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The mucosal surfaces that form the boundary between the external environment and the
underlying tissue are protected by a mucus barrier. Mucin glycoproteins, both secreted
and cell surface mucins, are the major components of the barrier. They can exclude
pathogens and toxins while hosting the commensal bacteria. In this review, we highlight
the dynamic function of the mucins and mucus during infection, how this mucosal barrier
is regulated, and how pathogens have evolved mechanisms to evade this
defence system.
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INTRODUCTION

The mucus layer, which coats surfaces exposed to the external environment, is a physicochemical
barrier that permits the permeation of nutrients and immune factors and excludes toxins and
pathogens. Despite being a dynamic, highly organised arm of the innate immune system, the mucus
barrier has largely been underappreciated in infectious diseases. Mucins form the critical structural
component of the mucosal barrier (Thornton and Sheehan, 2004). O-Glycosylation accounts for up
to 80% of the mass of mucins (Thornton et al., 2008). Mucins are divided into two main subfamilies:
the cell surface mucins, which anchor to the cell membrane and provide a carbohydrate-rich
covering, and the secreted mucins, which give the mucus gel its viscous properties. Evolutionary
studies suggest that mucins are ancient, with mucin-like glycoproteins or domains identified in
viruses, parasites, and fungi (Freire et al., 2003; Wang et al., 2003; Buscaglia et al., 2006; Lang et al.,
2007). In this review, we highlight the critical role of mucins in regulating microbial interactions at
the respiratory and intestinal surfaces during homeostasis. In addition, we discuss the critical role of
immune-driven changes in mucins in the innate immune response against mucosal pathogens.
MUCINS OF THE GLYCOCALYX

The glycocalyx is the carbohydrate-rich layer that covers the mucosal epithelial cells. It contains
high amounts of cell-anchored mucin glycoproteins, glycosaminoglycans, and other glycoproteins.
Cell surface mucins comprise a large extracellular O-glycosylated domain, which can form long
extended and rigid structures at the cell surface. These structures are confronted by pathogens that
overcome the secreted mucus layer as they reach the mucosal cell surface. The expression of cell
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Sheng and Hasnain Role of Mucins and Mucus in Infectious Disease
surface mucins and the composition of the glycan structures on
these mucins differ depending on the glycosyltransferases at the
different tissue sites (Table 1) and with infection and
inflammation (Jensen et al., 2010). The complex and distinct
differences in cell surface mucin expression and oligosaccharide
structure can dictate the molecular composition of the epithelial
cell surfaces, including pH, ion concentration, enzymatic activity
and hydration, and the composition of microbes in the lung and
intestine. The extracellular glycosylated domain can dissociate
from the cell surface, mediated via proteases, after binding to a
pathogen as part of a defence mechanism (Parry et al., 2001;
Backstrom et al., 2003). Moreover, the cytoplasmic domains of
the mucins serve as cell surface receptors and sensors (Sheng
et al., 2017; Sheng et al., 2019). Signal transduction, including b-
catenin and g-catenin signalling, through the cytoplasmic
domain in response to external stimuli can influence
inflammatory responses, proliferation, differentiation, and
apoptosis, as discussed below (summarised in Figure 1) (Singh
and Hollingsworth, 2006). The cell surface mucins surround the
cilia in the lung, forming a periciliary layer (PCL), which is
essential for the lubrication of the ciliary beat and the movement
of mucus through the airways (Ridley and Thornton, 2018). Cell
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
surface mucins are associated with key signal transduction
pathways and associated cell surface physical protection, which
is an essential part of homeostasis. Cell surface mucins are
disrupted in metastatic disease, infection, and inflammation,
which correlates with enhanced pathology (Sheng et al., 2017;
Sheng et al., 2019).

