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Gene Expression
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Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany

HIF1a is an important transcription factor regulating not only cellular responses to
hypoxia, but also anti-infective defense responses. We recently showed that HIF1a
hampers replication of the obligate intracellular pathogen Coxiella burnetii which causes
the zoonotic disease Q fever. Prior to development of chronic Q fever, it is assumed that
the bacteria enter a persistent state. As HIF1a and/or hypoxia might be involved in the
induction of C. burnetii persistence, we analyzed the role of HIF1a and hypoxia in the
interaction of macrophages with C. burnetii to understand how the bacteria manipulate
HIF1a stability and activity. We demonstrate that a C. burnetii-infection initially induces
HIF1a stabilization, which decreases then over the course of an infection. This reduction
depends on bacterial viability and a functional type IV secretion system (T4SS). While
neither the responsible T4SS effector protein(s) nor the molecular mechanism leading to
this partial HIF1a destabilization have been identified, our results demonstrate that
C. burnetii influences the expression of HIF1a target genes in multiple ways. Therefore,
a C. burnetii infection promotes HIF1a-mediated upregulation of several metabolic target
genes; affects apoptosis-regulators towards a more pro-apoptotic signature; and under
hypoxic conditions, shifts the ratio of the inflammatory genes analyzed towards a pro-
inflammatory profile. Taken together, C. burnetii modulates HIF1a in a still elusive manner
and alters the expression of multiple HIF1a target genes.
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INTRODUCTION

Hypoxia-inducible factor (HIF)-1 was first recognized as an essential regulator of cellular responses
to limited oxygen availability (Majmundar et al., 2010). Recent research has shown that HIF1
activity is also critical for shifting cellular metabolism, regulating immune cell activity, and
mounting anti-infective defense responses (Cramer et al., 2003; Knight and Stanley, 2019). HIF1
is a heterodimer, consisting of HIF1a and HIF1b (Wang et al., 1995). The activity of the complex is
controlled by proteasomal degradation of the a-subunit. Thus, prolyl hydroxylases (PHDs)
hydroxylate HIF1a, which mediates binding to the von Hippel-Lindau (VHL) E3 ubiquitin ligase
and leads to proteasomal degradation of HIF1a (Maxwell et al., 1999; Ohh et al., 2000; Jaakkola
et al., 2001). Importantly, PHDs require oxygen, Fe2+ and 2-oxoglutarate for HIF1a hydroxylation
gy | www.frontiersin.org June 2022 | Volume 12 | Article 8676891

https://www.frontiersin.org/articles/10.3389/fcimb.2022.867689/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.867689/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.867689/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:anja.luehrmann@uk-erlangen.de
https://doi.org/10.3389/fcimb.2022.867689
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.867689
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.867689&domain=pdf&date_stamp=2022-06-09


Hayek et al. C. burnetii Modulates HIF1a
[reviewed in: (Greer et al., 2012; Hayek et al., 2021)]. Therefore,
in the absence of oxygen, its co-factors or co-substrates, HIF1a is
stabilized. However, HIF1a stabilization can also occur under
normoxic conditions (in the presence of oxygen) in response to
increased levels of the TCA cycle intermediates succinate or
fumarate, or in the presence of nitric oxide (NO) (Hewitson et al.,
2007; Tannahill et al., 2013; Mills et al., 2016). In addition,
bacterial, viral, fungal, and parasitic infections might also induce
HIF1a stabilization (Devraj et al., 2017; Knight and Stanley,
2019). Once the heterodimer is formed, it attaches to the
promoter region of genes containing the hypoxia response
element (HRE) and induces their transcription. In addition,
HIF1 interacts with other signaling pathways (including Notch,
Wnt and Myc) in an HRE-independent manner (Koshiji et al.,
2004; Gustafsson et al., 2005; Kaidi et al., 2007; Semenza, 2014;
Strowitzki et al., 2019). Thereby, HIF1 regulates transcription of
genes involved in metabolic reprogramming, immune responses,
and anti-infectious activity (Obach et al., 2004; Kelly and O'Neill,
2015; Devraj et al., 2017).

Hypoxia, a state of insufficient oxygen availability, impairs
several important antimicrobial defense mechanisms. To control
bacterial infections under hypoxia, myeloid cells induce the
production of anti-microbial peptides and pro-inflammatory
cytokines, deplete essential metabolites, and modulate their
phagocytic capacity and phagosome maturation (Hayek et al.,
2021). Under these conditions, some bacteria are controlled
under hypoxia and/or HIF1a, while other pathogens survive or
even replicate.

