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The deadly malaria parasite, Plasmodium falciparum, contains a unique subcellular
organelle termed the apicoplast, which is a clinically-proven antimalarial drug target.
The apicoplast is a plastid with essential metabolic functions that evolved via secondary
endosymbiosis. As an ancient endosymbiont, the apicoplast retained its own genome and
it must be inherited by daughter cells during cell division. During the asexual replication of
P. falciparum inside human red blood cells, both the parasite, and the apicoplast inside it,
undergo massive morphological changes, including DNA replication and division. The
apicoplast is an integral part of the cell and thus its development is tightly synchronized
with the cell cycle. At the same time, certain aspects of its dynamics are independent of
nuclear division, representing a degree of autonomy in organelle biogenesis. Here, we
review the different aspects of organelle dynamics during P. falciparum intraerythrocytic
replication, summarize our current understanding of these processes, and describe the
many open questions in this area of parasite basic cell biology.
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INTRODUCTION

The Study of Fundamental Cell Biology of Malaria Parasites
Malaria is a worldwide leading cause of morbidity and mortality, infecting predominantly people in
tropical and sub-tropical regions. In 2020, WHO estimated 250 million malaria cases and reported
about 627000 deaths preponderantly in sub-Saharan African countries (World Health
Organization, 2021). Malaria is caused by eukaryotic parasites of the genus Plasmodium, which
are transmitted by female Anophelesmosquitoes (Garrido-Cardenas et al., 2019). It is primarily one
species, P. falciparum, that is responsible for most of the mortality (World Health Organization,
2021). As yet, there are no effective vaccines and the parasite gained resistance to all clinically
available antimalarial drugs, jeopardizing the progress that has been made in the last decade
(Dondorp et al., 2009; Phillips et al., 2017; World Health Organization, 2019). Since the genome
sequencing of P. falciparum in 2002 (Gardner et al., 2002), various surveys on population genetics,
genomics, transcriptomics and proteomics brought into view the potential of targeting parasite-
specific molecular pathways in eliminating malaria (Winzeler, 2008; Su et al., 2019). These strategies
rely heavily on advanced techniques in cell biology and molecular genetics including various
conditional-knockdown methods and the application of CRISPR/Cas9 genome engineering
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(Ghorbal et al., 2014; Wagner et al., 2014) [extensively reviewed
in (Kudyba et al., 2021)]. Furthermore, a recently developed
microscopy technique named ultrastructure expansion
microscopy, allows the visualization of preserved expanded
organelles with a 4-fold isotropic size increase, giving the
resolution needed to monitor organelle dynamics of the
microscopic malaria parasite during its replication (Bertiaux
et al., 2021; Liffner and Absalon, 2021; Tomasina et al., 2021).
Additional advanced microscopy techniques such as lattice light-
sheet microscopy (LLSM) provide high-resolution in time and
space that was used to determine the kinetics of parasite invasion
into the erythrocyte and revealed detailed events in membrane
remodeling (Geoghegan et al., 2021). Finally, some of the most
advanced techniques in electron microscopy, for example
Focused Ion Beam-Scanning Electron Microscopy (FIB-SEM),
are used to gain the ultrastructure of nuclear division and
subcellular organelle organization (Medeiros et al., 2012;
Rudlaff et al., 2020). In this mini review, we describe P.
falciparum mode of division in erythrocytes with a focus on a
specialized plastid organelle named the apicoplast. This parasite-
specific organelle, which is clinically targeted by various
antimalarials, is essential for parasite viability due to its
metabolic functions. Here we describe various open questions
related to apicoplast biogenesis and discuss future research
directions to examine the autonomous nature of apicoplast
growth, fission, and segregation during Plasmodium cell division.

