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Introduction: Early-life events are associated with the risk of obesity and comorbidities
later in life. The gut microbiota—whose composition is influenced by genetics and
environmental factors—could be involved. Since the microbiota affects metabolism and
fat storage, early-life insults could contribute to the occurrence of obesity driven, in part, by
microbiota composition. We examined associations of gut bacteria with early-life events,
nutritional status, and body composition in the Nutritionist’s Health Study (NutriHS).

Methods: A cross-sectional study of 114 female participants examining early-life data,
body composition, and biological samples was conducted. Fecal microbiota structure
was determined targeting the V4 region of the 16S rRNA gene. Principal coordinates
analysis (PCoA) and permutational multivariate analysis of variance (PERMANOVA) were
used to test the impact of variables on microbial diversity. Profiles were identified using the
Jensen-Shannon divergence matrix and Calinski–Harabasz index. Differential abundance
between the categories of exclusive breastfeeding duration and nutritional status was
tested using DESeq2.

Results: In the sample [median age 28 years and body mass index (BMI) 24.5 kg/m2], 2
microbiota profiles driven by the Blautia or Prevotella genus were identified. An estimated
9.1% of the variation was explained by the profiles (p < 0.001), 2.1% by nutritional status
(p = 0.004), and 1.8% by exclusive breastfeeding (p = 0.012). The proportion of
participants with BMI <25 kg/m2 and who were breastfed for at least 6 months was
higher in the Blautia profile (p < 0.05).
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Conclusion: Findings in a Blautia-driven profile of healthy women reinforce that early-life
events play a role in defining gut microbiota composition, confirming the importance of
exclusive breastfeeding for infant gut colonization in establishing a protective profile
against adiposity-related outcomes in adulthood.
Keywords: gut microbiota, early-life events, DOHAD, breastfeeding, nutritional status
INTRODUCTION

The importance of prenatal and postnatal events in long-term
health outcomes has been consistently recognized (Ravelli et al.,
1976; Barker, 1990; Bell et al., 2017; Block and El-Osta, 2017;
Cheshmeh et al., 2020; Capra et al., 2021). Nutritional factors
during intrauterine life and after birth have a major impact on
infant health and later in adulthood, influencing the risk for non-
communicable chronic diseases (Garmendia et al., 2014; Cadenas-
Sanchez et al., 2017). Early feeding and infant growth rate have
been associated with the risk of obesity and cardiometabolic
diseases later in life (Kelishadi and Farajian, 2014; Kapourchali
and Cresci, 2020). Important underlying mechanisms of these
associations involve the gut microbiome (Bouter et al., 2017;
Meijnikman et al., 2018). Gut colonization of the newborn starts
at birth by bacteria from the mother and the environment. Major
determinants of gut microbiota composition in early life are type
of delivery, lactation, antibiotic use, and sanitary conditions
(Biasucci et al., 2010; Martin et al., 2016; Le Doare et al., 2018;
Cheng and Ning, 2019). Evidence indicates that these factors
shape the gut microbiota throughout life (Rodrıǵuez et al., 2015;
Cheng and Ning, 2019) and that adult microbiota composition
shows slight fluctuations around a core of stable colonizers.

Despite similar counts of human cells and microbes
throughout the gastrointestinal tract, the gut microbiome
contains 100 times more genes (Qin et al., 2010; Shen et al.,
2013; Sender et al., 2016). This indicates that microbial
communities play vital roles in the host and that an
unbalanced microbiota can deteriorate regulatory functions,
triggering immune and metabolic disturbances (Levy et al.,
2017; Sommer et al., 2017). Factors such as aging (Rodrıǵuez
et al., 2015; Cheng and Ning, 2019; Fan and Pedersen, 2021), diet
(David et al., 2014), nutritional status, and exercise induce
changes (Rodrı ́guez et al., 2015; Mailing et al., 2019) in
microbiota composition, hampering understanding of the
involvement of this complex ecosystem in pathophysiological
processes. Arumugam et al. (2011) proposed analyzing the gut
microbiota based on microbial profiles driven by discriminative
genera referred to as enterotypes. Long-term dietary patterns
have been linked to enterotypes in populations. A carbohydrate-
based or vegetarian diet was found to be associated with
Prevotella, while the typical Western diet was associated with
Bacteroides enterotype (De Filippo et al., 2010; Wu et al., 2011; de
Moraes et al., 2017). However, further studies have questioned
such discrete profiles, given that these microbial communities
proved not to be recurrent across diverse human populations
(Gorvitovskaia et al., 2016). Despite controversies, it is clear that
the risk or protection against non-communicable chronic
gy | www.frontiersin.org 2
diseases conferred by lifestyle is modulated by the gut
microbiota, which affects nutrient acquisition, energy
regulation, and fat storage (Rosenbaum et al., 2015; Wu et al.,
2021). This could be a plausible pathway by which early-life
exposures are associated with later body phenotypes.

