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Non-alcoholic fatty liver disease (NAFLD) remains a common disease with a significant
health and economic burden worldwide. The gut microbiota (GM) and bile acids (BAs),
which play important roles in the gut-liver axis, have been confirmed to jointly participate in
the development of NAFLD. GM not only regulate bile acids’ synthesis, transport, and
reabsorption by regulating other metabolites (such as trimetlyl amine oxide, butyrate), but
also regulate dehydrogenation, dehydroxylation and desulfurization of bile acids.
Meanwhile, disordered bile acids influence the gut microbiota mainly through promoting
the bacterial death and lowering the microbial diversity. Although weight loss and lifestyle
changes are effective in the treatment of NAFLD, the acceptability and compliance of
patients are poor. Recently, increasing natural plants and their active ingredients have
been proved to alleviate NAFLD by modulating the joint action of gut microbiota and bile
acids, and considered to be promising potential candidates. In this review, we discuss the
efficacy of natural plants in treating NAFLD in the context of their regulation of the complex
interplay between the gut microbiota and bile acids, the crosstalk of which has been
shown to significantly promote the progression of NAFLD. Herein, we summarize the prior
work on this topic and further suggest future research directions in the field.

Keywords: natural plants, active ingredients, non-alcoholic fatty liver disease, gut microbiota, bile acids
Abbreviations: a-MCA, a-murocholic acid; ALT, alanine aminotransferase; adenosine; AST, serum aspartate
aminotransferase; ASBT, apical sodium-dependent bile acid transporter; BAs, bile acids; BSH, bile salt hydrolase; b-MCA,
b-murocholic acid; CA, Cholic acid; CDCA, Chenodeoxycholic acid; CYP7A1, cytochrome P450 family 27 subfamily A
member 1; CYP7B1, cytochrome P450 family 7 subfamily B member 1; DCA, deoxycholic acid; FXR, farnesoid X receptor;
FFA, free fatty acid; GM, gut microbiota; HDL-C, high-density lipoprotein cholesterol; HFD, high-fat diet; HFHC, high-fat
high-calorie; IBABP, ileal bile acid binding protein; LCA, lithocholic acid; LDL-C, low-density lipoprotein cholesterol; NAFL,
non-alcoholic fatty liver; NAFLD, non-alcoholic fatty liver disease; NAS, NAFLD activity score; NASH, non-alcoholic
steatohepatitis; OCA, obeticholic acid; OST, organic solute transporter;SCFAs, short-chain fatty acids; SHP, small heterodimer
partner; SREBP-1, sterol regulatory element binding protein-1; TbMCA, tauro-b-muricholic acid; TC, total cholesterol; TG,
triglyceride; TMAO, trimethylamine oxide; UDCA, ursodeoxycholic.
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1 INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD), characterized by
excessive lipid deposition in hepatocytes, has become the most
common chronic liver disease worldwide. Clinically, the spectrum
of histopathology ranges from simple steatosis (NAFL) and non-
alcoholic steatohepatitis (NASH) to liver cirrhosis (Friedman et al.,
2018b; Powell et al., 2021). Currently, the global incidence of
NAFLD has greatly increased to an estimated prevalence of 25%
among adults (NCD Risk Factor Collaboration, 2017; Hales et al.,
2018; Zhou et al., 2019a).Until now, the best characterization of the
mechanisms underlyingNAFLD is provided in the “two hit” theory
proposed by Day in 1998; this theory suggests that on the basis of
hepatic lipid accumulation caused by developed insulin resistance,
the “two hit” from other factors is required to trigger the
pathological procession of NAFLD (Day and James, 1998;
Friedman et al., 2018b). However, the exact mechanism
underlying metabolic disorders in NAFLD remains unclear. The
“gut-liver axis,”first proposedbyMarshall in 1998, is essential in the
regulation of systemic metabolism, gut hormone release, and the
immune response (Marshall, 1998). The gut microbiota (GM) and
bile acids (BAs), which play important roles in the gut-liver axis,
have been confirmed to jointly participate in the development of
NAFLD (Chavez-Talavera et al., 2017; Kolodziejczyk et al., 2019;
Aron-Wisnewsky et al., 2020).

The GM is defined as a complex and dynamic microbial
ecosystem in the gut, composed of symbiotic bacteria, archaea,
fungi, and viruses, (Zmora et al., 2019). Several studies have shown
that the GM and its metabolites could be used as key signaling
factors to regulate the host’s glucose and lipid metabolism, insulin
resistance, immunity, and inflammation in NAFLD (Aron-
Wisnewsky et al., 2020). BAs, a metabolite of GM, are a class of
amphiphilic molecules synthesized from cholesterol (Li and
Chiang, 2014). Significant evidence has suggested that BAs could
participate in NAFLD by regulating glucose and lipid metabolism
and energy homeostasis (Arab et al., 2017). Meanwhile, the
crosstalk between the GM and BAs can significantly promote the
progression of NAFLD (Jia et al., 2018;Winston and Theriot, 2020;
Agus et al., 2021). Thus, the interplay betweenGMand BAsmay be
a promising target for the prevention and treatment of NAFLD.

Natural plants, including plants and active ingredients, have
been proven as effective treatments of NAFLD (Liu et al., 2017;
Leng et al., 2020; Xin et al., 2021). The therapeutic effects of
natural plants have attracted increasing attention. Furthermore,
the potential regulatory effects of natural plants on intestinal
dysbacteriosis and BA metabolism have been reported (Meng
et al., 2018; Leng et al., 2020). Thus, this review aimed to discuss
the efficacy of natural plants, which act by regulating the
interplay between GM and BAs, against NAFLD.
2 THE INTERPLAY OF GM-BAs IN NAFLD

The human GM is rich in various species, including those of
Firmicutes, Bacteroides, Proteobacteria, and Actinomycetes in the
gut (Eckburg et al., 2005). Early evidence linking gut dysbiosis
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
and NAFLD has shown that the abundance of gram-negative
bacteria increases, whereas that of gram-positive bacteria
decreases during the course of NAFLD, indicating that
microbial populations are altered in NAFLD patients (Ley
et al., 2006). A large number of metabolites, including BAs,
lipopolysaccharides, short-chain fatty acids (SCFAs), and
inflammatory factors, are produced following host–
microorganism interactions. The content of BAs, especially
secondary BAs, increases significantly in the serum of hosts
with NAFLD (Jiao et al., 2018). Meanwhile, the interplay
between GM and BAs has been shown to maintain host
homeostasis in NAFLD (Jiao et al., 2021). When colonizing
germ-free mice with the feces of wild type or humans, the total
BA content was obviously reduced (Sayin et al., 2013).