We recently showed that in hypoxic murine macrophages,
HIF1a or HIF1a -mediated signaling impedes C. burnetii
replication (Hayek et al., 2019). This obligate intracellular
bacterium is a zoonotic pathogen. Its primary reservoir are
domestic ruminants such as cattle, sheep and goats ( Maurin
and Raoult, 1999). Although infected ruminants are mainly
asymptomatic, in pregnant animals the infection might lead to
abortion, premature delivery or stillbirth. Infected animals shed
the pathogen through birthing products, feces or milk which are
the main source for human infection (Van den Brom et al.,
2015). Although often asymptomatic, Q fever may manifest in
humans as an acute disease (mainly as a self-limited febrile
illness, pneumonia, or hepatitis) or as a chronic disease (mainly
endocarditis). Importantly, chronic Q fever develops several
months or years after the primary infection (Anderson et al.,
2013). A short-term treatment with doxycycline is still
considered the mainstay of antibiotic therapy of acute Q fever,
whereas chronic Q fever patients have to be treated with
doxycycline in combination with hydroxyl chloroquine for at
least 18 months. Thus, a more efficient therapy to treat chronic Q
fever has to be developed. In addition, it is crucial to increase our
knowledge of chronic Q fever development, especially since it
develops months or years after the primary infection, during
which the patient does not show any symptoms, suggesting a
prolonged state of bacterial persistence (Harris et al., 2000;
Sukocheva et al., 2016). Our previous results suggest that in
macrophages, HIF1a is required for impeding C. burnetii
replication by impairing STAT3 activation, which results in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
reduced levels of the TCA intermediate citrate (Hayek et al.,
2019). Importantly, bacterial viability was maintained allowing
bacterial persistence. Thus, HIF1a might play an important role
in the induction of C. burnetii persistence, and consequently, the
development of chronic Q fever. Therefore, we aim to analyze the
roles of HIF1a and hypoxia for the interaction of macrophages
with C. burnetii in more detail.
MATERIALS AND METHODS

Reagents and Cell Lines
Bone marrow derived macrophages from C57BL/6 “J”male mice
(Charles River; Strain Code: 027) were prepared as described
(Hayek et al., 2019). Briefly, bone marrow cells were extracted
from femur and tibia of at least 6 weeks old mice and propagated
in sterile Teflon bags (Angst+Pfister) containing DMEM +
GlutaMax (Thermo Fisher), 10% Fetal Calf Serum (FCS)
(Biochrom), 5% Horse Serum (Cell Concepts), 1% MEM Non-
Essential Amino Acids Solution (Life Technologies), 0.5%
HEPES (AppliChem) and 20% supernatant of L929 cells for 7-
10 days at 37°C, 10% CO2 and 21% O2. Macrophages were
cultured for infection experiments in CMoAB medium,
consisting of RPMI 1640 medium (Thermo Fisher)
supplemented with 10% FCS, 1% HEPES and 0.5% b-
mercaptoethanol (Sigma Aldrich). Murine macrophages were
seeded and left to adhere for 1 to 2 h at 37°C, 5% CO2, 21% O2

(normoxia) prior to infection.

C. burnetii Cultivation
All C. burnetii strains used in this study were inoculated at a
concentration of 1 x 106 C. burnetii/ml in ACCM-2 (Sunrise
Science Products, Cat#4700-300) medium and cultivated for 5
days at 37°C, 5% CO2, and 2.5% O2. The C. burnetii Nine Mile
phase II (NMII) clone 4 (RSA439) served as wild type (wt) strain
in this study. When growing C. burnetii DdotA (Schäfer et al.,
2020) or the DdotA C. burnetii transposon mutant (kindly
provided by Matteo Bonazzi (Martinez et al., 2014)), 3 mg/ml
chloramphenicol was added to the axenic medium. C. burnetii
NMII was heat-killed (Hk wt) at 70°C for 30 min under shaking
at 500 rpm.

E. coli Cultivation
E. coli DH5a were plated on a Luria broth (LB) agar plate and
placed overnight at 37°C. A single colony was picked to inoculate
3 ml LB medium, which was left to rotate for 5 h at 37°C. Then,
50 µl of the liquid culture were transferred into 3 ml of fresh LB
medium and rotated overnight at 37°C.

Infection
To adjust C. burnetii infection concentrations, the optical density
at OD600 was measured, with an OD600 of 1 equaling 1 x 109 C.
burnetii/ml. To adjust E. coli infection concentrations, the optical
density at OD600 was measured, where an OD600 of 1 equals 8 x
108 E. coli/ml. Unless otherwise mentioned, macrophages were
infected with C. burnetii or E. coli at an MOI (multiplicity of
June 2022 | Volume 12 | Article 867689
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infection) of 10. After macrophage seeding, the cells were
infected with the bacteria and placed under normoxia or 0.5%
O2 (hypoxia) for 4 h at 37°C, 5% CO2. At the 4h time point, the
cells were either harvested or the medium was discarded and
replaced with fresh CMoAB for the later time points.

Treatment With LPS
The concentration of E. coli LPS (Sigma, L4391) was adjusted in
CMoAB at 100 ng/ml. After macrophage seeding, the cells were
treated with LPS and placed under normoxia or hypoxia. After 4
h, the medium was discarded and replaced with fresh CMoAB.
Samples were harvested 24 h post-infection.

Treatment With Chemicals
Chloramphenicol (Roth) was adjusted to a concentration of 25
mg/ml in CMoAB and then applied to the infected macrophages
to induce bacterial growth arrest along the course of infection.