Our group has been conducting the Nutritionist’s Health Study
(NutriHS) involving nutrition undergraduates and nutritionists
(Folchetti et al., 2016). This represents a unique opportunity to
collect reliable nutrition-related data, accurate body composition
measurements, and biological samples to test associations with
early-life events and current lifestyle potentially mediated by the
gut microbiota. The aim of the present study was to examine
associations of gut bacteria with early-life events, current
nutritional status, and body composition in NutriHS participants.
MATERIALS AND METHODS

Study Design and Participants
This cross-sectional analysis was part of the multicenter NutriHS
conducted at the School of Public Health of the University of São
Paulo State, Brazil, to investigate markers of cardiometabolic
diseases (Folchetti et al., 2016). Current data were collected at the
University of Campinas (UNICAMP), located in Campinas city
in the interior of São Paulo state. The NutriHS was approved by
the local research ethics committee, and volunteers signed an
electronic informed consent form available on the e-NutriHS
system (www.fsp.usp.br/nutrihs). Recruitment of volunteers took
place between 2018 and 2019.

Eligibility criteria were female undergraduates or nutritionists
aged 19–44 years, body mass index (BMI) between 18.5 and 39.9
kg/m², and individuals whose mothers were alive. Pregnant and
nursing women or individuals with diabetes, kidney, heart, and
liver diseases, or other severe systemic diseases, in use of
medications affecting glucose metabolism and/or body
adiposity, or in use of probiotics or antibiotics in the last 3
months were excluded. Participants filled out online structured
validated questionnaires. Respondents were then invited to
schedule a face-to-face visit for physical examination and
collection of biological samples. A total of 248 women
answered the questionnaires, 127 met the inclusion criteria,
and 114 concluded the full protocol (Figure S1).

Early-Life and Current Data
Regarding information about early-life events, participants were
advised to consult birth cards and seek assistance from their
mothers. Maternal data collected were pre-pregnancy age,
education levels (<11; ≥11 years) and BMI, and gestational
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diabetes, hypertension, or other complications (yes; no), parity
(0; ≥1 pregnancy), tobacco, alcohol, and/or drug use (no; yes),
and type of delivery (vaginal; C-section). Maternal gestational
weight gain and participants’ birth weight were obtained as
continuous variables. Continuous data on participant birth
weight and duration of exclusive breastfeeding were further
categorized into <2.5 kg, 2.5–4.0 kg, or ≥4.0 kg and into <6
months or ≥6 months, respectively.

Current data collected were skin color (white; non-white),
age, family income (<6; ≥6 minimum wages), and engagement in
leisure time physical activity (no; yes). Physical activity was
assessed using the short version of the International Physical
Activity Questionnaire (Craig et al., 2003) validated for use in
Brazil (Matsudo et al., 2001). Dietary intake was estimated using
a validated food frequency questionnaire for the adult population
living in São Paulo, with the previous year as the time frame
(Selem et al., 2014). The questionnaire comprised 101 food items,
and food equivalents in the USDA National Nutrient Database
for Standard Reference were employed (Haytowitz et al., 2019).

Clinical and Body Composition
Assessment
Body weight was obtained using a digital scale, and height was
measured using a fixed stadiometer. BMI was calculated, and
nutritional status was classified according to the WHO standards
(WHO, 2015). Adequate nutritional status was defined as BMI >18.5
and <25 kg/m2. Waist circumference was measured at the midpoint
between the last rib and iliac crest using an inelastic tape.