2.1 Microbial Regulation of BAs in NAFLD
The GM regulates the synthesis, transport, and reabsorption of
BAs via regulation of metabolites and the farnesoid X receptor
(FXR). Moreover, the GM can also modify primary BAs to
secondary BAs with enzymes such as bile salt hydrolase (BSH)
through dehydrogenation, dehydroxylation, and desulfurization.
All of this research has been clarified and discussed below, with
the mechanisms represented in Figure 1.

2.1.1 Microbial Regulation of BAs Synthesis,
Transport, and Reabsorption
The synthesis of BAs is complex, including reaction steps catalyzed
by more than a dozen enzymes. BAs are synthesized in pericentral
hepatocytes and can be fulfilled via two different pathways.
Specifically, the classical pathway, which accounts for 75% of BA
synthesis, is initiated by the 7a-hydroxylation of cholesterol
catalyzed by cytochrome P450 family 27 subfamily A member 1
(CYP7A1). In a case-control study, trimethylamineoxide (TMAO),
the metabolites from GM, significantly increased BA synthesis by
upregulating hepatic CYP7A1 mRNA levels in patients with
NAFLD (Tan et al., 2019). Correspondingly, the alternative
pathway is initiated by the 27-hydroxycholesterol of cholesterol
catalyzed by CYP27A1 and further hydroxylated by cytochrome
P450 family 7 subfamily B member 1 (CYP7B1) in the liver. This
pathway accounts for approximately 9–25% of BA synthesis. After
antibiotic treatment, hepatic CYP7B1 was upregulated in high-fat
diet (HFD)-fed hamsters, contributing to a more hydrophilic BA
profile with increased tauro-b-muricholic acid (TbMCA) (Sun
et al., 2019a). Therefore, the GM regulates the expression of
several enzymes in the BA synthesis pathway to promote
NAFLD. Furthermore, the alternative pathway predominantly
generates Chenodeoxycholic acid (CDCA), whereas the classical
pathway generates both CDCA and Cholic acid (CA), which are
called primary BAs (Chiang, 2013). Rodents also produce a-
murocholic acid (a-MCA) and b-murocholic acid (b-MCA) as
primary BAs. Sheng confirmed that butyrate, themetabolite ofGM,
significantly decreased the content of b-MCA by activating hepatic
FXR-small heterodimer partner (SHP) signaling in HFD-fed mice
(Sheng et al., 2017).However, the regulation ofb-MCAbyGMmay
be attributed to unknown enzymes.

Independent of the synthetic route, the carboxylic acid group
from CA/CDCA conjugated the peroxisomes of glycine or taurine
March 2022 | Volume 12 | Article 854879
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to form conjugated BAs (G/TCA and G/TCDCA, respectively) in
humans (Jia et al., 2018). This conjugation with taurine alone
occurred to form TCA/TCDCA in rodents. Subsequently,
conjugated BAs are actively transported into bile via the bile salt
export pump (BSEP) and may be stored in the gall-bladder until
being released into the duodenum after ingestion of a meal.
Approximately 95% of BAs are reabsorbed from the intestine,
predominantly as conjugated BAs in the distal ileum, by the
apical sodium-dependent bile acid transporter (ASBT), and
recirculate via the portal vein to the liver, from where they are
secreted again (Ticho et al., 2019).Treatmentwith FXR-stimulatory
Bacteroides dorei-derived metabolites could strongly induce ileal
bile acid binding protein (IBABP) and organic solute transporter
(OST)a, thereby improving the obesity phenotype, including body
weight gain, liver damage, and lipid metabolism in HFD-fed mice
(Zhang et al., 2015). Overall, GM can regulate the synthesis,
transport, and reabsorption of BAs via its metabolites or FXR in
the progression of NAFLD.

2.1.2 Microbial Modification of Primary
BAs to Secondary BAs
Inaddition,GMparticipates in thebiotransformationofBAs via the
catalysis of microbial enzymes, thereby changing the composition
of BA pools in NAFLD. Hydrolysis mediated by BSH transforms
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
conjugated BAs into unconjugated BAs. BSH, an intracellular
enzyme encoded by the bsh gene (Song et al., 2019), has been
extensively identified in gastrointestinalmicroorganisms, including
Lactobacillus, Bifidobacterium, Enterococcus, Clostridium, and
Bacteroides (Ridlon et al., 2006). Different intestinal bacteria are
associated with different BSH activities. The levels of taurine and
glycine-metabolizing bacteria that express BSH enzymes were
enhanced in the gut of patients with NAFLD, significantly
increasing the production of secondary BAs (Jiao et al., 2018).

Next, unconjugated BAs were further transformed into
deoxycholic acid (DCA) and lithocholic acid (LCA) via 7a-
dehydroxylation or ursodeoxycholic (UDCA) by 7-alpha-
hydroxysteroid dehydrogenase (HSDH). Sydro et al. indicated a
clear association between the 7a-dehydrogenase related to
Bacteroides and Lactobacillus, and the primary conjugated BA
composition in patients with NASH (Sydor et al., 2020). Recently,
Yu et al. analyzed the associations between GM and the
concentrations of primary and secondary BAs in fecal samples of
children with NAFLD. Further, a reduction in Eubacterium and
Ruminococcaceae bacteria, which express BSH and 7a-
dehydroxylation, was significantly positively correlated with the
level of fecal LCA (Yu et al., 2021).

Furthermore, the main conclusions of the previous studies are
consistent with those observed in rodents. In HFD-fed mice,
FIGURE 1 | Microbial regulation of Bile Acids in NAFLD. ①: Microbial modification of primary BAs to secondary BAs. ②: Microbial regulation of BAs synthesis. ③: Microbial
regulation of BAs transport, and reabsorption. (BESP, bile salt export pump; MRP2, multidrug resistance protien 2; BAs, bile acids; BSH, bile salt hydrolase; b-MCA, b-
murocholic acid; CA, Cholic acid; CDCA, Chenodeoxycholic acid; CYP7A1, cytochrome P450 family 27 subfamily A member 1; CYP7B1, cytochrome P450 family 7
subfamily B member 1; DCA, deoxycholic acid; FXR, farnesoid X receptor; FFA, free fatty acid; IBABP, ileal bile acid binding protein; LCA, lithocholic acid; NAFLD, non-
alcoholic fatty liver disease; SHP, small heterodimer partner; SREBP-1, sterol regulatory element binding protein-1; TbMCA, tauro-b-muricholic acid; TC, total cholesterol;
TMAO, trimethylamine oxide; UDCA, ursodeoxycholic).
March 2022 | Volume 12 | Article 854879
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higher abundance levels of the genus Lactobacillus and increased
BSH activity resulted in decreased levels of TbMCA, a substrate
of BSH, and a potent FXR antagonist (Gonzalez et al., 2016).
Another study also confirmed that an 8 week HFD significantly
increased abundance levels of Extibactermuris, related to 7a-
dehydroxylation, metabolizing CA to DCA in mice (Streidl et al.,
2021). Similarly, Bacteroides expressing HSDH and 7-alpha
HSDH were enriched to further modify unconjugated BAs into
UDCA in the gut microbiome of HFD-fed rats (Jiao et al., 2018).

