AUTHOR=Wen Yuxi , Xu Huan , Han Juan , Jin Runming , Chen Hongbo TITLE=How Does Epstein–Barr Virus Interact With Other Microbiomes in EBV-Driven Cancers? JOURNAL=Frontiers in Cellular and Infection Microbiology VOLUME=Volume 12 - 2022 YEAR=2022 URL=https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2022.852066 DOI=10.3389/fcimb.2022.852066 ISSN=2235-2988 ABSTRACT=Commensal microbiome refers to a large spectrum of microorganisms which mainly consists of viruses and bacteria, as well as some other components such as protozoa, fungi and et al. Epstein–Barr virus (EBV) is considered as a common component of human commensal microbiome due to its worldwide-spreading in about 95% of the adult population. As the first oncogenic virus recognized in human, numerous studies have reported the involvement of other component of commensal microbiome in the increasing incidence of EBV-driven cancers. Additionally, recent advances have also defined the involvement of host-microbiota interactions in the regulation of host immune system in EBV-driven cancers as well as other circumstances. The regulation of host immune system by commensal microbiome coinfects with EBV could be the implications for how we understand the persistence and reactivation of EBV, as well as the progression of EBV-associated cancers, since majority of the EBV persists as asymptomatic carrier. In this Review, we attempt to summarize the possible mechanisms for EBV latency, reactivation and EBV-driven tumorigenesis, as well as casting light on the role of other component of microbiome in EBV infection and reactivation. Besides, whether novel microbiome targeting strategies could be applied for curing of EBV-driven cancer are discussed as well.