Plasmodium’s Cell Cycle and Division
The asexual replication of P. falciparum inside the red blood cell
(RBC) begins with invasion by a single parasite into the host RBC
and culminates 48 hours later in the egress of roughly 30 new
daughter parasites (Garg et al., 2015). During this life cycle, the
parasite grows and at a certain point begins a unique form of cell
division called schizogony (Striepen et al., 2007; Francia and
Striepen, 2014; Gubbels et al., 2021) (Figure 1). In this process,
the parasite replicates its DNA and then follows with nuclear
division inside an intact nuclear envelope to produce two nuclei
(Absalon, 2020). This process is repeated multiple times
asynchronously and produces a multi-nucleated cell (Gerald
et al., 2011). Schizogony concludes in a single cytokinesis
event, during which the multi-nucleated cell segments into ~30
daughter cells called merozoites that will egress and invade new
host RBCs. This particular type of segmentation involves a
membranous structure called the inner membrane complex
(IMC) (Dearnley et al., 2012; Harding and Meissner, 2014).
The IMC is a double lipid bilayer formed from a patchwork of
flattened membrane vesicles that, together with associated
proteins, lies closely underneath the parasite plasma membrane
(Morrissette and Sibley, 2002; Kono et al., 2013). Beneath the
IMC lies a network of alveolins—intermediate filament-like
proteins that provide support to the IMC, and are common to
all protists in the infrakingdom Alveolata, to which Plasmodium
and other apicomplexan parasites belong (Khater et al., 2004;
Gould et al., 2008; Al-Khattaf et al., 2014; Tremp et al., 2014).
The IMC is involved in many essential parasite-specific functions
including host cell invasion by anchoring many of the
glideosome proteins required for actinomyosin-based gliding
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
motility (Bergman et al., 2003; Keeley and Soldati, 2004; Baum
et al., 2006; Frénal et al., 2010). Studies in the related parasite
Toxoplasma gondii showed that the IMC defines the shape and
structural stability of the parasite and is essential for parasite cell
division (Mann and Beckers, 2001; Hu et al., 2002; Beck et al.,
2010). In P. falciparum, it was shown that the IMC is associated
with proteins inside the parasite and dictates the shape and
rigidity of nascent merozoites, however, its biogenesis and
mechanisms of action remain poorly understood (Absalon
et al., 2016). Notably, it remains elusive how asynchronous
nuclear replication coincides with a single event of
segmentation where sub-cellular content must be equally
distributed within daughter cells. The partitioning and
distribution of organelles such as the endoplasmic reticulum,
the Golgi apparatus and parasite-specific secretory organelles, are
coordinated with segmentation (van Dooren et al., 2005). The
fact that all these membranous compartments can be synthesized
de novo, suggests some flexibility in their distribution to daughter
cells which, in theory, can replenish the secretory pathway using
inherited material as well as de novo synthesis. The case is
different however for the parasite’s two endosymbiotic
organelles, the mitochondrion and the apicoplast, which carry
their own ancestral genomes. Unlike many other eukaryotic cells,
the parasite carries only a single copy of each organelle that must
be inherited accurately during cell division. As will be discussed
below, the apicoplast organelle undergoes drastic morphological
changes culminating in its division and sorting, while being
coordinated with the different phases of schizogony.