Hypoxia
Hypoxic conditions were set to 0.5% O2 and 5% CO2 at 37°C in
an InvivO2 hypoxic chamber (Baker Ruskinn). Media and
buffers were equilibrated at least 4 h in the hypoxic chamber
before starting an experiment.

Harvesting Protein Samples
for Immunoblots
For HIF1a and actin immunoblot samples, uninfected, infected
or LPS-treated macrophages were lysed with 10 mM Tris-HCl
pH 6.8, 6.65 M Urea, 10% Glycerol, 1% SDS with freshly added 1
mM DTT and cOmplete Mini Protease Inhibitor Cocktail
(Roche, Cat#04693124001). Hypoxic samples were harvested in
the hypoxic chamber to prevent HIF1a destabilization. The
samples were mixed for 30 s with the homogenizer unit
(VWR) and corresponding pestles (VWR). Finally, 20 mL 4x
Laemmli SDS buffer was added to the samples, which were then
heated at 85°C for 8 min, shaking at 450 rpm.

Immunoblot
Proteins were separated by SDS-PAGE using 4-12% Bis-Tris
Gels (Thermo Fischer Scientific) and transferred to a PVDF
membrane (Merck Millipore). The membranes were probed with
primary antibodies directed against HIF1a (Cayman 10006421/
Biomol) or actin (Sigma-Aldrich A2066). The proteins were
visualized by using the secondary antibody a - Rabbit IgG
(H+L)-HRP (Jackson ImmunoResearch Labs, Cat#111-035-
045) and a chemiluminescence detection system (Thermo
Fisher). Densitometric analysis was performed using
ImageJ (NIH).

Immunofluorescence
The experimental steps of immunofluorescence staining were
described in detail elsewhere (Hayek et al., 2019). Briefly,
macrophages were seeded on 10 mm sterile coverslips in 24-
well plates. After infection and incubation, the cells were fixed
with 4% paraformaldehyde (PFA) and permeabilized with ice-
cold methanol. The cells were then quenched with 50 mM
NH4Cl in PBS/5% goat serum (GS) followed by incubation
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
with the primary antibody against C. burnetii NMII (Davids
Biotechnology). Alexa Fluor 594 (Jackson ImmunoResearch
Labs) was used as the secondary antibody. Finally, the slides
were mounted with ProLong Diamond containing DAPI
(Invitrogen). Immunofluorescent images were taken using the
Carl Zeiss LSM 700 Laser Scan Confocal Microscope and the
ZEN2009 software.

RNA
RNA samples were harvested with peqGOLD TriFast (Peqlab
VWR, Cat#30-2010) or the RNeasy Plus Kit (Qiagen) and
isolated according to manufacturer’s protocol. Isolated RNA
was treated with DNase and RDD buffer (QIAGEN,
Cat#79254) for 10 min at 37°C, followed by DNase
inactivation at 75°C for 5 min. The successful removal of any
DNA contamination was confirmed by PCR analysis. Next, first
strand cDNA was synthesized from the DNase-treated RNA with
SuperScript II Reverse Transcriptase (Invitrogen by Life
Technologies, Cat#18064-022) according to manufacturer’s
protocol. The resulting cDNA was diluted 5-fold (final
concentration of about 100 ng) and served as template in
qPCR using the QuantiFast SYBR Green PCR Kit (QIAGEN,
Cat#204054), along with a final concentration of 100 nM of each
primer in a final volume of 10 µL per reaction. Murine
hypoxanthine guanine phosphoribosyl transferase (mHprt1)
was the housekeeping gene. The sequence of the primer pairs
used to investigate gene expression (HIF1a, PHD1, PHD2,
PHD3, VHL, IL1b, Nos2, IL10, IL6, PKM2, LDHA, Glut1,
PDK1, Bcl2, Bax, Trp53, Becn1, Bnip3, Bnip3l, P300, FIH, and
CBP) are listed in Table 1. The expression levels of these genes
were quantified by referencing to mHPRT1 and normalizing to
the uninfected or wt-infected normoxic sample. To calculate the
fold change, the 2^-(DDCT) method was applied.

Primers
The primers used are listed in Table 1.

Statistical Analysis
Using GraphPad Prism 5, statistical analysis of the presented
data was performed. As mentioned in the individual figure
legends, a one sample t-test or an unpaired two-tailed
Student’s t test was used. The one-sample t-test was used when
comparing datasets to normalized values. A value of p < 0.05 was
considered significant.
RESULTS