Body composition was assessed using dual-energy x-ray
absorptiometry (DXA) (GE Lunar iDXA® with EnCore software,
Madison, WI, USA) by a trained researcher. Instrument quality
control was checked routinely according to the manufacturer’s
instructions. Parameters of interest were measurements of total fat
and visceral fat mass and of total and appendicular lean mass.

Biochemical Analyses
After a 12-h overnight fast, blood samples were collected for
biochemical determinations. Glucose and lipid profile [total
cholesterol, high-density lipoprotein (HDL) cholesterol, and
triglycerides] were measured using the glucose oxidase and
enzymatic colorimetric methods, respectively. Low-density
lipoprotein (LDL) cholesterol was calculated by the Friedwald
equation. Plasma insulin was obtained using an automated two-
site chemiluminescent immunometric assay (Immulite 1000
System, Siemens Health Diagnostics, USA). Homeostasis
model assessment of insulin resistance (HOMA-IR) was
calculated (Matthews et al., 1985). High-sensitivity C-reactive
protein was determined by nephelometry using a BN ProSpec
System (Siemens, Marburg, Germany).

Plasma concentrations of short-chain fatty acids (SCFAs:
acetate, propionate, and butyrate) were measured by gas
chromatography (Wang et al., 2019). Briefly, ethanol, n-hexane,
and an internal standard (caprylic acid) were added to serum.
Samples were centrifuged and transferred to specific vials, and pH
was adjusted to 4.0. A calibration curve with 0.015–0.1mg/ml
SCFA was used in the quantification. Chromatographic analyses
were performed using a gas chromatograph-mass spectrometer
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(model Coupled QP2010 Plus; Shimadzu®, Kyoto, Japan) and a
fused-silica capillary Stabilwax column (Restec Corporation, USA)
with dimensions of 30m × 0.25mm internal diameter and coated
with a 0.25-μm-thick layer of polyethylene glycol. Samples were
injected at 250°C using a 25:1 split ratio for feces or splitless. High-
grade pure helium was used as the carrier gas with a constant flow
rate of 1.0 ml/min. Mass conditions were as follows: ionization
voltage, 70 eV; ion source temperature, 200°C; full scan mode in
the 35–500 mass range with 0.2 s/scan velocity. The butyrate
columns did not appear, since the concentration of the acid was
not detectable in the samples.

Gut Microbiota Analysis
Fecal samples were refrigerated within 24 h after collection, and
aliquots were stored at -80°C until analysis. According to the
manufacturer’s instructions, DNA was extracted using the
Maxwell® 16 DNA purification kit and the protocol was carried
out on the Maxwell® 16 Instrument (Promega, Madison, WI,
USA). We used the primers and workflow to generate the
amplicon from the V4 region of the 16s rRNA gene according
to Penington et al. (2018). The amplicon library produced was
sequenced on the Illumina MiSeq platform (Illumina, San Diego,
CA, USA), according to the manufacturer’s instructions.

The raw read files were processed in the R environment using
the dada2 package [10.1038/nmeth.3869] (Ombrello, 2020). The
forward and reverse sequences were trimmed to 150 bases. Reads
containing more than two expected errors were removed. Errors
in filtered sequences were corrected by the algorithm and joined
to form the amplicon sequence variants (ASVs). The chimeric
sequences were also removed, and a sample count table was
generated. The taxonomic classification was done with the
tag.me package [10.1101/263293] using the model 515F-806R
(Pires et al., 2018).

Statistical Analyses
All data were recorded, edited, and entered using the Statistical
Package for the Social Sciences (SPSS version 20; IBM, NY, USA)
and the R package for microbiota analyses. Level of significance
was set at a p-value of 5%. Descriptive data were expressed as
means [standard deviations (SDs)] or medians {q25–q75 ranges
[interquartile range (IQR)]}. The Kolmogorov–Smirnov test was
used to test data normality. Parametric tests (Pearson’s
correlation coefficient and Student’s t test) and non-parametric
tests (Spearman’s correlation coefficient and Mann–Whitney)
were applied according to the distribution of variables.