2.2 BAs Influence the GM in NAFLD
Despite this, the interplay between the GM and BAs is not a one-
way street. BAs can further influence the structure and function
of the GM. After administration of obeticholic acid (OCA), the
levels of gram-positive bacteria increased in humans, whereas
that of Firmicutes bacteria increased in mice (Friedman et al.,
2018a). Sevelamer, a BA sequestrant, reversed this increase in
Lactobacillus and decreased the levels of Desulfovibrio in HFD-
fed mice (Takahashi et al., 2020). Other promising studies have
shown that BAs exert direct and indirect effects on the
GM (Figure 2).

2.2.1 BAs Directly Affect the GM
The direct action of BAs on GM has been shown to promote cell
death via membrane regulation. In the intestinal lumen, BAs
exert direct antimicrobial activity based on their detergent
properties to shape the GM (Schubert et al., 2017). Free bile
acids (FBAs), including CA, DCA, and CDCA, dissipated the
transmembrane electrical potential (DeltaPsi). In the human
intestine, the populations of Lactobacillus and Bifidobacterium
are controlled in part by the accumulation of CA. As this
accumulation must occur during bacterial growth in the
intestine, growth inhibition may be associated with the
accumulation of FBAs. Taking these observations together,
although FBAs disturb the membrane integrity, leading to
leakage of proton and other cellular components, they also
reduced the internal pH levels of bacteria with rapid and
stepwise kinetics and, at certain concentrations, dissipated
DeltapH. High concentrations of BAs can decrease the internal
pH of Lactobacilli and Bifidobacteria, and reduce the production
of ATP, ultimately inducing bacterial death (Kurdi et al., 2006).

2.2.2 BAs Indirectly Affect the GM
In addition to exerting strong direct effect, the indirect effects by
which BAs regulate GM through signaling factors also have
significant consequences. Basic experiments have confirmed the
role of FXR in regulating the structure of intestinal bacteria
(Inagaki et al., 2006). Zhang et al. confirmed that oral G-b-MCA
administration altered the gut microbial community structure,
notably reducing the ratio of Firmicutes to Bacteroidetes in
NASH mice. This revealed that metabolic improvement was
dependent on intestinal FXR (Zhang et al., 2016). In addition,
TUDCA has been shown to increase the Bacteroidetes/Firmicutes
ratio and the abundance of Faecalibacterium and Akkermansia
in mice with NAFLD. The growth of bacterial genera might be
related to the upregulation of mucin 2 (Muc2) and Core 3 O-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
glycan (C3GnT), which provide a substrate for the growth of
intestinal bacteria (Wang et al., 2018).
3 NATURAL PLANTS REGULATE THE
INTERPLAY BETWEEN GM AND BAs IN
THE TREATMENT OF NAFLD

Although weight loss and lifestyle changes are effective in the
treatment of NAFLD (Vilar-Gomez et al., 2015; Khoo et al.,
2017), the acceptability and compliance of patients are poor.
Currently, the use of synthetic drugs for the treatment of NAFLD
remains limited. Despite the numerous options for the tested
pharmaceuticals, none of them are satisfactory in treating
NAFLD. However, increasing evidence has indicated that
natural plants efficiently exhibit anti-NAFLD properties, with
lower toxicity and side effects, and may be useful in regulating the
joint action of GM and BAs (Liu et al., 2017). Therefore, we
summarized the new studies on Natural plants that have
indicated that they exert anti-NAFLD properties by
modulating the interplay between GM and BAs. All these are
clarified and discussed below, with the mechanisms presented in
Tables 1, 2.

3.1 Plants
3.1.1 Food Plants
3.1.1.1 Tea
Tea, processed from the leaves of Camellia sinensis, is one of the
most widely consumed beverages worldwide. This drink is
characterized by high levels of an antioxidant that has been
shown to prevent different types of metabolic syndromes,
cardiovascular diseases, obesity, and type 2 diabetes (Bag et al.,
2022). Huang et al. indicated that consumption of Pu-erh tea
significantly increased the content of fecal conjugated BAs by
decreasing the BSH activity, which was linked to a reduction in
the levels of Lactobacillus, Bacillus, Streptococcus, and
Lactococcus, resulting in the inhibition of intestinal FXR-
FGF15 activation. The excretion of BAs was enhanced in the
feces as the expression of CYP27A1 and CYP7B1 increased in the
liver, thereby reducing hepatic lipid deposition in HFD-fed mice
(Huang et al., 2019).

Huangjinya black tea is a natural photosensitive tea
containing abundant free amino acids. This drink has been
proven to ameliorate hepatic steatosis by reducing hepatic
triglyceride (TG), free fatty acid (FFA), and lipid accumulation
in HFD-fed mice. Furthermore, Huangjinya black tea
consumption could also significantly reverse GM disruption
and increase the ratio of primary/secondary BAs (Xu et al., 2020).

3.1.1.2 Whole Grain
Whole grains contain the endosperm, germ, and bran of the
original seeds, in contrast to refined grains, in which the germ
and bran are removed during the milling process (Aune et al.,
2016). The whole grain, rich in dietary fiber, is considered to have
a beneficial effect on the risk reduction of NAFLD (Berna and
Romero-Gomez, 2020). Sun et al. confirmed that oats and tartary
March 2022 | Volume 12 | Article 854879
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TABLE 1 | Natural plants regulate the interplay between GM and BAs in the treatment of NAFLD.