The Apicoplast, an Ancient Endosymbiont
Plasmodium falciparum is a remarkably complex unicellular
parasite that, in addition to a mitochondrion, contains a
second endosymbiont known as the apicoplast (McFadden
et al., 1996; Köhler et al., 1997). This unique organelle evolved
via a two-step endosymbiosis (Köhler et al., 1997). In the
primary endosymbiotic event, a cyanobacterium was
incorporated into a eukaryotic cell to form the modern
chloroplast. During the second endosymbiotic event, a
photosynthetic red alga was taken up by a protist, which led to
the formation of a secondary plastid (van Dooren and Striepen,
2013). The subsequent evolution of the apicoplast resulted in the
loss of all photosynthetic abilities, but retained important
prokaryotic metabolic pathways including the synthesis of
isoprenoids, fatty acids, iron-sulfur clusters, and heme (Ralph
et al., 2004; Yeh and DeRisi, 2011; van Dooren and Striepen,
2013; Swift et al., 2021). In sharp contrast to its human host, the
Plasmodium apicoplast shares molecular features with
prokaryotes, plants and parasites, and therefore encompasses
multiple parasite-specific drug targets (Fichera and Roos, 1997;
Dahl and Rosenthal, 2007; Amberg-Johnson et al., 2017;
Florentin et al., 2020). Despite its central cellular functions and
clinical significance, little is known about the molecular
mechanisms governing apicoplast biogenesis and development
throughout the complex parasite’s cell cycle. The Plasmodium
cell contains a single apicoplast organelle in all the different
stages, and fusion and fission events that are common for other
endosymbionts were never observed. However, the apicoplast
April 2022 | Volume 12 | Article 864819
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FIGURE 1 | Apicoplast dynamics during intraerythrocytic development of Plasmodium falciparum. (A) Schematic representation of apicoplast dynamics during
intraerythrocytic asexual replication of P. falciparum. RBC, red blood cell; PV, parasitophorous vacuole; IMC, inner membrane complex, PM, plasma membrane
Created with BioRender.com. (B) Fluorescent microcopy of live apicoplast-tagged parasites (ACP-DsRed) co-labelled with a nuclear Hoechst dye. Apicoplast
morphology was categorized into four groups based on developmental stage: (i) rounded (ii) elongated (iii) branched and (iv) divided. Image taken from van Dooren
et al. (2005). (C). Apicoplast morphologies throughout segmentation. By mid-segmentation, apicoplasts have divided to form one organelle for each nascent
daughter cell. Ultra-resolution images were obtained using FIB-SEM, taken from Rudlaff et al. (2020).
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undergoes striking morphological changes during the parasite’s
intraerythrocytic growth, and develops from a small globular
organelle into an elongated and branched structure (Figure 1).
Moreover, the apicoplast cannot be synthesized de novo, and
must be inherited. Therefore, the precise division of a single
apicoplast into multiple organelles and their accurate segregation
into the merozoites daughter cells are required to ensure that each
nascent parasite contains a single complete apicoplast (Figure 1).
APICOPLAST ELONGATION DURING
NUCLEAR DIVISION

Right after invasion into the RBC in the early ring stages, the
apicoplast is found as a single, small globular shape (McFadden
et al., 1996; Lim and McFadden, 2010). It remains this way
during most of the parasite’s intraerythrocytic development
including the trophozoite stages, up until schizogony begins.
Only after the onset of the asynchronous nuclear divisions, the
apicoplast begins to elongate (van Dooren et al., 2005). During
the first rounds of nuclear replication and division (2-5 nuclei),
the apicoplast organelle begins to elongate at a fast speed. It is
estimated that the replication of the organelle genome begins
more or less during this phase of early schizogony, but clear
evidence is still missing (Williamson et al., 2002). It is clear,
however, that the replication of the apicoplast genome is key to
organelle inheritance and involves prokaryotic machinery (as
demonstrated by its antibiotic-sensitivity (Milton and Nelson,
2016)) as well as eukaryotic components such as autophagy
related protein 8 (ATG8) (Walczak et al., 2018). As was
demonstrated by fluorescence in situ hybridization, ATG8
mutants fail to pass on apicoplast genome to their daughter
cells, representing a unique, parasite-specific adaptation to
conserved eukaryotic factors (Walczak et al., 2018). As seen in
Figure 1, while schizogony proceeds (5-10 nuclei) the organelle
branches out to form an intricate structure, spanning throughout
the cell volume (van Dooren et al., 2005). The molecular
mechanisms underlying these drastic morphological changes
are completely unknown, and to date, not a single gene was
shown to be directly involved in this process. Interestingly, cdc2-
related protein kinase 4 (CRK4), the cell-cycle regulator that
controls the decision to undergo the first round of nuclear DNA
replication, does not regulate organelle development (Ganter
et al., 2017). In CRK4 mutants the apicoplast elongates and
branches indistinctively from wild type parasites, despite the fact
that nuclear DNA replication is completely blocked (Ganter
et al., 2017). This intriguing observation suggests that although
apicoplast development is synced with schizogony, it is not
dependent on nuclear replication. Alternatively, it may be that
apicoplast and nuclear division are coupled in wildtype parasites
but decoupled upon CRK4 knockdown. Addit ional
experimentation is required to distinguish between these
possibilities, and to test whether apicoplast elongation and
branching is regulated by an autonomous, organelle-specific
mechanism that does not rely on known cell cycle checkpoints.
What is that mechanism, and how is overall cellular synchrony
maintained remains to be investigated.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
APICOPLAST DIVISION