The beta diversity was calculated using principal coordinates
analysis (PCoA) and the ade4 R package for each library (Dray and
Dufour, 2007). Permutational multivariate analysis of variance
(PERMANOVA) was performed using 999 permutations to test
the impact of categorical variables on beta diversity. Distance-based
redundancy analysis (dbRDA) highlights variables with some
association with the individual microbiota dissimilarities
(Legendre and Anderson, 1999). Profiles were identified based on
the Jensen-Shannon divergence matrix and using the Partitioning
Around Medoids (PAM) algorithm, and the optimal number of
clusters was determined by the Calinski–Harabasz index. The alpha
diversity was measured by the Shannon and Simpson indexes.
May 2022 | Volume 12 | Article 838750
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Differential abundance between profiles according to the categories
of exclusive breastfeeding duration and nutritional status was tested
using DESeq2, leaving genus with at least 50%-fold change and
present in half of the samples (Love et al., 2014).

Macronutrient intakes were expressed as percentage of total
energy intake (TEI) and fatty acid intake in grams. Correlations
between dietary components and SCFA concentrations and body
adiposity parameters were tested using Spearman’s coefficient.
RESULTS

The sample of 114 participants had a median age of 28 (IQR 24–
31) years; 41.6% were undergraduates and 58.4% were
nutritionists. Sixty-one percent of the participants engaged in
moderate physical activity regularly, none was a professional
athlete, and 51.0% had normal BMI. Regarding maternal
characteristics, 35% had higher-level education and 90% were
normal weight before pregnancy and had no clinical
complications during the pregnancy. In the total sample, there
was a predominance of cesarean delivery (66%) and normal birth
weight (90%), 94% were breastfed, and 18% were exclusively
breastfed for at least 6 months. In addition, 30% of participants
reported overweight/obesity in childhood or adolescence.

The dbRDA (Figure 1) results show that exclusive
breastfeeding and adequate nutritional status are located to the
right and adiposity parameters to the left of the plot. The relative
abundance of Blautia, Anaerostipes, and Lachnoclostridium
increased directly on the X-axis representing both breastfeeding
and adequate nutritional status (Figure 1). Conversely, inverse
relationships for Ruminococcaceae were observed. The results of
the redundancy analysis for the most abundant bacteria are shown
in the supplementary material (Figure S2).

Beta diversity analysis of the microbiota revealed two
bacterial profiles in the samples driven by the Blautia or
Prevotella genus. Fifty-six participants were assigned to Blautia
and 58 to Prevotella profiles. The PERMANOVA analysis on the
Jensen-Shannon divergence values estimated that 9.1% of the
variation among the samples was explained by the profiles (p <
0.001), 2.1% by nutritional status (p = 0.004), and 1.8% by
exclusive breastfeeding (p = 0.012). Proportions of participants
with BMI <25 kg/m2 and of those breastfed for at least 6 months
were significantly (p < 0.05) higher in the Blautia-driven profile
(Figure 2). A schematic interpretation of the main findings is
provided in Figure 3. The proportion categorized by type of
delivery (vaginal or cesarean section) or birth weight (adequate
or inadequate) did not differ between the 2 groups (not shown
in figures).

The differential abundance analysis identified genus drivers
used to describe the bacterial composition in the profiles. The
candidates present in at least 50% of the fecal samples are shown
in the supplementary material (Figure S3), and bacteria
differentially abundant between the 2 profiles were listed in
Table S1.

Differences in some abundances between the profiles are
depicted in Figure 4. Lachnoclostridium (Lachnospiraceae
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
family, Clostridiales order, Clostridia class) abundance was
higher in the Blautia profile, whereas several genera from
Ruminococcaceae and Christensenellaceae families (both from
Clostridiales order, Clostridia class) were predominant in the
Prevotella profile.

The main characteristics of participants by profile are given in
Table 1. Gestational weight gain, type of delivery, and birth
weight did not differ between the groups, but the rate of exclusive
breastfeeding ≥6 months was higher in the Blautia- than that in
the Prevotella-driven profile (21.4% vs. 6.9%, respectively, p =
0.04). Clinical and body composition variables of both groups
were within normal ranges. Butyrate concentrations were
undetectable for the whole sample.