C. burnetii Infection Augments Hypoxia-
Induced HIF1a Stabilization
Previous experiments suggested that C. burnetii increases the
HIF1a protein level under hypoxic conditions (Hayek et al.,
2019). As HIF1a accumulation is responsible for inhibiting C.
burnetii replication, we aimed to determine whether C. burnetii
is capable of modulating the HIF1a protein level. Thus,
we infected bone marrow derived macrophages (BMDM) with
C. burnetii at an MOI of 10 for 4 or 24 hours under normoxic
June 2022 | Volume 12 | Article 867689
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(21% O2, 5% CO2) or under reduced oxygen (0.5% O2, 5% CO2)
conditions. In the following, we refer to this reduced oxygen
condition as hypoxia. We analyzed the HIF1a protein level of the
infected cells, kept under different oxygen conditions, by
immunoblot analysis. Under normoxia, HIF1a is constantly
degraded. However, the infection with C. burnetii for 4 h
resulted in transient stabilization of HIF1a, which was almost
absent at 24 h post-infection (Figures 1A, B). Under hypoxia, we
observed HIF1a protein accumulation in uninfected cells at 4
and 24 h, which was further augmented by infection with C.
burnetii. Importantly, lipopolysaccharide (LPS) stimulation also
led to HIF1a stabilization under normoxia and, more
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
pronounced, under hypoxia (Figures 1C, D). Thus, the
C. burnetii-mediated HIF1a stabilization might be partially
due to the recognition of LPS. However, we used LPS from
E. coli. Thus, the comparison has to be taken with caution, as the
lipid A of C. burnetii LPS differs significantly from
enterobacterial lipid A and fails to signal via toll-like receptor
(TLR) 2 and 4 (Zamboni et al., 2004; Abnave et al., 2017; Beare et
al., 2018). The fact, that C. burnetii infection increased HIF1a
stabilization, prompted us to analyze the impact of bacterial load
on HIF1a stabilization. Therefore, we infected BMDM at an
MOI of 10, 50 or 100 under hypoxia and analyzed the infection
by immunofluorescence and the HIF1a protein level by
immunoblot. As shown in Figure 2A, the increased MOI led
to a higher bacterial load. Importantly, the increase in bacterial
load did not result in increased HIF1a stabilization at 4 h post-
infection (Figure 2B). However, at 24 h and 48 h post-infection,
the increasing infection dose seemed to result in higher HIF1a
protein levels (Figures 2B, C). Moreover, at an MOI of 10,
HIF1a stabilization decreases during the course of the infection.
Thus, not only the oxygen level influences HIF1a stabilization,
but also the pathogen seems to modulate this important
transcription factor. This hypothesis prompted us to
determine whether bacterial viability is required for affecting
HIF1a stabilization.

C. burnetii Curtails Infection-Induced
HIF1a Stabilization
To analyze the role of C. burnetii in HIF1a stabilization, we
infected BMDM at an MOI of 10 with either untreated C.
burnetii, heat-killed C. burnetii, C. burnetii treated with
chloramphenicol to inhibit bacterial protein synthesis or E. coli
at an MOI of 10. In normoxic BMDM, C. burnetii led to HIF1a
stabilization only at 4 h post-infection (Figure 3A). As this was
observed regardless of the viability or physiological state of the
pathogen, we assumed that this might be the reaction of the host
cell to a pathogen associated molecular pattern (PAMP). This is
in line with observations that microbial products, such as LPS,
induce HIF1a accumulation also in the presence of O2 (Blouin
et al., 2004; Werth et al., 2010). The fact that HIF1a is degraded
in infected normoxic macrophages at later time points of
infection might be due to the intracellular lifestyle of C.
burnetii, which hides in an intracellular vacuole (Pechstein
et al., 2017). Importantly, under hypoxic conditions the
infection with E. coli induced a higher HIF1a protein level at 4
and 24 h post-infection compared to the infection with viable C.
burnetii, indicating that C. burnetii might be able to restrict
HIF1a accumulation. Similarly, at 48 h post-infection, the
HIF1a protein level was increased in hypoxic BMDM infected
with heat-killed C. burnetii compared to BMDM infected with
viable C. burnetii (Figures 3A, B). We hypothesized that C.
burnetii might be able to actively curtail HIF1a accumulation
under hypoxic conditions. The observation that hypoxic BMDM
infected with chloramphenicol-treated bacteria showed an
increased HIF1a level too, suggests that bacterial protein
synthesis is important for C. burnetii-mediated restriction
of HIF1a.
TABLE 1 | Primers used.

