine gene (atl) showed no significant changes in any of
the surface modification biofilms of S. aureus. Of the two genes
tested for S. epidermidis, the major autolysine (atlE) also did not
show any differences. However, the expression of the aap
(accumulation association protein) gene was significantly reduced
in CoCrMo porous coated and CoCrMo cpTi, but interestingly, not
in the third rough surface modification CoCrMo TCP which
showed elevated levels (not significant).
DISCUSSION

Biofilm evaluation begins with the organisms chosen for the
experiment. S. aureus and S. epidermidis are the most common
causes of periprosthetic infections and have therefor been the
model organisms for this study. But also, within the S. aureus and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
S. epidermidis isolates, differences in biofilm forming abilities
exist, making it difficult to generalize results. S. aureus Newman
has already been used for many studies on biofilm formation
(e.g., Johnson et al., 2008; Abraham and Jefferson, 2012; Forson
et al., 2020; Inés Molina et al., 2020; Pinto et al., 2020) although it
is not considered a very good biofilm forming strain and the
same is true for the ica negative S. epidermidis strain (e.g.,
Stepanovic et al., 2000; Lee et al., 2016; Paduszynska et al.,
2019; Di Pilato et al., 2020; Paulitsch-Fuchs et al., 2021).
However, the variant of the S. aureus strain used in this study
S. aureus Newman D2C is considered to be a relatively good
biofilm forming strain (Grundmeier et al., 2004; Tsompanidou
et al., 2010; Abraham and Jefferson, 2012; Dauros-Singorenko
et al., 2020; Paulitsch-Fuchs et al., 2021). Abraham and Jefferson
(2012) showed that the autolysin activity in the Newman D2C
variant was low enough to allow the expression of ClfB on the cell
surface, which seems to be (at least partly) responsible for the
difference in biofilm forming abilities between the two strains.
The issue about different S. aureus Newman strains deposited to
the reference centers with similar names and therefore leading to
seemingly controversial results has also already been pointed out,
e.g., by Grundmeier et al. (2004). It also has been shown
previously (Dauros-Singorenko et al., 2020) that the D2C
Newman strain expresses the agr (accessory gene regulation)
quorum sensing system, which would normally mean that the
dispersion in biofilms takes place rather easily (Paulander et al.,
2018). However the LB medium we used is iron-rich (Abdul-
Tehrani et al., 1999) and high iron contents did show a negative
influence on agr expression in the hemoglobin study by Dauros-
Singorenko et al. (2020), therefore possibly promoting biofilm
formation of S. aureus Newman D2C in LB medium. This leads
to another main influence on biofilm growth which is the
medium used for the experiments. Several studies compared
different growth media and their influence on the biofilm
formation of S. aureus and other species (Del mar Cendra
et al., 2019; Wijesinghe et al., 2019; Zhou et al., 2019; Liu et al.,
2020). For example, in one study LB medium showed the second
best performance for biofilm formation in Pseudomonas
aeruginosa and S. aureus (Zhou et al., 2019), in another study
(Del mar Cendra et al., 2019) LB medium also promoted the
biofilm growth for S. aureus Newman (although the wildtype
strain was used). A variety of differences exist also for LB
A B

FIGURE 5 | Protein concentration of S. aureus (A; n = 42) and S. epidermidis (B; n = 44) biofilms. Statistically significant differences to CoCrMo are marked ***
(adjusted significance < 0.001, Bonferroni correction for the Kruskal–Wallis test).
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A

B

C

FIGURE 6 | Flow cytometry cell counts for S. aureus (A; n = 42) and S. epidermidis (B; n = 44). Subpanel (C) shows a representative measurement of S. aureus on
CoCrMo (Reg 2: living cells; Reg 4: dead cells).
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medium recipes (e.g., supplemented with glucose, higher or
lower NaCl content) and most other growth media. Lastly also
the number of bacterial cells inoculated for biofilm formation
varies greatly in the different studies on this topic. As little as
OD550 of 0.10 (~0.015 × 107 cells/ml) (Del mar Cendra et al.,
2019) and also higher cell numbers of 1 × 107 CFU/ml (Dauros-
Singorenko et al., 2020) and inoculum sizes using 0.5
MacFarland cell suspensions (1.5 × 108 cells/ml) (Wijesinghe
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
et al., 2019) are implemented for biofilm studies. Therefore, the
choice of the strains, inoculum size and media used in biofilm
studies has to be well thought of.