Dietary data of participants such as total energy and
macronutrient and fatty acid intakes as a percentage of total
energy did not differ, but median intakes of total, soluble, and
insoluble fibers were higher in the Prevotella- than those in the
Blautia-driven profile (Table 2). The dbRDA showed that the
percentage of variance explained by diet was low (X-axis with
4.5% and Y-axis with 1.5%), being 94% explained by other
factors. No significant correlation of fiber intake with SCFA
concentrations and metabolic or body adiposity variables
was detected.
DISCUSSION

This study explores the discussion regarding the influence of
early-life events on gut microbiota composition in adulthood. A
specific sample of women with literacy in nutrition was
investigated. The associations suggested that longer
breastfeeding impacts both microbiota composition and
nutritional status in adulthood. By using a clustering approach
to define microbiota profiles, in one profile driven by the genus
Blautia, the same associations were confirmed. Both Blautia- and
Prevotella-driven profiles are consistent with a healthy diet rich
in fibers with an adequate macronutrient distribution and were
therefore expected in the individuals studied. The findings in this
homogeneous sample revealed the presence of macrostructures
in the gut microbiota dominated by Blautia or Prevotella, SCFA-
producing genera associated with beneficial metabolic effects.
Interestingly, Blautia was associated with exclusive
breastfeeding, whose relevance for gut colonization and body
systems programming has been previously reported, as well as its
health implications throughout the life span. Our findings not
only reinforce the relevance of early feeding but also suggest an
impact on gut colonization that persists into adulthood,
contributing to a beneficial microbiota pattern. Furthering this
knowledge could help in the prevention of chronic diseases.

For the overall sample, direct associations of some genera
(Blautia, Anaerostipes, and Lachnoclostridium) of the family
Lachnospiraceae with the recommended practice of long
breastfeeding to prevent chronic diseases (including those
related to excess body adiposity) were suggested. In fact, the
profile analyses showed that the same genera were also associated
with adequate nutritional status in adulthood. These findings
May 2022 | Volume 12 | Article 838750
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FIGURE 1 | Distance-based redundancy analysis identified in 114 participants.
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contrast with previous reports of an association of
Lachnoclostridium species with adiposity (Zhao L. et al., 2017;
Sun et al., 2020; Nogal et al., 2021) but are in line with other
studies in which Anaerostipes abundance was associated with a
lower risk of type 2 diabetes (Yang et al., 2018). With regard to
the family Ruminococcaceae, the present dbRDA initially
suggested a relationship with unfavorable body adiposity
distribution that was not confirmed when correlations to
visceral adipose tissue (VAT) were tested. Although
Ruminococcus, Anaerostipes, and Blautia produce SCFA (Vital
et al., 2014; Koh et al., 2016), which have beneficial metabolic
actions (Kasubuchi et al., 2015; Zhao et al., 2018; Müller et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
2019), other controversial associations have been reported. In
Mexican children, these genera were directly associated with
obesity (Vazquez-Moreno et al., 2021). Inconsistencies have
highlighted the need of improving knowledge about the
intestinal bacteria assemblages of individuals from different
geographical regions.

Using a clustering approach, early-life events and current
characteristics of the sample were compared to verify
associations suggesting underlying mechanisms of diseases. It
is noteworthy that most participants engaged in physical activity
regularly and consumed a fiber-rich diet, factors known to
impact microbiota composition. These conditions have also
FIGURE 2 | Profiles driven by Blautia (#1) and Prevotella (#2) identified by principal coordinates analysis (PCoA). #1 in blue is driven by Blautia; #2 in red is driven by
Prevotella. Vertical boxplots represent the distribution of participants according to categories of breastfeeding and nutritional status (p < 0.05). Horizontal boxplots
show the distribution of participants into profiles stratified by these categories.
May 2022 | Volume 12 | Article 838750
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been associated with anti-inflammatory status and favorable
clinical profile (Hemmingsen et al., 2017; Nyberg et al., 2020).
Normal mean values of C-reactive protein and insulin resistance
index (HOMA-IR) indicated a low risk for metabolic
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
disturbances in participants of both profiles. The findings of
high abundances of Blautia and Prevotella were expected, since
these genera belong to Lachnospiraceae and Prevotellaceae
famil ies that have the abi l i ty to degrade complex
FIGURE 3 | Impact of longer breastfeeding on microbiota composition and adult nutritional status. Credit: Figure produced using Canva graphic design platform
(https://www.canva.com/) and brgfx/Freepik.
FIGURE 4 | Boxplot of differential abundances of selected genera by profile (#1 in blue is driven by Blautia; #2 in red is driven by Prevotella). Adjusted p-value <0.05.
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polysaccharides into SCFAs (Biddle et al., 2013; Eren et al., 2015).
Measurements of SCFA in feces and blood have represented an
indirect way of assessing the effect of fermentable carbohydrates’
intake. The higher the intake of these carbohydrates, the higher
the SCFA concentration (So et al., 2018), but, in addition to the
substrate availability, SCFA production is affected by intestinal
transit time and microbiota composition (Macfarlane and
Macfarlane, 2003). Characteristics of the microbiota of our
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
participants should be contributing to improve the status of
inflammation and insulin sensitivity, desirable for the prevention
of cardiometabolic diseases (Kasubuchi et al., 2015; Zhao et al.,
2018; Canfora et al., 2019). However, in the present study, no
significant correlation was detected among fiber intake, SCFA
concentrations, body adiposity, or metabolic variables.
Additionally, the dbRDA showed a low percentage of variance
explained by diet. The homogeneity and healthy characteristics
TABLE 1 | Means (standard deviation) or medians (interquartile range) for clinical variables and body composition parameters of the 114 participants according to profile.