The apicoplast elongates and branches, and reaches its most
intricate structure during early segmentation (Rudlaff et al.,
2020). As described above, segmentation is the Plasmodium
equivalence of cytokinesis, and in this process the
multinucleated schizont is separated into multiple daughter
cells called merozoites. It is interesting to note that while the
merozoites have already started individualization, the apicoplast
still exists as a single organelle. Recent ultra-resolution studies
revealed that it is only during mid segmentation that the
apicoplast divides to produce daughter organelles (Rudlaff
et al., 2020). This organelle division (or fission) needs to
accurately result in a single apicoplast for each individual
nascent merozoite (Figure 1). Because nuclear divisions are
asynchronous and schizogony can produce varying numbers of
daughter merozoites, it is unclear how apicoplast fission is
regulated to produce the right number of organelles. It is clear
though that at the end of this process each new daughter
merozoite is equipped with a single new apicoplast organelle.
The division machinery itself is unknown. The endosymbiotic
evolution of the apicoplast suggests that this machinery may
involve prokaryotic as well as eukaryotic components that have
mostly remained elusive. The binary bacterial division involves
an ancestral machinery that is based on a small GTPase called
FtsZ that forms a contractile structure called a Z-ring at the
fission site (Barrows and Goley, 2021). Plant chloroplasts also use
an FtsZ homolog that forms a Z-ring at their inner membrane,
which then recruits additional contracting proteins to the
organelle outer membrane (TerBush et al., 2013). The outer
ring is formed by eukaryotic dynamin-like proteins, and thus, the
binary chloroplast division machinery progresses through
reciprocal communication between inside and outside protein
complexes across the two organellar membranes (Miyagishima,
2017). Despite the common origin, apicoplast division differs
from those of its bacterial and chloroplast ancestors in several
ways. First of all, it is not a binary division (i.e. a single organelle/
cell splitting into two), rather a partitioning of a very long
structure into multiple organelles, probably involving numerous
fission sites. Second, unlike bacteria and chloroplasts, fission does
not occur across one or two membranes, rather involves the
contraction of four lipid bilayers. And most importantly, the
Plasmodium genome does not encode any homologs to
components of the FtsZ division machinery, suggesting that the
apicoplast divergently evolved a distinct mode of division
(Vaishnava et al., 2005; Dooren et al., 2006; Verhoef et al., 2021).

As stated above, in plants dynamin-like proteins contract the
outer membrane and interact with the FtsZ ring in the inner
membranes to facilitate chloroplast division (Miyagishima,
2017). Dynamins are large GTPases that mediate membrane
remodeling and, similar to FtsZ, form ring-like structures in
eukaryotic systems (Jimah and Hinshaw, 2019). In mammalian
and yeast cells, dynamin-related proteins mediate mitochondrial
fission (Nottia et al., 2021). Both Plasmodium and the related
parasite Toxoplasma encode three dynamin-related genes that
seem to diverge significantly from the chloroplasts orthologs and
are more similar to the mitochondrial dynamin (Li et al., 2004;
April 2022 | Volume 12 | Article 864819
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Charneau et al., 2007; Breinich et al., 2009; Heredero-Bermejo
et al., 2019). A study in T. gondii revealed a role for a dynamin-
related protein in apicoplast division (van Dooren et al., 2009). It
remains to be investigated whether the Plasmodium orthologue
is similarly involved in apicoplast division, whether a dynamin-
ring is formed and whether other contractile rings are formed
during this elusive process.
APICOPLAST SEGREGATION INTO
DAUGHTER MEROZOITES