Plants Dosage and administration Models Main Effects on
NAFLD

Main Effects on Gut Microbiota Main Effects
on Bile Acids

Reference

Plant
Foods

Pu-erh tea 450 mg/kg/day in drink for 4,
22, 42 weeks

HFD-diet
C57BL/6J male
mice

1. body weight ↓
2. hepatic TC ↓, TG

↓
3. serum TC ↓, TG ↓

1.Lactobacillus, Bacillus,
Streptococcus, Lactococcus ↓

1. serum
TCDCA,
TUDCA,
GCDCA,
GUDCA↑

2. fecal
TCDCA,
TUDCA ↑

(Huang
et al., 2019)

Huangjinya
black tea

150, 300 mg/kg/day by gavage
for 9 weeks

HFD-diet
C57BL/6J male
mice

1. body weight ↓,
liver weight ↓

2. hepatic TG ↓, FFA
↓, TC ↓

3. hepatic lipid
droplet ↓

1.GM disorders reversed 1. total BAs ↓
2. LCA/CDCA

↓, DCA/CA
↑

(Xu et al.,
2020)

Oat-based
food

4.33 ± 0.17 g/mouse/day oat
and 1.66 ± 0.07 g/mouse/day
tartary buckwheat in diet for 30
days

HCD-diet
Hamster male
mice

1. hepatic TC ↓, TG
↓

2. serum TC ↓, TG
↓, LDL-C ↓

1. Erysipelotrichaceae,
Ruminococcaceae,
Lachnospiraceae ↓

2. Eubacteriaceae ↑

1. Fecal total
BAs ↑

(Sun et al.,
2019b)

Wheat
gluten

10.8 ± 0.48 g/mouse/day in
diet for 5 weeks

HCD-diet
Hamster male
mice

1. body weight ↓
2. hepatic TC ↓, TG

↓
3. serum TC ↓, TG

↓, LDL-C ↓, HDL-
C ↑

1. Firmicutes, Erysipelotrichaceae↓
2. Bateroidetes,

Bacteroidales_S24-7_group,
Ruminococcaceae ↑

1. Fecal total
BAs ↑

(Liang et al.,
2019)

Lentils 62.5 mg/rat/day in drink for 71
days

HCD-diet SD
Rat male

1.serum TC ↓, LDL↓,
HDL↑

1.Bifidobacterium spp ↑ 1. Fecal total
BAs ↑

(Micioni Di
Bonaventura
et al., 2017)

Pea pods 0.9g/rat/day in diet for 4 weeks HS-diet SD Rat 1.serum TC ↓, TG↓ 1.Bifidobacterial↑ 1. Fecal total
BAs ↑

(Inagaki
et al., 2016)

Wild Melon
Seed Oil

42 ± 1.8, 85.5 ± 1.8 mg/
mouse/day in diet for 6 weeks

HCD-diet
Hamsters male
mice

1. body weight, liver
weight↓

2. hepatic TC ↓
3. serum TC ↓, TG ↓

1.Eubacteriaceae,
Clostridiales_vadinBB60_group,
Ruminococcaceae,
Streptococcaceae,
Desulfovibrionaceae ↑

1. Fecal total
BAs ↑

(Hao et al.,
2020)

Sacha inchi
oil

0.5, 1, 1.5 ml/kg/day by gavage
for 8 weeks

HFD-diet SD Rat 1. hepatic fat
accumulation ↓

2. hepatic adipocyte
size ↓

3. serum ALT ↓,
AST ↓

4. serum TC ↓, TG
↓, LDL-C↓

1. Enterobacteriaceae, Escherichia
↓

2. Roseburia, Turicibacter,
Butyrivibrio ↑

1. CA, GCA,
TCDCA, TCA
↓

(Li et al.,
2020)

Grape 5g/kg/day in diet for 13 weeks HFFD-diet
C57BL/6J male
mice

1. body weight ↓
2. hepatic lipid

droplet ↓
3. hepatic

inflammation ↓

1.Bifidobacteria, Akkermansia,
Clostridia ↑

1. TaMCA,
TbMCA,
TCA ↓

2. DCA ↑

(Han et al.,
2020)

Plant
herbs

Radix
Scutellariae

2.5 g/kg/day by gavage for 28
days

HFD-diet SD Rat 1. liver index ↓
2. hepatic steatosis,

inflammation and
ballooning of
hepatocytes ↓

3. serum TC ↓, TG
↓,LDL-C ↓

4. serum insulin ↓,
HOMA-IR ↓

1.Lactobacillus ↓ 1.DCA, LCA,
GDCA, GLCA,
GUDCA, TLCA
↑

(Zhao et al.,
2021)

Ganoderma
lucidum

2.25 and 4.5 mg/mouse/day in
diet for 43 days

HCD-diet
C57BL/6J male
mice

1. body weight ↓,
liver weight ↓

2. hepatic steatosis,
inflammation and
ballooning of
hepatocytes ↓

1.Lactobacillus ↑ 1.Fecal BAs ↑ (Meneses
et al., 2016)

(Continued)
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buckwheat-based food (OF) reduced the hepatic total cholesterol
(TC) and TG levels in HFD-fed hamsters. Furthermore, it can
change the overall structure of the gut microbiota. Specifically,
the relative abundance of Erysipelotrichaceae, Ruminococcaceae,
and Lachnospiraceae decreased, whereas that of Eubacteriaceae
increased. Meanwhile, the excretion of fecal BAs increased and
the concentration of SCFAs (acetic acid, propionic acid, butyric
acid, and total short-chain fatty acids) increased significantly
after OF intervention (Sun et al., 2019b).

Another study revealed that wheat gluten consumption
resulted in higher fecal BA excretion, thereby reducing the
hepatic TC and TG levels in HCD-diet hamsters. Moreover,
the enhanced fecal BAs may be related to an increase in hepatic
CYP7A1 levels. Furthermore, it has been shown that the relative
abundance of Firmicutes and Erysipelas decreased, whereas that
of Bacteroides, Bacteroides, and Rumenococcus increased (Liang
et al., 2019).

3.1.1.3 Legumes
Legumes are defined as the pods or fruits of plants belonging
to the botanical families Leguminosae or Favaceae, which
includes soybeans, peanuts, green/dry beans, and lentils
(McCrory et al., 2010). These seeds are a good source of
protein, fiber, B vitamins, minerals, and polyphenols, and are
considered as low-glycemic-index foods (Rebello et al., 2014).
Populations with high legume consumption (peas, beans,
lentils) have a low risk of cancer and chronic degenerative
diseases (Campos-Vega et al., 2013).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Micioni et al. found that lentils significantly reduced serum
TC and LDL levels in HCD-fed rats. Furthermore, the contents
of fecal BAs were enhanced, resulting in an increased excretion of
BA in feces. In addition, the abundance of Bifidobacteria and the
level of butyric acid markedly increased after intervention with
lentils (Micioni Di Bonaventura et al., 2017). Inagaki et al.
demonstrated the effect of pea pods on decreasing serum TC
and TG levels in HS-fed SD rats. Meanwhile, the upregulation of
fecal BAs and the abundance of bifidobacteria were observed
significantly (Inagaki et al., 2016).