Name Direction 5’ to 3’ sequence

HPRT1 forward TCCTCCTCAGACCGCTTTT
HPRT1 reverse CCTGGTTCATCATCGCTAATC
HIF1a forward CATCATCTCTCTGGATTTTGGCAGCG
HIF1a reverse GATGAAGGTAAAGGAGACATTGCCAGG
PHD2 forward GCGGGAAGCTGGGCAACTAC
PHD2 reverse CCATTTGGGTTATCAACGTGACGGAC
PHD3 forward GGCCGCTGTATCACCTGTATCTACTAC
PHD3 reverse CAGAAGTCTGTCAAAAATGGGCTCCAC
PHD1 forward GTAATCCGCCACTGTGCAGGG
PHD1 reverse CATCGCCGTGGGGATTGTCAAC
VHL forward GCCATCCCTCAATGTCGATGGAC
VHL reverse GACGATGTCCAGTCTCCTGTAGTTCTC
IL1b forward GTGCTGTCGGACCCATATGAGC
IL1b reverse CCCAAGGCCACAGGTATTTTGTCG
Nos2 forward GACCAGAGGACCCAGAGACAAGC
Nos2 reverse GCTTCCAGCCTGGCCAGATG
IL10 forward TCAGCAGGGGCCAGTACAGC
IL10 reverse GCAGTATGTTGTCCAGCTGGTCC
IL6 forward AGACTTCCATCCAGTTGCCTTCTTGG
IL6 reverse GTCTGTTGGGAGTGGTATCCTCTGTG
PKM2 forward GACCTGAGATCCGGACTGGACTC
PKM2 reverse GCAGATGTTCTTGTAGTCCAGCCAC
LDHA forward GGATCTCCAGCATGGCAGCC
LDHA reverse CTCTCCCCCTCTTGCTGACGG
Glut1 forward GCTGTGGGAGGAGCAGTGC
Glut1 reverse TGGATGGGATGGGCTCTCCG
PDK1 forward CCTTAGAGGGCTACGGGACAGATG
PDK1 reverse CACCAGTCGTCAGCCTCGTG
Bcl2 forward TGACTGAGTACCTGAACCGGCATC
Bcl2 reverse CCAGGCTGAGCAGGGTCTTCA
Bcl2 forward GACAACATCGCCCTGTGGATGAC
Bcl2 reverse TCAAACAGAGGTCGCATGCTGG
Bax forward GCCCCAGGATGCGTCCAC
Bax reverse GAGTCCGTGTCCACGTCAGC
Trp53 forward CTGGGCTTCCTGCAGTCTGG
Trp53 reverse ACCCACAACTGCACAGGGC
Becn1 forward CTCGCCAGGATGGTGTCTCTCG
Becn1 reverse GAGTCTCCGGCTGAGGTTCTCC
Bnip3 forward GCCCAGCATGAATCTGGACGAAG
Bnip3 reverse CTCGCCAAAGCTGTGGCTGTC
Bnip3l forward GCAGACTGGGTATCAGACTGGTCC
Bnip3l reverse GGCTCCACTCTTCCTCATGCTTAGAG
P300 forward GCTTGCGGACTGCAGTCTATCATG
P300 reverse CTGGGTGGACAGGCCCAGA
FIH forward GGGCAGCTGACCTCTAACCTGTT
FIH reverse AGGCACTCGAACTGATCCGGAG
CBP forward CACATGACACATTGTCAGGCTGGG
CBP reverse CAGGACAGTCATGTCGTGTGCAG
June 2022 | Volume 12 | Article 867689
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C. burnetii Reduces HIF1a Accumulation
in a T4SS-Dependent Manner
C. burnetii utilizes a type IV secretion system (T4SS) to inject
bacterial effector proteins into the host cell to modify host cell
pathways for the benefit of the pathogen (Lührmann et al., 2017).
Bacteria lacking a functional T4SS are unable to replicate
intracellularly, confirming that T4SS-driven modulation of host
cell pathways is essential (Beare et al., 2011; Carey et al., 2011).
Importantly, inhibition of bacterial protein synthesis by
chloramphenicol-treatment also impairs T4SS function (Pan
et al., 2008). Therefore, we asked whether the ability of C.
burnetii to reduce HIF1a protein level under hypoxic
conditions depends on the T4SS. We focused on hypoxic
conditions, as, under normoxia, HIF1a is degraded starting at
24 h post-infection regardless of the pathogen viability
(Figure 3A). Four hours of infection with the wild-type and
the T4SS mutant (DdotA) similarly augmented hypoxia-induced
HIF1a stabilization. Starting from 24 h post-infection, we
detected increased HIF1a stabilization in hypoxic BMDM
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
infected with the DdotA mutant (Figures 4A, B). Importantly,
this was not mediated by differences in replication ability, as we
did not observe any bacterial replication during the course of
infection (Figure 4C). This is in line with our previous results,
showing that C. burnetii is unable to replicate in hypoxic BMDM
(Hayek et al., 2019). Taken together, our results suggest that C.
burnetii infection results in HIF1a stabilization under hypoxia.
However, viable C. burnetii are able to control HIF1a level in a
T4SS-dependent manner.

The T4SS Is Dispensable for C. burnetii-
Induced Transcriptional Modulation of
HIF1a and PHD1
To determine how C. burnetii might be able to manipulate
HIF1a stabilization, we first analyzed the mRNA levels of
HIF1a, factors influencing HIF1a degradation and factors
important for HIF1a transcription activation by qRT-PCR.
The degradation of HIF1a is controlled by prolyl hydroxylases
(PHDs), which hydroxylate HIF1a, leading to the recruitment of
A B