The segmentation of the multinucleated cell into dozens of
merozoite daughter cells involves several parasite-specific
cellular structures that control and facilitate this complicated
process. The inner membrane complex (IMC), the associated
basal complex, and the interaction of these structures with
parasite nuclei are critical for segmentation. As described
above, the IMC is a unique membranous structure with
associated proteins inside the parasite that dictates its shape
and rigidity (Beck et al., 2010; Dearnley et al., 2012). At the onset
of segmentation, a ring of IMC proteins moves from the apical to
the basal end of the nascent merozoite, leaving behind the
incorporated IMC proteins that form a cylinder-like structure
around its contents (Tran et al., 2010). At the apical end of the
merozoite, the apical ring is hypothesized to nucleate the
formation of sub-pellicular microtubules and that this
polymerization may facilitate IMC progression from the apical
to basal end (Pacheco et al., 2020). The basal complex is a group
of proteins at the posterior end of the IMC, hypothesized to
generate force to pull the IMC down the length of the daughter
cell and mediate the final abscission step of cytokinesis (Rudlaff
et al., 2019). Together, the IMC and basal complex orchestrate
daughter parasite assembly and division through critical
interactions with the parasite nuclei (Engelberg et al., 2016;
Morano and Dvorin, 2021). Not only that IMC biogenesis and
its mechanisms of action remain poorly understood; it is also
completely unclear whether and how it is involved in accurate
organelle sorting into daughter cells. Ultrastructure studies
demonstrate that the apicoplast divides only after segmentation
begins, when the IMC is roughly halfway through the cell volume
(Rudlaff et al., 2020). At the end of the IMC movement, after
daughter cells have been individualized, each one of them will
also have a single apicoplast. How are the multiple daughter
organelles sorted accurately between the nascent cells? It is
particularly intriguing because nuclear divisions are
asynchronous and can result in a different number of daughter
cells. In Toxoplasma gondii, apicoplast division was shown to be
associated with the centrosome (Striepen et al., 2000). Although
Toxoplasma centrosome differs significantly from the
Plasmodium microtubule organizing center in architecture and
organization, they might serve a similar function with respect to
apicoplast segregation. It is tempting to speculate that accurate
organelle segregation during late schizogony is mediated through
interactions between the apicoplast and the IMC. The rationale
behind this hypothesis is that in the last decade, functional
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
tethering between organelles has been described in most
cellular eukaryotic systems, underlying the physiological
significance of such interactions (Scorrano et al., 2019).
Moreover, early ultrastructural analysis suggested contact sites
between the Plasmodium ER and the apicoplast (Hopkins et al.,
1999), as well as more recent observations between these
organelles in T. gondii (Tomova et al., 2009). Similarly, contact
sites between the mitochondrion and the apicoplast were
reported (van Dooren et al., 2005), and it was suggested that
these interactions might represent a mechanism to ensure
accurate sorting of organelles (Verhoef et al., 2021). Therefore,
it may very well be that the IMC serves as a central cellular hub
that physically links the nuclei and organelles including the
apicoplast during segmentation, to ensure that every daughter
parasite receives a complete set of cellular content. This
hypothesis needs to be tested experimentally, and if proven
correct, will explain how accurate organelle sorting is achieved
despite the asynchronous nature of nuclear division. Such
physical tethering will also provide unique evidence of
functional organelle contact sites in Plasmodium.
APICOPLAST DYNAMICS IN OTHER
PLASMODIUM LIFE STAGES