3.1.1.4 Plant Oil
Plant oil, rich in dietary omega-3 long-chain polyunsaturated fatty
acids (LCPUFA), comprises important biomolecules that have
been shown to regulate hepatic lipid metabolism (Manson et al.,
2019; Maattanen et al., 2020). For example, wild melon seed oil
(CO) supplementation reduced the body weight, liver weight, and
hepatic TC and enhanced the excretion of fecal BAs, upregulating
the gene expression of hepatic CYP7A1 in HCD-fed hamsters.
Meanwhile, CO intervention favorably altered the relative
abundances of Eubacteriaceae, Clostridiales_vadinBB60_group,
Ruminococcaceae, Streptococcaceae, and Desulfovibrionaceae at
the family level (Hao et al., 2020).

In another study, oral consumption of sacha inchi oil
alleviated hepatic fat accumulation in HFD-fed rats.
Furthermore, the imbalance of the GM was reversed, embodied
by decreasing abundances of Enterobacteriaceae and Escherichia
and increasing ratios of Roseburia, Turicibacter, and Butyrivibrio.
TABLE 1 | Continued

Plants Dosage and administration Models Main Effects on
NAFLD

Main Effects on Gut Microbiota Main Effects
on Bile Acids

Reference

3. hepatic TC ↓, TG
↓

4. serum TC ↓, TG
↓, LDL-C↓

5. serum ALT ↓,
AST↓

2.25 and 4.5 mg/mouse/day in
diet for 43 days

1. HCD-diet
C57BL/6J
male mice

2. RAW 264.7
cells treated
under HC
concentration

1. lipid droplet ↓
2. serum TC ↓, TG

↓, LDL-C↓

1.Lactobacillaceae, Lactobacillus ↑ 1.BAs
synthesis ↑

(Romero-
Cordoba
et al., 2020)

Grifola
frondosa

150 mg/kg/day by gavage for 8
weeks

HFD-diet SD Rat 1. body weight ↓
2. hepatic steatosis,

inflammation and
ballooning of
hepatocytes ↓

3. hepatic TC ↓, TG
↓, LDL-C ↓, FFA
↓, HDL-C ↑

4. hepatic AST ↓
5. serum TC ↓, TG

↓, LDL-C ↓, HDL-
C ↑

6. serum ALT ↓,
AST↓

1.Butyricimonas genus ↑ 1.Fecal BAs ↑ (Pan et al.,
2018)
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TABLE 2 | Active ingredients in natural plants regulate the interplay between GM and BAs in the treatment of NAFLD.

Active ingredients in Plants Dosage and
administration

Model Main Effects on
NAFLD

Main Effects on Gut
Microbiota

Main Effects on Bile Acids Reference

Polysaccharide Guar Gum and
Pectin

24%, 70%
Pectin in diet
for 3 weeks

HFD-
diet
Wistar
Rat

1. liver weight ↓
2. hepatic TC ↓,

TG ↓
3. serum TC ↓,

TG↓

1. an unclassified family in
RF32 ↓

2. Oscillospira,
Ruminococcaceae ↑

1. DCA, HDCA ↓
2. CA, CDCA, UDCA,a-, b-,w-

MCA ↑

(Ghaffarzadegan
et al., 2016)

Grifola frondosa
polysaccharides

400 mg/kg/day
by gavage for 8
weeks

HFD-
diet
Wistar
Rat

1. body weight
↓

2. hepatic TG ↓,
TC ↓, FFA ↓,
AST ↓, ALT ↓

3. hepatic
steatosis,
inflammation
and
ballooning of
hepatocytes↓

4. serum TC ↓,
TG ↓, LDL-C
↓, FFA↓

5. serum ALT ↓,
AST↓

1. Helicobater,
Intestinimonas,
Barnesiella,
Defluviitalea,
Ruminococcus,
Flavonifractor,
Paraprevotella ↑

2. Clostridium-XVIII,
Butyricicoccus,
Turicibacter ↓

1. fecal BAs ↑ (Li et al., 2019)

Microalgae
Chlorella
pyrenoidosa

150, 300 mg/
kg/day by
gavage for 8
weeks

HFD-
diet
Wistar
Rat

1. hepatic TG ↓,
TC↓

2. hepatic
steatosis,
inflammation
and
ballooning of
hepatocytes ↓

3. serum TC ↓,
TG ↓, LDL-C
↓, HDL-C ↑

1.Lactobacilli ↑ 1.fecal BAs ↑ (Wan et al.,
2020)

Oligosaccharides Citrus Pectin
Oligosaccharides

0.15, 0.45, 0.9
g/kg/day by
gavage for 8
weeks

HF-diet
C57BL/
6J male
mice

1. hepatic TG ↓,
TC↓

2. serum TC ↓,
TG ↓, LDL-C↓

1.Bifidobacterium,
Lactobacillus, Bacteroides
↑

1.fecal bile acid ↑ (Hu et al., 2019)

Polyphenols Theabrownin 225 mg/kg/day
by gavage for
30 days

HFD-
diet
C57BL/
6J male
mice

1. body weight
↓

2. hepatic TG ↓,
TC ↓

3. serum TC ↓,
TG

1.Lactobacillus, Bacillus,
Streptococcus,
Lactococcus ↓

1. TCDCA,CDCA↑
2. CA↓

(Huang et al.,
2019)

EGCG 0.632 ± 0.02
mg/mouse/day
in diet for 8
weeks

HFD-
diet
C57BL/
6J male
mice

1. body weight
↓, liver weight
↓

2. hepatic TG ↓
3. hepatic

steatosis,
inflammation
and
ballooning of
hepatocytes ↓

1.Akkermansia,
Parabacteroides ↓

1. CA↓
2. TCA ↑

(Naito et al.,
2020)

Dicaffeoylquinic
Acids

3.3, 10 mg/
mouse/day by
gavage for 8
weeks

HFD-
diet
C57BL/
6J male
mice

1. body weight,
liver weight ↓

2. hepatic TG ↓
3. serum TC ↓,

TG ↓, LDL-C
↓, HDL-C ↑

1.Bifidobacterium,
Akkermansia ↑

induced functional differences of
microbial communities consisted
primary bile acid biosynthesis and
secondary bile acid biosynthesis

(Xie et al., 2019)

Pure total
flavonoids from
citrus

50 mg/kg/day
by gavage for
12 weeks

HFD-
diet
C57BL/

1. hepatic
steatosis,
inflammation
and

1.Bacteroidaceae,
Christensenellaceae ↑

1. TDCA, DCA, TCA, CA ↓
2. the ratio of secondary to

primary bile acids ↑

(He et al., 2021)
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Meanwhile, the content of CA, GCA, TCDCA, and TCA
significantly decreased after sacha inchi intervention (Li
et al., 2020).

3.1.1.5 Grapes
Grapes are one of the most highly consumed fruits worldwide. In
addition to being a rich source of vitamins and fiber, the skin and
seeds of grapes contain abundant polyphenols, specifically
proanthocyanidins. The proanthocyanidin-rich grape seed
extract is beneficial against many diseases, including
inflammation, cardiovascular disease, hypertension, diabetes,
cancer, peptic ulcers, and microbial infections.