C D

FIGURE 1 | C. burnetii and LPS boost HIF1a stabilization. (A, B) Murine BMDM either uninfected (mock) or infected with C. burnetii (wt) for 4 and 24 h under
normoxia (N) or hypoxia (H) were analyzed by immunoblot analysis using antibodies against HIF1a and actin as loading control. (A) One representative experiment
out of four independent experiments is shown. (B) Densitometric analysis of the HIF1a/actin ratio was performed using ImageJ. Fold changes are shown relative to
cells infected for 4 hours under (H) Mean ± SD, n = 4, one-sample t test or t test. ***p < 0.001, **p < 0.01, *p < 0.05. (C, D) Murine BMDM either untreated (mock)
or treated with LPS (100 ng/ml) for 4 and 24 h under N or H were analyzed by immunoblot analysis using antibodies against HIF1a and actin as loading control. (C)
One representative experiment out of three independent experiments is shown. (D) Densitometric analysis of the HIF1a/actin ratio was performed using ImageJ. Fold
changes are shown relative to cells treated with LPS for 4 hours under (H) Mean ± SD, n = 3, one-sample t test or t test. **p < 0.01, *p < 0.05, ns = non-significant.
June 2022 | Volume 12 | Article 867689
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the von Hippel-Lindau (VHL) E3 ubiquitin ligase, that
ubiquitinates HIF1a targeting it for proteasomal degradation
(Maxwell et al., 1999; Ohh et al., 2000; Jaakkola et al., 2001).
Other factors influence HIF1a transcriptional activity: Factor
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Inhibiting HIF (FIH) hydroxylates HIF, preventing recruitment
of p300 and CREB-binding protein (CBP) (Mahon et al., 2001),
which are important for maximal transcriptional activation of
HIF (Arany et al., 1996; Dyson and Wright, 2016; Pugh, 2016).
A

B

C

FIGURE 2 | C. burnetii intensifies HIF1a stabilization under hypoxia in a dose-dependent manner. (A) Representative immunofluorescence micrographs of murine
BMDM infected with C. burnetii for 4 and 48 h under hypoxia at MOI 10, 50 or 100. The cells were fixed, permeabilized and stained with DAPI (blue) and anti-
C. burnetii (red). N = nucleus. (B, C) BMDM infected with C. burnetii for 4, 24 and 48 h under hypoxia at MOI 10, 50 or 100 were analyzed by immunoblot using
antibodies against HIF1a and actin as loading control. Importantly, uninfected BMDMs were only cultivated for 24 h under hypoxia, as cell viability was significantly
reduced at later time points. (B) One representative immunoblot from 4 independent experiments is shown. (C) Densitometric analysis of the HIF1a/actin ratio was
performed using ImageJ. Fold changes are shown relative to cells infected with MOI of 10 for 4 hours. Mean ± SD, n=6, one-sample t-test or t-test. ***p < 0.001,
**p < 0.01, *p < 0.05, ns = p > 0.05.
June 2022 | Volume 12 | Article 867689
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A C. burnetii infection, but not LPS stimulation, led to
upregulation of HIF1a expression under hypoxia regardless of
the pathogen´s genotype (wild-type or DdotA) (Figure 5). The
expression of the PHDs was affected differently by hypoxia.
While the PHD1 expression level was slightly increased by
hypoxia, the levels of PHD2 and PHD3 were strongly
increased, with a particularly striking induction of PHD3.
These results are in line with previous publications (Appelhoff
et al., 2004; Marxsen et al., 2004). Importantly, the infection with
wild-type or DdotA C. burnetii did not alter the PHD2 and PHD3
expression level. The infection with both C. burnetii strains, but
not LPS, resulted in PHD1 upregulation under normoxic
conditions (Figure 5). The mRNA level of VHL was increased
by hypoxia, which was augmented by LPS and by infection with
wild-type or DdotA C. burnetii. While neither the oxygen level
nor the infection state influenced FIH and p300 expression, we
observed that LPS resulted in reduced expression of FIH under
normoxia and hypoxia and of p300 under normoxia (Figure 5).
In addition, CBP expression was reduced in hypoxic conditions
and under normoxia when infected with DdotA C. burnetii
(Figure 5). These data demonstrate that a C. burnetii infection
influenced HIF1a (H) and PHD1 (N) mRNA levels, regardless of
the T4SS and in a different manner than LPS. Furthermore,
under normoxia, the infection with DdotA C. burnetii, but not
with the wild-type, reduces CBP expression.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
C. burnetii Infection Supports the Switch
to Glycolysis in Macrophages
HIF1a is an important transcription factor critical for cellular
metabolism, for regulation of apoptosis and autophagy and for
immune responses (Cramer et al., 2003; Corcoran and O'Neill,
2016; Knight and Stanley, 2019). Therefore, we analyzed the role
of oxygen availability in combination with a C. burnetii infection
or with LPS stimulation as a control on HIF1a target gene
expression. First, we concentrated on metabolic genes. As shown
in Figure 6, oxygen limitation resulted in upregulation of PKM2,
LDHA, Glut1 and PDK1. These factors are involved in glucose
uptake (Glut1), generation of pyruvate (PKM2), conversion of
pyruvate to lactate (LDHA), and inhibition of the conversion of
pyruvate to acetyl-CoA (PDK1), which indirectly increases the
conversion of pyruvate to lactate. These data are in line with
previous findings showing that HIF1a is essential for the switch
to glycolysis in macrophages (Cramer et al., 2003). The infection
with wild-type and DdotA C. burnetii increases the expression of
PKM2 and LDHA in normoxic and hypoxic BMDM, and the
expression of Glut1 and PDK1 only in normoxic BMDM
(Figure 6). Importantly, treatment with LPS resulted in a
similar modulation of the expression of the metabolic genes
analyzed. There were only two exceptions: 1) the infection with
C. burnetii induced a significantly higher expression of PKM2
under hypoxia than LPS; 2) the infection with C. burnetii
A