Due to limited culturing and complicated experimental settings,
the study of apicoplast dynamics in P. falciparum has been
mostly focused on the parasite’s asexual replication within the
erythrocyte. A small subpopulation of the erythrocyte infecting
parasites will undergo sexual differentiation in a process called
gametocytogenesis, transforming into the infective gametocyte
stages (Ngotho et al., 2019). The metabolic function of the
apicoplast during this process is comparable to its roles during
the intraerythrocytic asexual replication (Wiley et al., 2015), and
the morphological changes that it undergoes were described by
live microscopy (Okamoto et al., 2009). A detailed description
and the molecular mechanisms underlying the timing and
morphological transitions of apicoplast biogenesis and fission
events are yet to be unveiled.

Most importantly, the complete parasite life cycle also includes
massive replication in human hepatocytes as well as sexual
development within the mosquito vector. The studies of
organelle dynamics during these stages rely mostly on murine
models, involving related Plasmodium species such as P. berghei
(Stanway et al., 2009). The imaging of P. berghei-infecting mouse
hepatocytes revealed remarkably complex organelle morphologies
(Stanway et al., 2011). In these stages, a single infecting sporozoite
divides and develops into thousands of daughter merozoites inside
the hepatocyte, and the rapid growth and fission of the apicoplast
during this process is astonishing (Stanway et al., 2011). These
processes are reminiscent of the morphological changes that
the apicoplast undergoes inside the erythrocyte but on a much
larger scale, and are even less understood. Similarly, very little
data have been gathered concerning apicoplast development
during mosquito stages, which are characterized by additional
metabolic requirements from the organelle (van Schaijk et al.,
April 2022 | Volume 12 | Article 864819
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2013; Korbmacher et al., 2021). The questions remain whether
similar processes occur during the apicoplast liver and
mosquito development in P. falciparum, and what are the
molecular mechanisms that control and execute these
subcellular developments.
CONCLUSIONS AND OPEN QUESTIONS

• The autonomous nature of apicoplast development during
nuclear replication: Although apicoplast elongation happens
together with nuclear replication, these two processes seem to
occur independently of each other, as suggested by the normal
apicoplast development documented in cell cycle mutants
(Ganter et al., 2017), and the normal asexual replication
observed in apicoplast-less parasites supplemented with
essential metabolites (Yeh and DeRisi, 2011; Florentin et al.,
2020). How is organelle biogenesis coordinated with nuclear
replication and division? Is there an apicoplast-specific
mechanism in the organelle itself that times and controls
these morphological changes? If so, what is it? What other
regulatory mechanisms are in place to ensure that nuclear
replication and organelle development are coordinated?

• Obscure aspects of apicoplast fission: Despite the common
origin, apicoplast division differs from those of bacteria and
chloroplasts because it is not a binary division, it occurs across
four lipid bilayers, and it does not involve a homolog of the
FtsZ division machinery (Vaishnava et al., 2005; Dooren et al.,
2006; Verhoef et al., 2021). All of these facts suggest that the
apicoplast divergently evolved a distinct mode of division,
which might represent an attractive target for drug
development. What cellular components mediate this
process? Are dynamin-related-proteins involved in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Plasmodium apicoplast fission, similar to those that mediate
this process in Toxoplasma? If so, on which of the four
membranes do they act, and what other organellar
components contract the membranes from within?

• Apicoplast-cytoskeleton contact sites during segmentation:
After the apicoplast divides, the resulting multiple organelles
are sorted accurately between the daughter merozoite cells. It
is unclear how this exact sorting is mediated, particularly in
light of the asynchronous nature of nuclear divisions that
result in varying numbers of daughter cells. One intriguing
hypothesis is that physical contact sites between the
apicoplast and other cellular components guarantee precise
division. The inner membrane complex (IMC) is a key
mediator of segmentation, and thus might serve as a central
tethering point for cellular content, including the apicoplast.
Experimental evidence is still missing, and thus the process of
accurate organelle sorting at the final stage of the Plasmodium
cell cycle remains enigmatic.
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