Although the interaction of biofilms with the respected surfaces
they grown on is a key factor as well, still understanding is lacking in
some areas of this interaction, e.g., the influence of surface
roughness on biofilm development and its connection to the
regulation of genes connected to biofilm formation. For an
A B

D

E F

G H

C

FIGURE 7 | Expression levels of biofilm-associated genes. S. aureus (A–F; n = 3) and S. epidermidis (G, H; n = 3); error bars show the standard error of the mean;
statistically significant differences to CoCrMo are marked * (p <0.05).
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overview and to facilitate this connection, Table 4 provides an
overall comparison of protein, polysaccharide and gene
expression results.

The surfaces studied here vary widely in their surface
characteristics and structure (see Figure 2), thus providing a
good variety of roughness for biofilm formation observations.
Both protein and polysaccharide measurements are valuable
measurements for the understanding of bacterial adherence
and biofi lm compactness in later stages of biofi lm
development. While host-proteins play an important role in
the early conditioning of the implant thus strengthening the
incorporation of the implant (Wang et al., 2017), proteins of
biofilm organisms use the same properties to attach to the
material in early biofilm development. Polysaccharides are
important surface characteristics of bacterial cells and
contribute to EPS development and to the attachment of
bacterial cells to surfaces and to each other (Limoli et al.,
2015). We show that the surface modifications resulting in
rough surfaces (CoCrMo porous coated, CoCrMo cpTi, and
CoCrMo TCP) have a higher polysaccharide and protein load
in the biofilms than the smooth surfaces (CoCrMo TiN, CoCrMo
polished) and the untreated control (CoCrMo). In most cases
this is a statistically significant difference and holds for most of
the comparisons of the alloys to each other as well (see Table 3).
Those results are in accordance with earlier studies on the topic
(Öztürk et al., 2007; Yoda et al., 2014; Kunrath et al., 2020; Palka
et al., 2020; Paulitsch-Fuchs et al., 2021), supporting the
conclusion that the higher surface roughness is beneficial for
protein and polysaccharide rich biofilms on the surfaces studied
here. However, in a review by Zheng et al. (2021), the influence of
surface structures has been recently summarized showing that
generally, bacteria tend to attach to surfaces more easily when
they have a certain roughness, however there are also some rough
surfaces achieving the opposite and also different bacterial
species can react in different ways to the same surface.