Blautia profile
N = 56

Prevotella profile
N = 58

p-value

•Early-life data
Pre-pregnancy maternal BMI (kg/m2) 21.8 ± 2.2 22.0 ± 2.8 0.77
Gestational weight gain (kg) 14.0 (9.0; 20.0) 12.0 (9.0; 16.0) 0.42
Type of delivery 0.89
- Normal, n (%) 36 (64.3) 36 (62.1)
- Cesarean, n (%) 18 (32.1) 19 (32.8)
Birth weight (kg) 3.2 ± 0.5 3.2 ± 0.4 0.92
Exclusive breastfeeding ≥6 months 0.04
- No, n (%) 39 (69.6) 43 (77.1)
- Yes, n (%) 12 (21.4) 4 (6.9)
• Clinical data
Body mass index (kg/m2) 23.9 (20.9; 28.1) 25.7 (21.7; 28) 0.25
Waist circumference (cm) 76.5 (71.1; 86.1) 79.1 (73.5; 91.0) 0.14
Fasting glucose (mg/dl) 82.9 ± 5.8 81.6 ± 5.8 0.26
HOMA-IR 1.2 (0.9; 1.7) 0.9 (0.7; 1.6) 0.12
HDL cholesterol (mg/dl) 58 (50; 67.5) 55 (49; 67) 0.29
Triglycerides (mg/dl) 79 (61; 103.5) 70 (59; 103) 0.45
C-reactive protein (mg/L) 1.2 (0.6; 2.7) 1.2 (0.6; 3.2) 0.59
Total short-chain fatty acidsa (mg/ml) 0.15 (0.10; 0.19) 0.13 (0.11; 0.20) 0.22
Acetate (mg/ml) 0.14 (0.09; 0.17) 0.11 (0.08; 0.14) 0.24
Propionate (mg/ml) 0.003 (0.002; 0.012) 0.004 (0.002; 0.011) 0.57
• DXA measurements
Total lean mass (kg) 38.1 ± 5.1 38.9 ± 5.1 0.44
Appendicular skeletal muscle mass (kg) 16.8 ± 2.8 17.2 ± 2.7 0.40
Total fat mass (%) 37.9 ± 6.6 38.5 ± 7.8 0.65
Android fat (%) 34.7 (29.4; 46.1) 35.2 (26.3; 47.4) 0.89
Gynoid fat (%) 43.1 ± 6.6 43.9 ± 7.4 0.54
Visceral adipose tissue (g) 141 (85; 435) 156 (87; 544) 0.49
May 2022 | Volume 12 | Article
Continuous variables were compared using Student’s t test or Mann–Whitney test, and data were expressed as mean ± standard deviation or median and q25–q75 ranges in parentheses.
Categorical variables were compared using chi-square test.
aTotal short-chain fatty acid = acetate + propionate.
HOMA-IR, Homeostasis model assessment of insulin resistance; HDL, high-density lipoprotein; DXA, dual-energy x-ray absorptiometry; BMI, Body mass index; HOMA-IR, Homeostasis
model assessment of insulin resistance; HDL, high-density lipoprotein; DXA, dual-energy x-ray absorptiometry.
TABLE 2 | Medians (interquartile range) of total energy intake (TEI) and dietary data of the 114 participants according to profile.