Function of Cell Surface Mucins
Physical Barrier
Recent studies have suggested that cell surface mucins contribute to
the maintenance of the mucosal barrier integrity by preventing
adhesion of foreign debris, cells, or pathogens onto the mucosal
surfaceepithelia (Arguesoet al., 2006; Imbertet al., 2006;Blalocket al.,
2007; Corrales et al., 2011). The large protein core, dense O-
glycosylation, charge repulsion, and hydration results in steric
hindrance, making the cell surface mucins relatively rigid structures
(Gipson and Inatomi, 1998; Cone, 2009; McGuckin et al., 2011;
Petrou and Crouzier, 2018), which remain unaltered despite
movement and shearing at the mucosal surfaces. Protruding
considerably further from the cell surface (e.g., MUC1 can extend
>200 nm), the cell surfacemucins are thought to prevent adhesion of
the secreted mucus layer directly to the epithelial cell surface.
Sumiyoshi et al. demonstrated that the anti-adhesive character of
mucin O-glycans at the apical surface of corneal epithelial cells was
caused by the repulsive negative charge interactions between secreted
and cell surface mucins (Sumiyoshi et al., 2008). In addition, the
mucins anchored to the cell surface have the ability to bind to glycan
ligands, such as galectin-3, which can generate molecular matrices
and facilitatemucin assembly, reinforcing the physical barrier on the
epithelial cell surface (Argueso et al., 2009; Gipson et al., 2014).
Regulation of Signal Transduction
Cell surface mucins regulate the signal transduction through both
extracellular and cytoplasmic domains. It has been suggested that
cell surface mucins sense the environment through their
extracellular domain and signal through their intracellular
domain (Singh and Hollingsworth, 2006). Several cell surface
mucins have epidermal growth factor (EGF)-like motifs in their
extracellular domainadjacent to the cellmembrane.TheseEGF-like
motifs interact with a wide range of receptors, prompting cell
proliferation following epithelial injury in the normal tissue, and
in cancer progression to metastasis (Singh and Hollingsworth,
2006). MUC4 has at least two EGF-like domains, which can
activate ErbB2 and ErbB3 receptors responsible for epithelial cell
proliferation and apoptosis (Singh and Hollingsworth, 2006).
MUC1 and MUC13 can regulate chemokine secretion from
intestinal epithelial cells. The cytoplasmic domain of MUC1
contains multiple phosphorylated tyrosine residues that can
activate intracellular signalling pathways, such as the ERK1/2
pathway in airway epithelial cells (Wang et al., 2003). It can also
interactwithb-catenin, catenin p120, ER-a, p53, andnuclear factor
kappa B (NF-ĸB) to convey specialised signalling in response to
conditions at the cell surface, such as binding with pathogens and
changes in pH (Singh and Hollingsworth, 2006). MUC13 can
enhance NF-ĸB activation and prevent cell death, which can
advance tumour formation and progression (Sheng et al., 2017).
TABLE 1 | Expression of mucins throughout the body.

Tissue Cell surface
mucins

Secreted gel-forming
mucins

References

Respiratory tract
Trachea MUC1

MUC4
MUC16

MUC5AC
MUC5B
MUC19

Hattrup and Gendler
(2008),

Thornton et al.
(2008)Bronchus MUC1

MUC4
MUC16

MUC5AC
MUC6

Alveoli MUC1
MUC4
MUC16

MUC2

Gastrointestinal tract
Oral cavity MUC1

MUC4
MUC16

MUC5B
MUC7*
MUC19

McGuckin et al.
(2011)

Stomach MUC1
MUC16

MUC5AC
MUC6

Small
Intestine

MUC1,
MUC3A
MUC3B
MUC4
MUC12
MUC13
MUC15
MUC16
MUC17

MUC2

Colon MUC1,
MUC3A
MUC3B
MUC4
MUC12
MUC13
MUC15
MUC16
MUC17

MUC2
MUC5AC
MUC6
*Non-oligomerizing mucin.
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SECRETED MUCUS BARRIER

Gel-forming mucins, namely, MUC2, MUC5AC, MUC5B,
MUC6, and MUC19, similar to cell surface mucins, have a
large protein core, with a repetitive amino acid sequence (PTS)
that is proline-, threonine-, and serine-rich region and heavily O-
glycosylated. O-Glycosylation is the key element responsible for
the hydrophilic character of the secreted mucins and allows
expansion and extension of the core. The individual mucin
subunits can then form dimers via disulphide bonds and the
C-terminus cysteine knot domains. Dimers can assemble into
multimers via the intermolecular disulphide bonds at the N-
terminus von Willebrand domains. The oligomeric nature of
each mucin is thought to be different; MUC2 is believed to
oligomerise in a trimeric form (Godl et al., 2002), while MUC5B
oligomerises in a linear form (Hughes et al., 2019). Glycosylation,
along with non-mucin proteins, calcium content, and covalent
(disulphide bonds) and non-covalent hydrogen bonds, are all
determinants of the viscoelastic and chemical properties of the
mucus gel (Ridley et al., 2014; Meldrum et al., 2018).