B

FIGURE 3 | C. burnetii-mediated reduction of infection-induced HIF1a depends on bacterial viability. (A, B) Murine BMDM infected with C. burnetii (wt), heat-killed
C. burnetii (Hk), chloramphenicol-treated C. burnetii (CM, 25 µg/ml) or E. coli for 4, 24 and 48 h under normoxia (N) or hypoxia (H) were analyzed by immunoblot
using antibodies against HIF1a and actin as loading control. Importantly, E. coli infected BMDMs were only cultivated for 24 h under hypoxia, as cell viability was
significantly reduced at later time points. (A) One representative immunoblot from 4 independent experiments is shown. (B) Densitometric analysis of the HIF1a/actin
ratio was performed using ImageJ. Fold changes under hypoxia (H) are shown relative to cells infected with viable bacteria. Mean ± SD, n=4, one-sample t-test.
*p < 0.05, ns=p > 0.05.
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induced a significantly higher expression of PDK1 under
normoxia than LPS. These data suggest that an infection
partially promotes upregulation of the metabolic target genes
analyzed. How C. burnetii supports the switch to glycolysis
mechanistically is unknown. LPS might play a role in this shift
(Figure 6), which is in line with previous reports (Rodriguez-
Prados et al., 2010).

C. burnetii Infection and Hypoxia
Independently Result in a More
Pro-Apoptotic Signature
Next, we analyzed HIF1a target genes involved in regulating
apoptotic and autophagic cell death. We then analyzed the
mRNA levels of anti-apoptotic Bcl-2, pro-apoptotic Bax and
p53, which regulates ~500 target genes, thereby influencing DNA
repair, cell cycle arrest, metabolism and cell death (Aubrey et al.,
2018). While hypoxia decreased the expression of anti-apoptotic
Bcl-2, it increased the expression of Bax. The infection with wild-
type C. burnetii did not alter the transcription levels of Bcl-2 and
Bax under hypoxia. However, infection with DdotA C. burnetii
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
resulted in down-regulation of Bcl-2 and upregulation of Bax
under hypoxia. Under normoxia, the infection resulted in down-
regulation of Bcl-2 and up-regulation of Bax regardless of the
genotype of the pathogen (Figure 7). This result was unexpected,
as C. burnetii displays anti-apoptotic activity, and no influence
on Bcl-2 and Bax protein levels was determined (Lührmann and
Roy, 2007; Voth et al., 2007; Cordsmeier et al., 2019). However,
this might be due to different cell types, primary versus cell
lines, used.

Hypoxia and HIF1a regulate p53 in several ways and vice
versa (Zhang et al., 2021). We did not find an influence of
hypoxia on p53 transcription level, but the infection under
hypoxia resulted in an increased p53 expression (Figure 7).
Importantly, cells infected with the DdotA mutant showed a
significant higher expression of p53 compared to cells infected
with wild-type C. burnetii (Figure 7).

This might be due to an increased HIF1a level in cells infected
with the DdotA mutant (Figures 4A, B), but independent of LPS
signaling, as LPS resulted in downregulation of p53 expression
under normoxia and hypoxia.
A B

C

FIGURE 4 | C. burnetii reduces HIF1a levels in a T4SS-dependent manner. (A, B) Murine BMDM either uninfected (mock) or infected with C. burnetii (wt) or C.
burnetii lacking a functional T4SS (DdotA) for 4, 24 and 48 h under normoxia (N) or hypoxia (H) were analyzed by immunoblot using antibodies against HIF1a and
actin as loading control. Importantly, uninfected BMDMs were only cultivated for 24 h under hypoxia, as cell viability was significantly reduced at later time points. (A)
One representative Western blot from 4 independent experiments is shown. (B) Densitometric analysis of the HIF1a/actin ratio was performed using ImageJ. Fold
changes under hypoxia (H) are shown relative to cells infected with wt. Mean ± SD, n=4, one-sample t-test. **p < 0.01, *p < 0.05, ns=p > 0.05. (C) Representative
immunofluorescence micrographs of murine BMDM infected with C. burnetii (wt) (green) or the T4SS transposon mutant (DdotA) (green) for 4 and 48 h under
hypoxia are shown. The cells were fixed, permeabilized and stained with DAPI (blue).
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While analyzing genes involved in autophagic cell death
induction, we observed an upregulation of Beclin 1, Bnip3 and
Bnip3l by hypoxia. The infection influenced the expression level
of Beclin 1, both under normoxia and hypoxia, similarly as
did LPS.

Bnip3 expression was only upregulated by a C. burnetii
infection under normoxia, but not under hypoxia, while Bnip3l
expression was not modulated by the infection at all.
Importantly, LPS treatment resulted in significant upregulation
of Bnip3 and Bnip3l under hypoxia, demonstrating that C.
burnetii-induced expression modulation of the genes analyzed
was partially independent of LPS signaling (Figure 7). These data
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
suggest that hypoxia and the infection with C. burnetii affect the
apoptosis-regulators analyzed independently towards a more
pro-apoptotic signature.