Blautia profile Prevotella profile p-value

Total energy intake (kcal) 1,958 (1,639; 2,223) 2,011 (1,593; 2,685) 0.51
Carbohydrate (% TEI) 47.0 (40.3; 52.2) 47.0 (41.2; 53.5) 0.43
Protein (% TEI) 16.0 (14.5; 18.9) 17.0 (13.9; 19.3) 0.97
Total fat (% TEI) 37.0 (33.0; 40.5) 36.0 (30.9; 39.3) 0.72
SFA (g) 27.7 (23.2; 35.2) 28.0 (20.7; 37.1) 0.78
MUFA (g) 25.3 (21.6; 32.2) 26.0 (19.5; 33.9) 0.87
PUFA (g) 17.0 (11.7; 21.6) 16.3 (11.3; 22.4) 0.86
Total fiber (g) 20.8 (16.1; 26.1) 23.7 (19.5; 34.3) 0.02
Soluble fiber (g) 5.6 (4.6; 7.5) 6.7 (5.0; 9.6) 0.04
Insoluble fiber (g) 15.3 (11.5; 19) 16.9 (14.1; 24.7) 0.02
Variables were compared using the Mann–Whitney test.
SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid.
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of the sample as a whole may have precluded the detection of
significant associations between these variables, as well as
differences between participants from each profile.

Interestingly, comparisons of early-life events between the
profiles showed that participants in the Blautia group had a
higher rate of longer duration of exclusive breastfeeding.
Considering the importance of gut colonization during this stage
of life and given that these microorganisms coexist with the host
throughout the life span (Milani et al., 2017), the association found
might prove relevant. The first 1,000 days of life are considered a
critical developmental window for programming systems and
influencing the risk for long-term outcomes (Gluckman et al.,
2005; Capra et al., 2021). In addition to the mode of delivery,
growing evidence points to the role of early-life nutrition in shaping
the offspring’s microbiota (Arrieta et al., 2014; Rodrıǵuez, 2014).
Bacteria are transferred through human milk and influence
immune and metabolic homeostasis. Our results suggest that
longer exposure to human milk might be associated with
abundance of the Blautia genus. Despite limitations of linking
distant factors with the gut microbiota of grown-up children and
young adults, the hypothesis raised is feasible, considering the
beneficial effects attributed to these bacteria. Breast milk
composition is complex, containing nutrients, bacteria, and many
other compounds. Oligosaccharides—present in human milk but
not in most formula—serve as prebiotics, i.e., substrates for
fermentation favoring the growth of beneficial bacteria such as
the Bifidobacterium genus, which uses them to produce SCFA
(Bridgman et al., 2017). The breastfed participants may have had
their microbiota shaped to favor an abundance of certain
commensal genera over others. In this respect, Blautia genus
shares properties with Bifidobacterium in producing SCFAs and
improvinggutbarrier functions.An interestingfindingofourgroup
previously suggested that breastfeeding duration could influence
the offspring’s adherence toa prudentdietary pattern andmetabolic
parameters in adulthood (Eshriqui et al., 2019; Eshriqui et al., 2020).
Another latent factor that could underlie the microbiota variability
is thematernal and paternal BMI before conception (Eshriqui et al.,
2021; Freitas et al., 2021), but, according to the PERMANOVA
adjustments, there was no association between these maternal
variables and the offspring’s microbiota structure.