Function of Gel-Forming Mucins
Lubrication and Physical Barrier
Once secreted by goblet cells, submucosal gland cells, or serous
cells, gel-forming mucins form a highly hydrated mucus gel and
contribute to the lubrication of the epithelial cell surfaces. The
hydrophilic nature of the mucins is thought to reduce shear
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
stress at the epithelial surface: for instance, peristalsis and
movement of stool through the intestine (McGuckin et al.,
2011; Petrou and Crouzier, 2018). This polymeric network of
secreted mucins acts similarly to a gel filtration system. Ex vivo
measurements using fluorescent probes have shown that large
molecules such as pathogens cannot pass through, while smaller
molecules like antimicrobial peptides can easily penetrate the
mucus gel (Hasnain et al., 2010; Gustafsson et al., 2012).

In the intestine, the mucus layer, mainly composed of MUC2,
forms an inner adherent layer and an outer loose layer. The inner
adherent layer is “sterile,” composed of MUC2 multimers that
are presumably tightly packed to provide protection from the
commensal flora (Hansson and Johansson, 2010; Gustafsson
et al., 2012). Hansson et al. hypothesised that MUC2
multimers are organised as sheets that interact with the
epithelial cell layer and cell surface mucins; however, X-ray
crystal structure of MUC2 multimerisation module suggests
that non-covalent and covalent interactions form a lateral
network (Javitt et al., 2019). The outer mucus layer is exposed
to proteases and bacteria, which enables it to become less dense.
This is also important for maintaining homeostasis, as the faecal
material in the intestine generates mechanical stress (McGuckin
et al., 2011). The respiratory mucus layer is more complex. It
comprises two gel-forming mucins, MUC5AC and MUC5B,
which only form homo-multimers in the lung. Although
MUC5B expression was mainly thought to be restricted to
submucosal glands, recent data show that the distal airway
FIGURE 1 | Schematic depicting the role of cell surface and gel-forming mucins at the mucosal barrier (created with BioRender).
June 2022 | Volume 12 | Article 856962
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superficial epithelium is the predominant site for MUC5B
expression, while MUC5AC expression is concentrated in the
proximal airways (Bonser and Erle, 2017; Hancock et al., 2018;
Hughes et al., 2019; Okuda et al., 2019). Once secreted into the
airway lumen, these mucins can non-covalently cross-link to
form a physical barrier that can be easily moved by the cilia
(McGuckin et al., 2011; Bonser and Erle, 2017).

Clearing Molecules
The secreted gel-forming mucins can trap allergens and debris to
facilitate their clearance from the mucosal surface (Rubin, 2002).
This role is assisted by the incredible diversity of the
carbohydrate side chains, which enhances the possibility of
pathogens binding to the mucus (Thornton and Sheehan,
2004). While it has been reported that hydrophilic
contaminants are easily repulsed by the mucus gel, weakly
polar contaminants are trapped in the mucus gel (Sharma,
1993). Contaminants, including pathogens and allergens, are
then eliminated along with the mucus (Gipson and Argueso,
2003; Dartt and Masli, 2014). In a patient with congenital loss of
MUC5B, Costain et al. (2022) highlight the key role of mucins
and demonstrate impaired mucociliary clearance and increased
inflammatory macrophage infiltrate in sputum (Costain
et al. 2022).

Antimicrobial Agents
The secreted mucus network provides a scaffold for
antimicrobial molecules and antibodies. The retention of these
molecules within the physical barrier functions as a chemical
barrier against commensals and pathogens. Mucins have been
shown to have direct potent anti-pathogenic activity. For
example, Muc5ac upregulated in the intestine during nematode
infection directly reduced ATP levels in the nematodes (Hasnain
et al., 2011). Muc2 acts as a chemoattractant; it binds to
Campylobacter jejuni and limits its growth (Tu et al., 2008).