Biofilm gene regulation did not show particularly big
differences between the compared groups. As no RNAlater® or
comparable reagent was used to freeze the transcriptome after
biofilm removal a shift in the transcriptome might have occurred
during the biofilm processing steps. However, as all samples were
treated in the same way the relative impact is expected to be the
same on the individual samples. For S. aureus, Resch et al. (2005)
reported the genes icaA and icaC, which are commonly involved
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
in early biofilm development, not to be upregulated in biofilms
compared to planktonic growth after 48 h of growth. Expression of
icaA, icaC, and aap gene regulation in S. epidermidis biofilms on
different materials was reported by Patel et al. (2012) still to be
active after 48 h of biofilm development. In an earlier study we
found that on different Titanium-alloy surfaces the gene
expression of the same set of genes of S. aureus Newman D2C
followed a similar trend (Paulitsch-Fuchs et al., 2021) in that if
there was a statistical difference in the regulation it was a decrease
compared to the control (which was the untreated TiAl6V4 alloy,
a rather smooth surface). Atshan et al. (2013) reported for four
different MRSA isolates peak values of fnbA, fnbB, and clfB after
24 h. Comparing this with our results we conclude that the
measurement point at 48 h is late into biofilm development and
therefore no upregulation of the genes could be detected (with
exception of fnbB on CoCrMo TiN). Together, the results point in
the direction that the biofilm at 48 h is already well established and
it is possibly not necessary that genes of early attachment are still
upregulated. There is no difference in gene regulation between
smooth and rough surfaces detectable at this timepoint. The S.
epidermidis strain used in this study is icaA and icaC gene negative
(this has been confirmed during this study; data not shown). As
those genes are involved in the biosynthesis machinery necessary
for PIA production in staphylococcal biofilms it is interesting that
polysaccharides have been detected in the S. epidermidis strain
which is ica negative. The explanation might be that other
polysaccharide species (which are not regulated by the ica family
of genes) are expressed in the strain used in this study. For
example Spiliopoulou et al. (2012), have reported a 20-kDa
polysaccharide (composed of glucose and N-acetylglucosamine)
in the S. epidermidis EPS which is independent from ica. The two
genes detected in the present study, atlE and aap, were both
reported to be still active after 48 h of biofilm development by
Patel et al. (2012). Similarly, the results presented here show an
upregulation compared to the CoCrMo control on the smooth
surfaces (not significant), the biofilms on the rough surfaces show
a downregulation in at least one of the two genes after 48 h,
CoCrMo cpTi in both genes (one of them significantly lower than
the control). On those rough surfaces, the amount of proteins and
polysaccharides was significantly higher in all cases, indicating that
single cells in biofilms on rougher surfaces are producing a higher
amount of proteins and polysaccharides. Otto (2013) shows a
difference between early and late maturation phase in terms of
TABLE 4 | Overall comparison of the results of protein, polysaccharide and genetic measurements.

All values compared to CoCrMo S. aureus S. epidermidis

Proteins Glucose icaA icaC fnbA fnbB clfB atl Proteins Glucose atlE aap

CoCrMo TiN – – – – – ↑ – – – – – –

CoCrMo polished – – – – – – – – – – – –

CoCrMo porous coated ↑↑↑ – – – – – – – ↑ ↑↑↑ – ↓
CoCrMo cpTi ↑↑↑ ↑↑↑ – – – – – – ↑↑↑ ↑↑↑ – ↓

CoCrMo TCP ↑↑↑ – ↓↓ ↓ – – – – ↑↑↑ ↑↑↑ – –
M
arch 2022 |
 Volume 12 | A
rticle 837
↑, ↑↑ and ↑↑↑ (also underlaid in green; adjusted significance <0.05, <0.01 and 0.001 according to the Bonferroni correction for the Kruskal–Wallis test) and ↓, and ↓↓ (also underlaid in
orange; adjusted significance <0.05 and <0.01 according to the Bonferroni correction for the Kruskal–Wallis test).
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adhesive and disruptive factors. We speculate that the biofilms on
the rough surfaces in our study do not need the atlE and aap gene
products, which are involved mainly in mediation of the early
attachment and in accumulation (Patel et al., 2012; Arciola et al.,
2015), anymore. To prove this conclusively further studies on
biofilm developmental stages are necessary.

In conclusion, the rough CoCrMo surface-modifications are
prone to biofilms showing a higher amount of proteins and
polysaccharides. The transcription rate of the genes studied here
needs to be studied at different time points in order to draw a
hard conclusion as to the impact of surfaces on the regulation of
those genes. Follow-up studies therefore should include more
time points, defined biofilm forming strains and clinical isolates
for gene analysis in order to get a better understanding of time-
dependent development. In addition, a study of human
osteoblast cell cultures and bacterial cells being co-incubated
on the surfaces might provide insights in the competition for the
place on the surfaces.
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