Han et al. indicated that grape extract (GE) decreased liver
weight, accompanied by a decline in adipocyte size and hepatic
fatty deposits in HFD-fed mice. Additionally, GE restores
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
dysbiosis of the GM by augmenting the observed species,
enhancing the Firmicutes-to-Bacteroidetes ratio, and increasing
the abundance of the Bifidobacterium, Akkermansia, and
Clostridia genera. The restoration of Akkermansia, Clostridium,
and Bifidobacterium was negatively correlated with the
concentrations of TaMCA, TbMCA, and TCA, but positively
correlated with DCA (Han et al., 2020).

3.1.2 Plant Herbs
3.1.2.1 Scutellaria baicalensis
Scutellaria baicalensis Georgi. (Lamiaceae) is a plant of the genus
Lamiaceae, whose root is commonly used as a medicine. This
medicinal plant is widely distributed in China, Russia, Mongolia,
North Korea, and Japan. To date, over 40 compounds have been
TABLE 2 | Continued

Active ingredients in Plants Dosage and
administration

Model Main Effects on
NAFLD

Main Effects on Gut
Microbiota

Main Effects on Bile Acids Reference

6J male
mice

ballooning of
hepatocytes ↓

2. serum TC ↓,
TG↓

3. serum ALT ↓,
AST↓

Polyketides Monascus
yellow, red and
orange pigments

20 mg/kg/day
by gavage for 8
weeks

HFD-
diet
Wister
Rat

1. hepatic
steatosis,
inflammation
and
ballooning of
hepatocytes ↓

2. hepatic TC ↓,
TG ↓, FFA ↓

3. hepatic ALT
↓, AST ↓

4. serum TC ↓,
TG ↓, LDL-C
↓, HDL-C ↑

5. serum ALT ↓,
AST ↓

1. Oscillibacter sp.,
Ruminococcus albus,
Clostridium sp ↑

1.fecal BAs ↑ (Zhou et al.,
2019b)

Alkaloids Rhizoma
Coptidis
alkaloids

140 mg/kg/day
by gavage for
35 days

HFHC-
diet
C57BL/
6J male
mice

1. body weight
↓

2. hepatic TG ↓
3. hepatic

steatosis,
inflammation
and
ballooning of
hepatocytes ↓

1. Escherichia coli,
Desulfovibrio C21_c20,
Parabacteroides
distasonis ↓

2. Sporobacter termitidis,
Alcaligenes faecalis,
Akkermansia
muciniphila ↑

1.serum total BAs↓ (He et al., 2016)

Triterpenoids 2a-OH-
Protopanoxadiol

200 mg/kg/day
by gavage for
32 days

HFD-
diet
C57BL/
6J male
mice

1. body weight
↓, liver weight
↓

2. hepatic TG ↓
3. hepatic

steatosis,
inflammation
and
ballooning of
hepatocytes ↓

4. serum TG ↓,
TC ↓

5. Plasma
glucose ↓,
insulin ↓

1.Brucella, Desulfovibrio,
Bacteroidetes↓

1.intestinal Ta/bMCA↑ (Xie et al., 2020)
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isolated and identified from Scutellaria baicalensis, including
flavonoids, terpenoids, volatile oils, and polysaccharides. The
compounds and extracts exhibit a wide range of pharmacological
activities, including effects on the immune system, liver
protection, antioxidant effects, and other pharmacological
effects (Zhao et al., 2019).

Zhao et al. found that Radix scutellariae water extract (WESB)
improved hepatic steatosis, inflammation, and ballooning of
hepatocytes in HFD-fed rats. Of note, the abundance of
Lactobacillus, which exhibits significant negative correlations
with certain fecal-conjugated BAs (TCDCA, GUDCA, and
TUDCA), was significantly decreased in the feces of HFD-fed
rats after treatment with WESB. Moreover, this effect might be
related to the activation of hepatic CYP7A1 and the inhibition of
FXR expression in the intestine rather than in the liver (Zhao
et al., 2021).

3.1.2.2 Ganoderma lucidum (Gl)
Gl, commonly referred to as “Lingzhi” in Chins, is one of the best-
known medicinal mushrooms, and has been used in herbal
medicines worldwide for more than two thousand years. In
recent decades, Gl-related biological and pharmacological
research has focused on the bioactive compounds extracted
from its fruiting bodies, including polysaccharides, triterpenoids,
sterols, proteins, and peptides, which comprise constituents with
numerous biological activities such as antioxidant, anti-
inflammatory, immunomodulatory, hypoglycemic, and
hypolipidemic activities (Lu et al., 2020).

Several studies have shown that the consumption of low and
high doses of Gl extracts almost entirely prevented the
accumulation of lipids in the liver of high-cholesterol diet-fed
mice. Analyses of hepatic cholesterol and triglyceride levels
confirmed this histological analysis. These effects were associated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
with a significant increase in the excretion of fecal bile acids and an
increase in CYP7A1 gene expression in the liver. Furthermore, the
relative abundance of Lactobacillus significantly increased after
intervention with Gl (Meneses et al., 2016).

Sandra et al. showed that Mexican Gl extracts prevent hepatic
fatty acid synthesis and accumulation through the downregulation
of genes involved in lipogenesis. Furthermore, the Gl extract
activated one of the major BA synthesis pathways via CYP7B1-
mediated hydroxylation of cholesterol. In addition to gene
modulation, the administration of Gl extracts also modulates the
composition of the gut microbiota, triggering an increase in
abundance of the Lactobacillaceae family and the genus
Lactobacillus (Romero-Cordoba et al., 2020).

3.1.2.3 Grifola frondosa (GF)
Grifola frondosa (Dicks.) Gray is a widely consumed edible and
medicinal fungus. Ancient books record that it can boost qi and
fortify the spleen, moisten the lungs, and protect the liver. Over the
past three decades, GF polysaccharides have been shown to
possess various promising bioactivities, including antitumor,
immunomodulation, anti-oxidation, and anti-hyperglycemia,
and can also effectively act on the skin and hematopoietic stem
cells (He et al., 2017).

Pan et al. found that the levels of serum ALT/AST and hepatic
lipid accumulation were significantly decreased in GF-treated
HFD-fed rats. Furthermore, GF consumption significantly
enhanced the excretion of BAs in the cecum. In addition, a
higher abundance of Butyricimonas was observed in the GF
group (Pan et al., 2018).