Together, the complex mucin structure, the oligomerisation
into a network, and the chemical sequestration of antimicrobials
in the intestine and lung provide an efficient physical barrier
against pathogens. However, many pathogens have developed
ways to overcome the key protective properties of the mucin and
mucus barrier.
MUCINS–MICROBIOTA INTERACTION

There is a tremendous number of microorganisms, termed
microbiota, which reside at different mucosal surfaces. The
intestinal microbiota are well studied (Corfield, 2018;
Schroeder, 2019). However, recently, commensal bacteria in
the lung have gained attention, albeit the number of
microorganisms is lower in the lung at baseline compared with
the intestine (Enaud et al., 2020). Microbiota have a mutualistic
relationship with their host, and the interaction of microbiota
and mucins appears to be bidirectional at least in the intestine
and reproductive tract (Schroeder, 2019). Microbiota is generally
considered beneficial ; however, the vast number of
microorganisms also form a permanent threat to the host.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Thus, to prevent direct interaction of microbes with the
epithelial cell layer and their translocation across the mucosal
barrier, the host has developed effective physical and chemical
defence mechanisms, including the secreted mucus barrier and
the glycocalyx that covers the epithelium (Corfield, 2018). It is
difficult to dissect in diseases such as inflammatory bowel disease
or metabolic syndrome whether it is the imbalance of microbiota
or alterations in mucins that drive the pathology. Although
deficiency in microbiota (germ-free animals) and alterations or
absence of mucins in rodent models have been shown to
individually enhance susceptibility to disease, both are
accompanied by changes to the other (Hill et al., 1990; Enss
et al., 1996; Wang et al., 2021).

The significant individual variation in the distribution of
microbiota is thought to be determined by polymorphic host
glycosylation (Turnbaugh et al., 2009). The host-specific glycan
repertoire of mucins is important for the regulation of the
composition, growth, and behaviour of the microbiota. In
return, maturation, function, and glycosylation of mucins are
influenced by the gut microbiota (Schroeder, 2019). For instance,
short-chain fatty acids, produced because of bacterial
fermentation of fibres, can regulate the production of mucins.
Additionally, commensal mucolytic bacteria maintain the
appropriate turnover of the outer mucus layer, which favours
the host by competitively excluding pathogens. For some
bacteria, mucins can be virtually their only energy source
(Johansson and Hansson, 2016), and therefore, the O-glycans
can influence the repertoire of microbiota present. While mucin
glycosylation can dictate the composition of the microbiota, the
microbiota can influence epithelial cell function, metabolism,
and proliferation (Ashida et al., 2011). However, there are still
gaps in our understanding of the host dictating the microbial
diversity and population. Microbiota are crucial for the
development of an effective immune system, as supported by
the deficiency in mucus and several immune cell types displayed
by germ-free animals. There are fewer intestinal goblet cells, and
there is decreased storage of mucin granules in germ-free
conditions compared to normal conditions (Hill et al., 1990;
Enss et al., 1996). In addition, there is decreased expression of
some antimicrobial molecules, including angiogenin 4 and
REGIIIg (Hooper et al., 2003; Cash et al., 2006). A lack of
expansion of the CD4+ T-cell population is also reported in
germ-free animals, which can be reversed by the treatment with
polysaccharide A from Bacteroides fragilis (Mazmanian
et al., 2005).
UNDERSTANDING THE INTERACTION
BETWEEN PATHOGEN AND MUCINS

Mucin glycoproteins are a critical element of the mucosal barrier
to infection. This barrier is dynamic and responsive to elements
of both innate and adaptive immunity. It uses multiple defence
mechanisms against microbes, including secreted mucus, the
apical glycocalyx, and epithelial tight junctions. However,
mucosal pathogens can efficiently infect the mucosa using a
June 2022 | Volume 12 | Article 856962
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wide range of specific strategies that allow them to subvert or
avoid the mucin barrier in the gut. Indeed, bacterial pathogens
have evolved into highly sophisticated protein export systems,
which have been discussed previously (Ashida et al., 2011) and
will not be examined here. Instead, we will focus on the
properties of mucins that confer protection and on
mechanisms used by pathogens to evade this barrier (Figure 2).

Most of our understanding comes from animal models, since
the mucosal environment is extremely complex and impossible
to fully recreate in vitro. However, in the past decade, primary
organoid culture systems have provided the field with a model
system that can replicate part of the complexity of the cellular
and secreted mucus barrier (comprehensively reviewed by Han
et al., 2021). Here, we mainly focus on the studies from animal
models, which capture the cellular and secreted barrier along
with an intact immune system to highlight how mucins are
functionally important in limiting infection and inflammation.