A variety of exposures throughout life should have a role in
modulating the microbiota of our participants. The current healthy
lifestyle of individuals from the Blautia-driven profile may be
contributing to an adequate BMI and normal biochemical
profile. It is known that exercise-induced cardiometabolic
benefits are in part gut microbiota-mediated (Chen et al., 2018),
but there is also evidence on the associations of early-life events
with obesity and related diseases (Ptashne, 2007; Garmendia et al.,
2014; Cadenas-Sanchez et al., 2017). Lack of breastfeeding and
exposure to formula were shown to increase the risk of obesity in
infancy and adulthood (Dietz, 2001; Kelishadi and Farajian, 2014),
with clear involvement of gut microbiota in this association. There
was a predominance of participants with BMI <25 kg/m2 in the
Blautia profile. This finding is congruent with evidence that
butyrate (Berni Canani et al., 2016; Takahashi et al., 2016; Wang
et al., 2018) and acetate produced by Blautia contribute to reduce
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obesity by regulating G-protein-coupled receptors (Kimura et al.,
2013; Liu et al., 2021). In animals, weight gain prevention by SCFA
supplementation (Lu et al., 2016) raises the possibility of a novel
strategy for controlling human obesity. Our data are also in
agreement with previous studies conducted in Spanish children
(Benıt́ez-Páez et al., 2020) and in Japanese adults (Ozato et al.,
2019). A growing body of evidence indicates the potential on a
deeper understanding of the “gut microbiota–host metabolism”
interplay for managing prevalent diseases in different populations.

In some respects, the differential abundance analysis showed
unexpected results. In the Blautia-driven profile, characterized by a
higher proportion of lean individuals,Methanobrevibacter was less
abundant. A previous study addressing this genus reported
opposite results; however, the study in question involved an older
sample of both sexes and had different purposes and
methodological approaches (Schwiertz et al., 2010). Acetate-
producing Lachnoclostridium was more abundant, in contrast
with associations found for diet-induced obesity in animals
(Zhao et al., 2017; Sun et al., 2020) and with VAT in female
twins (Nogal et al., 2021). Some investigators have speculated that
Lachnoclostridium could also be a Trimethylamine (TMA)-
producing bacteria and, via the Trimethylamine N-oxide
(TMAO) pathway, may increase the cardiometabolic risk
(Schugar et al., 2017). In the Prevotella-driven profile, there was a
higher abundance of acetate and butyrate-producing bacteria. The
Christensenellaceae R7 group, Ruminococcaceae NK4A214, and
Phascolarctobacterium have been associated with a favorable
cardiometabolic profile. The Christensenellaceae R7 group was
associated with less VAT and more lean mass in elderly people
(Tavella et al., 2021), while the Christensenellaceae R7 group,
Ruminococcaceae NK4A214, and Phascolarctobacterium were
inversely correlated to glucose metabolism disturbance
(Naderpoor et al., 2019; Chen et al., 2021). In our study,
Coprococcus_2 was more abundant in the Prevotella-driven than
the Blautia-driven profile. A high abundance of this genus has been
described in women with polycystic ovary syndrome (Zhou et al.,
2020) and high lifetime cardiovascular disease risk (Kelly et al.,
2016). Therefore, it can be concluded that both bacterial profiles
identified in the gut microbiota of healthy Brazilian women may
include both beneficial and harmful bacteria. Rather than
investigating the role of isolated bacteria for risk prediction, a
better strategic approach might be to prevent diseases by focusing
on the microbial balance and interactions in the host, submitted to
multiple exposures during the life course in different habitats.

This study has limitations related to the sample size due to
strict inclusion criteria and composition. The sample comprised
highly educated women with a healthy clinical profile, precluding
generalizing our results to other samples with different
characteristics. The sample homogeneity likely led to the
detection of fewer differences between profiles, despite using an
accurate technique for assessing body compartments. Our study
was not designed to establish a causal relationship between
exposure and long-term outcomes. Memory bias was also a
concern. In order to minimize this type of error, the study
included only participants whose mothers were alive, since the
evidence shows that mothers are able to report the early life of
May 2022 | Volume 12 | Article 838750
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their offspring with acceptable precision almost 30 years later
(Chin et al., 2017). Another limitation was the lack of
information regarding several risk factors such as antibiotic use
and stressful conditions known to influence microbiota
composition from birth to adulthood.

In conclusion, findings in a bacterial profile driven by Blautia
present in healthy Brazilian women reinforce that early-life
events play a role in defining gut microbiota profile. While
acknowledging the need for investigations with appropriate
design to further explore this hypothesis, we highlight the
relevance of exclusive breastfeeding for gut colonization in
early life to guide the establishment of a protective microbiota
against adiposity-related outcomes throughout life.
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