3.2 Active Ingredients
Previously, we reviewed the efficacies and modes of action of
plants regulating the interplay between GM and BAs in NAFLD.
FIGURE 2 | BAs influence GM in NAFLD. (BAs, bile acids; CA, Cholic acid; CDCA, Chenodeoxycholic acid; C3GnT, Core 3 O-glycan; DCA, deoxycholic acid; FXR,
farnesoid X receptor; Muc2, mucin 2; NAFLD, non-alcoholic fatty liver disease; G-b-MCA, glycine-b-muricholic acid; TUDCA, tauro-ursodeoxycholic).
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It is important to note that many of the active ingredients of
these plants can exert the same medicinal effects as the source
plant itself. Therefore, from the perspective of the chemical
structure, we divided these active ingredients into
polysaccharides, oligosaccharides, polyphenols, ketones, and
other active ingredients.

3.2.1 Polysaccharides
Polysaccharides, which are natural macromolecules composed of
monosaccharides, are among the most important members of
the biopolymer family. To date, more than 300 natural
polysaccharide compounds have been identified and are
ubiquitously present in plants, animals, and microorganisms,
where they engage in a variety of physiological functions. Several
pharmacological and clinical studies have shown that plant
polysaccharides have multiple functions, such as immune
regulation, anti-inflammatory, antiviral, and hypoglycemic
(Kouakou et al., 2013; Chen and Huang, 2018).

3.2.1.1 Guar Gum and Pectin
Guar gum, a naturally occurring polymer, is a galactomannan
obtained from the ground endosperm of Cyamopsis
tetragonolobus or Cyamopsis psoraloides . Pectin is a
heteropolysaccharide abundant in the cell wall of plants and is
obtained mainly from fruits (citrus and apple). In HFD-fed rats,
guar gum and pectin significantly decreased hepatic TG and TC
levels. Furthermore, guar gum increased the cecal amounts of
CA, CDCA, and UDCA, as well as a-, b-, and w-MCA to a
greater extent, whereas that of DCA and HDCA were reduced. In
contrast, differences in BA composition between pectin groups
were less obvious, but the cecal levels of a- and w-MCA were
higher in rats. Meanwhile, these two fibers decreased the cecal
abundance of Oscillospira and an unclassified genus in
Ruminococcaceae, while increasing that of an unclassified
family in RF32 (Ghaffarzadegan et al., 2016).

3.2.1.2 G. frondosa Polysaccharides
G. frondosa polysaccharides (GFP), derived from the plant
Grifola frondosa, exerts various biological activities, such as
antitumor, hypoglycemic, antioxidant, and immune regulatory
activities. Li et al. found that GFP markedly alleviated hepatic
lipid accumulation and steatosis in HFD-fed rats. In addition, the
excretion of fecal BAs was also promoted by significantly
increasing the mRNA expression of CYP7A1 and BSEP after
oral administration of GFP. Meanwhile, GFP supplementation
significantly increased the proportion of Helicobater ,
Intestinimonas, Barnesiella, Defluviitalea, Ruminococcus,
Flavonifractor, and Paraprevotella, but decreased the relative
abundances of Clostridium-XVIII, Butyricicoccus , and
Turicibacter (Li et al., 2019).

3.2.1.3 Polysaccharides From Chlorella pyrenoidosa (CPP)
The microalgae Chlorella pyrenoidosa is considered a valuable
and nutritious microalga, which contains a variety of
polysaccharides, carotene, chlorophylls, and polyunsaturated
fatty acids in abundance. The pharmacological effects of
Chlorella phytochemicals include anti-inflammatory,
antitumor, and antioxidant activities. Moreover, CPP is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
regarded as an effective hypolipidemic agent. Wan et al.
demonstrated that CPP could effectively inhibit hepatic lipid
accumulation in HFD-fed rats. In addition, CPP accelerates the
metabolism of total cecal BAs, while increasing the relative
abundance of lactobacilli in the intestines (Wan et al., 2020).

3.2.2 Oligosaccharides
Oligosaccharides are saccharide polymers containing a small
number of monosaccharides, which are obtained by direct
extraction from natural sources, hydrolysis of polysaccharides,
or enzymatic and chemical synthesis from disaccharides; they
play an important role in preventing obesity and other metabolic
diseases (McCranie and Bachmann, 2014).

Hu et al. showed that administration of citrus pectin
oligosaccharides (POS) markedly reduced liver weight and
hepatic TC in HF-fed mice. In addition, the relative
abundances of specific bacterial groups in the feces and the
concentrations of their metabolites were higher after POS
intervention. Furthermore, we observed significant correlations
among Bifidobacterium, Lactobacillus, and Bacteroides and fecal
BAs, as well as hepatic CYP7A1 reductase (Hu et al., 2019).

3.2.3 Polyphenols
Polyphenols are a large and heterogeneous group of
phytochemicals, including multiple sub-classes such as
flavonoids, stilbenes, phenolic acids, and lignans (Manach
et al., 2005), which have shown promise in the management of
many diseases due to their antioxidant, anti-inflammatory, anti-
fibrotic, and metabolic regulation functions. Several hundred
different polyphenols are found in plant-based foods, including
tea, coffee, legumes, cereals, plant-derived beverages, and
chocolate (Khan et al., 2008).

Huang et al. indicated that HFD-fed mice receiving the
polyphenol theabrownin exhibited significant decreases in hepatic
TG and TC levels. Additionally, the abundance of BSH-producing
Lactobacillus, Bacillus, Streptococcus, and Lactococcus genera
decreased, as did the BSH activity in mice treated with
theabrownin. Conjugated BAs inhibit intestinal FGF15/FGF19-
FGFR4 signaling, coupled with increased activation of hepatic
FXR-SHP signaling in the liver, thereby increasing CYP7B1 levels
to promote BA synthesis (Huang et al., 2019).

3.2.3.1 Phenolic Acids
Xie et al. revealed that Kudingcha dicaffeoylquinic acid (diCQA),
made from Kudingcha, decreased the hepatic and adipose tissue
masses in HFD-fed mice. It can also induce functional differences
in microbial communities consisting of several metabolic
pathways, including primary bile acid biosynthesis and
secondary bile acid biosynthesis. Furthermore, the relative
abundances of Bifidobacterium and Akkermansia were shown
to increase after treatment with diCQAs (Xie et al., 2019).

3.2.3.2 Flavonoids
Naito et al. confirmed that EGCG significantly inhibited the
HFD-induced increase in histological fatty deposits and TG
accumulation in the liver, and improved intestinal dysbiosis.
Meanwhile, inhibition of 7a-dehydroxylation, associated with
March 2022 | Volume 12 | Article 854879
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abundance of the Akkermansia and Parabacteroides genera, was
shown to decrease the conversion of CA to TCA in the intestine
(Naito et al., 2020).