Physical Barrier Function
Goblet cell hyperplasia and increased mucin expression or
secretion have been reported in several mucosal infections,
including nematode, Citrobacter, and Pseudomonas infection
(Tu et al., 2008; Bergstrom et al., 2010; Hasnain et al., 2010;
Umehara et al., 2012). This supports the “mucus-trap”
hypothesis, which suggests that the host uses increased mucin
release to physically trap pathogens within the mucin network
(Miller, 1987; Bergstrom et al., 2010). Subsequently, the
pathogens are eliminated with the movement of the mucus
layer, e.g., through peristalsis or coughing (Miller, 1987;
Bergstrom et al., 2010). Reduced mucus permeability in
Muc2−/− mice demonstrates the importance of mucins in
determining the physical properties of the barrier (Hasnain
et al., 2010). Many bacteria have the ability to produce a series
of hydrolytic enzymes, which degrade the mucus glycans. These
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
enzymes, such as glycosulphatases, sialidases, and sialate O-
acetylesterases, degrade the mucin oligosaccharides, exposing
the mucin peptide backbone to proteases while also removing
decoy carbohydrates for microorganism adhesins (Kato and
Ishiwa, 2015). Proteolytic cleavage of mucins causes
disassembly of the oligomerised mucin macromolecules,
resulting in greatly reduced mucus viscosity and diffusion of
the mucus. The protozoan parasite Entamoeba histolytica can
proteolytically cleave MUC2 to disrupt the colonic mucus by
breaking down the macromolecular structure and invading the
underlay epithelium (Lidell et al., 2006). Pathogens can secrete
proteases to degrade Muc2, such as Trichuris muris nematodes
(Henderson et al., 1999; Hasnain et al., 2012). Other pathogens
secrete zinc metalloproteases that non-specifically cleave mucin-
O-glycosylated proteins (Silva et al., 2003; Grys et al., 2005).
Mucus degradation is not limited to pathogens. Some
commensal bacteria, like Akkermansia muciniphila and
Bacteroides bifidum, are also mucolytic and can use mucin
glycoproteins as an energy source (Macfarlane and Gibson,
1991; Png et al., 2010). These microorganisms are typically
strictly anaerobic and do not penetrate the inner mucus layer
(McGuckin et al., 2011). In conjunction with mucus degradation,
motility is also important for enteric pathogens to break through
the mucus barrier. Many enteric pathogens have evolved
strategies to infect the host by avoiding the mucus barrier.
Pathogenicity with disrupted flagellar function is reduced,
highlighting the importance of motility in disease (Ramos
et al., 2004). For example, disrupting flagella in Helicobacter
pylori greatly reduced its ability to promote infection (Ottemann
and Lowenthal, 2002).