He et al. found that after pure citrus total flavonoid (PTFC)
intervention, the degree of fatty changes, infiltration of
inflammatory cells, and ballooning of hepatocytes in the liver
of HFD-fed mice were significantly reduced. Furthermore, while
the relative abundances of Bacteroides and Artemisiaceae
increased, the content of toxic BAs (TDCA, DCA, TCA, CA)
and the ratio of secondary BAs/primary Bas were enhanced. This
revealed that PTFC could alleviate NAFLD by co-regulating GM
and BA metabolism (He et al., 2021).

3.2.4 Polyketides
Polyketides consist of a large group of natural biomolecules that
are normally produced by bacteria, fungi, and plants. These
molecules are clinically important because of their anti-cancer,
anti-microbial, anti-oxidant, and anti-inflammatory properties
(Xu et al., 2021). Monascus pigments (MPs) from red yeast rice
significantly ameliorate lipid metabolism disorders by inhibiting
hepatic lipid accumulation and steatosis in HFD-fed rats.
Furthermore, the excretion of fecal BAs was also promoted by
oral administration of MPs. Meanwhile, some beneficial GM
(such as Oscillibacter sp., Ruminococcus albus, and Clostridium
sp.) were found to be negatively correlated with serum and
hepatic lipid indicators (Zhou et al., 2019b).

3.2.5 Alkaloids
Alkaloids, as a class of natural ingredients derived from
traditional Chinese medicines, have previously been shown to
inhibit proliferation, metastasis, and angiogenesis; change cell
morphology; promote apoptosis and autophagy; and trigger cell
cycle arrest (Liu et al., 2019).

Rhizoma coptidis (RC) alkaloids reduced body weight gain,
serum TG, and hepatic lipid accumulation in HFHC-fed mice.
Furthermore, RC alkaloid feeding significantly increased the
abundance of Sporobacter termitidis, Alcaligenes faecalis, and
Akkermansia muciniphila in the gut of mice, whereas that of
Escherichia coli, Desulfovibrio C21_c20, and Parabacteroides
distasonis was suppressed. The synthesis of bile acids was
increased by the upregulation of CYP7A1 (He et al., 2016).

3.2.6 Triterpenoids
Triterpenoids (TTP) are widely distributed in higher plants and
are of interest because of their structural diversity and broad
range of bioactivities. TTP possesses antioxidant, metabolic-
regulating, immunomodulatory, and anti-inflammatory
activities, suggesting its application as an alternative therapy in
some chronic diseases (Ren and Kinghorn, 2019).

2a-OH-protopanaxandiol (GP2), a metabolite of gypenosides
in vivo, has been shown to protect mice from HFD-induced
obesity and improve glucose tolerance. Moreover, GP2 treatment
inhibited the activity of BSH and decreased the abundance of
species of the genera Brucella and Desulfovibrio from
Proteobacteria and the genera norank_f_Bacteroidales_S24-
7_group from Bacteroidetes, thereby increasing the content of
TbMCA in the intestine. TbMCA induced GLP-1 production
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
and secretion by reducing the transcriptional activity of nuclear
FXR, thereby ameliorating metabolic syndrome (Xie et al., 2020).
4 DISCUSSION

In this review, we discussed and summarized the new findings
regarding the effects of natural plants on the regulation of interplay
between GM and BA to improve NAFLD. We systemically
discussed the joint action between the GM and BA in the
pathogenesis of NAFLD. These components show a strong
interrelationship. The GM regulates BA synthesis, transport, and
reabsorption via expression of metabolites and FXR, while also
promoting the conversion of primary BAs to secondary BAs via
enzyme activity. Conversely, BAs can directly inhibit the growth of
intestinal flora by acting onbacterialmembranes. In addition, it can
indirectly affect the structure and growth of intestinal bacteria. In
addition, we comprehensively reviewed the management of joint
action between GM and BAs in NAFLD, in terms of the evidence
regarding Natural Plants. These Natural Plants could act as
reference for further drug research and discovery to treat NAFLD.

In recent years, a number of studies have shown the potential of
food and herb plants as treatments for diet-induced NAFLD. We
summarized that themain ingredients inplant foods,whichworked
effectively, might be attributed to dietary fiber, plant protein, and
LCPUFA. Meanwhile, frequent changes in the GMmainly include
alterations in the abundance of Bacteroides, Bifidobacterium,
Parabacter, Prevotella, and Clostridium after intervention with
plant foods. However, the changes in BAs modulated by the plant
foodprofiledidnot showregularity. Inaddition,plantherbs, suchas
Scutellaria baicalensis, Rhizoma coptidis, Ganoderma lucidum, and
Grifola frondosa, can also significantly improve the disturbance of
GM and BA spectra caused in NAFLD, most of which are anti-
NAFLDdrugs commonlyused in clinical settings. Furthermore, the
abundance of Escherichia coli, Bacteroides, Lactobacillus, and
Monascus changed frequently after drug treatment. Notably, most
drugs improved NAFLD by acting on hepatic CYP7A1, indicating
that the BA synthesis pathway accounts for a large proportion of
treatment with plant herbs. From the perspective of pathogenesis,
both foods and drugs improved glucose/lipid metabolism, insulin
resistance, and inflammation in NAFLD. Interestingly, alterations
in lipid metabolism were the most obvious, indicating the
importance of this pathway.

In addition, active ingredients, including polysaccharides,
oligosaccharides, polyphenols, alkaloids, and triterpenoids, can
effectively regulate joint action in NAFLD. In the intestine of
NAFLD hosts, the active substances mainly regulate the relative
abundance of Deferrobacterium, Akkermania, Parabacter,
Bifidobacterium, Clostridium, Bacteroides, and Desulfovibrio.
Meanwhile, the synthesis pathway of hepatic BAs and
modification of primary BAs were significantly modulated after
intervention with active ingredients. Also, hepatic lipidmetabolism
plays amajor role in the effect on active ingredients againstNAFLD.

However, some limitations in this field remain. Although
natural plants have been shown to regulate the interplay of GM
and BAs in NAFLD, most studies have not fully clarified the
regulatory effect on the interaction between GM and Bas, except
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for theanbrownin, suggesting that the potential mechanisms of
many natural plants need to be further explored. In addition, it
remains unclearwhether some natural plants can be used as clinical
drugs or dietary supplements. Meanwhile, heterogeneity between
NAFLD patients should be considered in the clinical setting.
Furthermore, the stability and safety of the natural plants need to
be confirmed both in vivo and in vitro. Nevertheless,more in-depth
research shouldbeconducted toexplore thepotentialmechanismof
the interactionbetweenGMandBAs tobetter reveal the therapeutic
effect of natural plants on NAFLD.
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