Protecting Epithelial Integrity
Enteric pathogens commonly use the type III secretion system
(T3SSs) to deliver the effector proteins (also referred to as toxins)
FIGURE 2 | Strategies employed by pathogens to overcome the mucus barrier (created with BioRender).
June 2022 | Volume 12 | Article 856962
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to the cytoplasm of the host cell (Ashida et al., 2011) and,
consequently, alter the expression/production of mucins. These
toxins can directly cause cell death, growth inhibition, cell cycle
arrest, modulation of inflammatory signalling, and disruption of
tight junctions. This dysregulation can result in shifts in the
microbial population, which can compromise the mucosal
epithelium integrity (Dalby et al., 2006; Wroblewski et al.,
2009). Tight junction disruption during pathogen infection
often causes barrier failure, which subsequently allows the
translocation of commensal bacteria across the damaged
epithelial lining, resulting in inflammation (Walk et al., 2010;
Ashida et al., 2011). Pathogens can disrupt several signalling
pathways and expose the vulnerable lateral cell membranes that
are not protected by the mucins, enabling the pathogens to
penetrate deeper into the mucosal tissues (McGuckin et al.,
2011). Examples of bacteria that interfere with tight junctions
include enteropathogenic Escherichia coli (Goosney et al., 2000),
Shigella flexneri (Sakaguchi et al., 2002), Salmonella (Boyle et al.,
2006), Vibrio parahaemolyticus (Yarbrough et al., 2009), and H.
pylori (Wroblewski et al., 2009).
Anti-Inflammatory Effects
Cell Surface Mucins
MUC1 has been suggested to play an anti-inflammatory role during
Pseudomonas aeruginosa respiratory infection, asMuc1−/− mice are
more susceptible to infection in a repetitive Pseudomonas infection
model (Table 2) (Lu et al., 2006). Colonisation is associated with
stronger immune responses (Lu et al., 2006), including increases in
tumor necrosis factor alpha (TNFa) and interleukin (IL)-8 in
bronchoalveolar lavage fluids compared with wild-type (WT)
mice (Umehara et al., 2012). Deficiency in Muc1 also predisposed
mice to infection with the gastrointestinal pathogen C. jejuni and
the gastric pathogen H. pylori (Table 2) (McAuley et al., 2007;
McGuckin et al., 2007). In cases of acute infection with C. jejuni,
Muc1−/− mice rapidly develop systemic infection, suggesting that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Muc1 limits this pathogen penetration through the mucosal barrier,
and Muc1 also modulates the epithelial cell response to a bacterial
genotoxin (McAuley et al., 2007). Similarly,Muc1−/−mice showed a
five times higher density of infection (increased colony forming
units) as early as 1 day after oral gavage with H. pylori compared
with WT mice (Sheng et al., 2020). Furthermore, more severe
chronic inflammation was observed inMuc1−/−mice after exposure
to H. pylori, demonstrating that this cell surface mucin can
modulate the inflammatory response to chronic infection
(McGuckin et al., 2007). Muc1−/− mice also develop severe
pathology in response to influenza A virus infection (Table 2)
(McAuley et al., 2017). In the absence of Muc1, the kinetics of the
infection are altered. Animals reach maximal influenza A viral load
earlier than WT mice and also display enhanced inflammatory
response to the infection (McAuley et al., 2017). Similarly, a higher
viral titre was detected in Muc1−/− mice compared to WT mice in
response to intranasal inoculation of murine adenovirus type 1
(MAV-1) (McAuley et al., 2017), suggesting that the Muc1 may
protect against MAV-1 respiratory infections (Nguyen et al., 2011).
MUC1 has been shown to have an anti-inflammatory response
during respiratory syncytial viral infection in vitro (Li et al., 2010).

Muc3 (the murine orthologue of human MUC17) and Muc13
are two of the most abundant cell surface mucins in the normal
intestinal tract. Interestingly, Muc3 may play a role in wound
healing in acute chemical-induced [dextran sodium sulphate
(DSS)] colitis: intrarectal administration of recombinant
cysteine-rich domains of Muc3 accelerated cell migration and
reduced apoptosis in the distal colon (Ho et al., 2006).
Corroborating this anti-inflammatory effect, we have
demonstrated that Muc13-deficient mice have increased
susceptibility to DSS-induced colitis, increased local
inflammatory cytokine production, and increased epithelial cell
apoptosis (Sheng et al., 2011). Overall, there is strong evidence
supporting a critical role of cell surface mucins in protection
against inflammation by modulating growth and inhibiting
apoptosis of epithelial cells during wounding and repair.
TABLE 2 | Mucin mouse models for study infection.

Tissue Animal
model

Pathogens Cell type Susceptibility to
infection

Inflammatory
response

References

Stomach Muc1−/− Helicobacter pylori Gastric epithelial cells, macrophage Increased Increased McGuckin et al.
(2011)

Muc5ac−/− Helicobacter pylori Gastric epithelial cells Increased Increased Muthupalani et al.
(2019)

Intestine Muc1−/− Campylobacter jejuni Intestinal epithelial cells Increased Increased McAuley et al. (2007)
Muc2−/− Escherichia coli Intestinal epithelial cells Increased Decreased Bergstrom et al.

(2010)
Muc2−/− S.Tm Epithelial cells Increased Increased Zarepour et al.

(2013)
Muc2−/− T. muris Intestinal epithelial cells Increased Increased Hasnain et al. (2010)

Lung Muc1−/− Pseudomonas aeruginosa
(Pa)

Tracheal epithelial cells, alveolar
macrophages

Decreased colonisation Increased Lu et al. (2006)

Muc1−/− Pa (4xrepeated) Lung epithelial cells Increased Increased Umehara et al.
(2012)

Muc1−/− Influenza A virus Airway epithelial cells Increased Increased McAuley et al. (2017)
Muc1−/− Murine adenovirus type I Airway epithelial cells Increased ND Nguyen et al. (2011)

Muc5ac−/− Respiratory syncytial virus Airway epithelial cells Increased Increased Cho et al. (2021)
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Gel-Forming Mucins
Transgenic animals lacking secreted gel-forming mucins have
also demonstrated their anti-inflammatory effects. Muc5ac−/−

mice have higher H. pylori colonisation densities compared with
WT animals at 16 weeks post-infection, along with a significant
reduction in gastric Tnfa and Il-17a (Table 2) (Muthupalani
et al., 2019). Furthermore,H. pylori-infectedMuc5ac−/−mice had
significantly lowered gastric corpus mucous metaplasia at
16 weeks post-infection (wpi) and 32 wpi compared with WT
mice. Our work has shown that de novo intestinal goblet cell
expression of Muc5ac in the intestine is critical in the protection
against Trichuris nematode. Muc5ac but not Muc2 reduced
nematode ATP levels and was responsible for the expulsion of
the nematode. These studies demonstrate a protective role for
Muc5ac in inhibiting pathogen-associated inflammatory
pathology. Significantly greater inflammation and fibrosis by
bleomycin were developed in Muc5ac−/− lungs compared to
WT animals (Cho et al., 2021). Airway respiratory syncytial
viral (RSV) replication was higher in Muc5ac−/− than in
Muc5ac+/+ during early infection. RSV-caused pulmonary
epithelial death, bronchial smooth muscle thickening, and
syncytia formation were more severe in Muc5ac−/− compared
to WT mice (Cho et al., 2021).

Muc5b, but not Muc5ac, was shown to be critical in trapping
and clearing microbial pathogens through mucociliary clearance
in the lung (Roy et al., 2014; Hancock et al., 2018). Muc5b−/−

mice have a significantly dysfunctional inflammatory response,
with an increase in neutrophils and eosinophils but an absence of
lymphocytes. There was an increased bacterial accumulation,
including Staphylococcus aureus, in the lung of Muc5b−/−, which,
combined with the lack of lymphocytes, leads to increased
mortality (Roy et al., 2014).

MUC2/Muc2 is the main secreted intestinal mucin expressed
and secreted by all enteric goblet cells. While acute infection
leads to goblet cell hyperplasia and increased Muc2, chronic
inflammation in the intestine is associated with goblet cell
depletion. Muc2−/− mice are more susceptible to Salmonella
typhimurium infection, with increased mortality rates, higher
pathogen burdens, and developing significantly higher barrier
disruption compared with WT animals (Table 2) (Zarepour
et al., 2013). Similarly, Muc2−/− mice show rapid loss of weight
and up to 90% higher mortality in response to Citrobacter
rodentium, a murine attaching–effacing (A/E) pathogen related
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
to diarrheagenic A/E. coli (Table 2) (Bergstrom et al., 2010). We
have shown that expulsion of the Trichuris worms from the
intestine was significantly delayed in Muc2-deficient mice
compared with WT mice (Table 2) (Hasnain et al., 2010).
CONCLUSION

In this review, we highlight and provide evidence for the mucins
at the mucosal surfaces as a key part of our innate immunity.
Mucins and in particular the O-glycosylation is thought to
dictate the composition of the microbiota, provide essential
physical and chemical scaffolds within the mucosal barrier, and
are closely interlinked with the adaptive immune system.
However, the intricate details of how this is regulated is still
unknown. Despite the plethora of literature highlighting the
direct and indirect role of mucins in protecting against
infectious disease, there is a lack of appreciation and focus on
the mucus barrier as a highly responsive arm of the immune
system. When considering innate immunity, microbial
composition, and adaptive immunity, there should be a push
in the mucosal immunology field to develop a multidimensional
approach that recognises the mucus barrier (and mucins) as
an integral part of the immune response. This will help us
address the fundamental gaps in our knowledge, including
understanding the mucin structure; its function in health,
disease, and during infection; the crosstalk between mucin and
microbes; identifying factors that drive changes in mucin O-
glycosylation; and the rheological properties of the mucus gel.
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