C. burnetii Infection Induces an
Upregulation of Inflammatory Genes,
Which is Shifted Under Hypoxia Towards a
Pro-Inflammatory Signature
Next, we analyzed the role of hypoxia and/or a C. burnetii
infection on the transcription of inflammatory genes. We
analyzed the pro-inflammatory HIF1a target genes IL1b, IL6,
Nos2 and the anti-inflammatory gene IL10. In the absence of
FIGURE 5 | C. burnetii only marginally influences the expression of genes regulating HIF1a stability. BMDM were either uninfected (mock), infected with C. burnetii
(wt), the T4SS transposon mutant (DdotA), or treated with LPS (100 ng/ml) for 24 h under normoxia (N) and hypoxia (H). Using qRT-PCR, the gene expression of
murine HIF1a, PHD1, PHD2, PHD3, VHL, FIH, p300 and CBP was analyzed. The data are displayed as Mean ± SD of 2^-DDCT values (using murine HPRT1 as a
calibrator). Fold changes are shown relative to uninfected cells under N. The data shown for each of the C. burnetii (wt and DdotA) infection experiment and the LPS
treatment experiment represent 3 independent experiments with biological duplicates. One sample t test or t test, n=5-6. ***p < 0.001, **p < 0.01, *p < 0.05.
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infection, we detected an increase of IL1b and a decrease in IL10,
when comparing normoxia versus hypoxia (Figure 8), which is
in line with the observation that the HIF pathway regulates
cytokine production in multiple cell types (Malkov et al., 2021).
In contrast, the infection increased the expression of all genes
analyzed. While the expression of the pro-inflammatory genes
was increased under hypoxia compared to under normoxia, this
was the opposite for the anti-inflammatory gene IL10 (Figure 8).
Importantly, the C. burnetii infection resulted in significantly
stronger induction of IL10 under normoxia than the LPS
treatment. In contrast, the combination of hypoxia and LPS
treatment resulted in an upregulation of IL6 expression by ~9
fold, while the combination of hypoxia and C. burnetii infection
only led to a ~3 fold upregulation. However, we did not detect a
difference between BMDM infected with the wild-type or the
T4SS mutant, indicating that the effect of C. burnetii on
inflammatory HIF1a-target genes is independent of the T4SS.
Thus, our data indicates that the C. burnetii infection results in
upregulation of pro- and anti-inflammatory genes. Importantly,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
under hypoxia, the expression profile of the genes analyzed shifts
towards a pronounced pro-inflammatory signature.
DISCUSSION

While HIF1a was first identified as an essential regulator of
hypoxia (Majmundar et al., 2010), it is now clear that this
transcription factor is also activated by several human
pathogens even under normoxia (Werth et al., 2010). As
HIF1a regulates cellular metabolism, immune cell activity, and
inflammatory responses (Knight and Stanley, 2019), it is a central
player during host-pathogen interaction.

Thus, it is not surprising that several pathogens have evolved
proteins that modulate HIF1a activity (Knight and Stanley,
2019). For example, the Salmonella enterica siderophore Sal
activates HIF1 (Hartmann et al., 2008), as does BadA from
Bartonella henselae (Riess et al., 2004). In contrast, the AQ
signaling molecule from Pseudomonas aeruginosa leads to
FIGURE 6 | C. burnetii-infected macrophages reveal a shift to glycolysis. BMDM were either uninfected (mock), infected with C. burnetii (wt), the T4SS transposon
mutant (DdotA), or treated with LPS (100 ng/ml) for 24 h under normoxia (N) and hypoxia (H). Using qRT-PCR, the gene expression of murine PKM2, LDHA, Glut1,
and PDK1 was analyzed. The data are shown as Mean ± SD of 2^-DDCT values (using murine HPRT as a calibrator). Fold changes are shown relative to uninfected
cells under N. The data shown for each of the C. burnetii (wt and DdotA) infection experiments and the LPS treatment experiment represent 3 independent
experiments with biological duplicates. One sample t test or t test, n=5-6. ***p < 0.001, **p < 0.01, *p < 0.05.
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proteasomal degradation of HIF1 (Legendre et al., 2012). These
examples demonstrate that dependent on the nature and
requirements of the respective pathogen, the ability to interfere
with HIF1 is distinct.

We recently showed that HIF1a is responsible for controlling
C. burnetii infection in an in vitro infection model using primary
murine and human macrophages (Hayek et al., 2019). However,
although HIF1a was proven beneficial for limiting bacterial
replication (Hayek et al., 2021), it did not affect the cell´s
ability to clear C. burnetii (Hayek et al., 2019). This is in line
with previous observations that hypoxia and/or HIF1a induce a
state of bacterial persistence and dormancy, which might impair
bacterial clearance and allow the emergence of reoccurring or
chronic infections (Sershen et al., 2016; Hayek et al., 2019; Hayek
et al., 2021).

Here, we show that C. burnetii is able to curtail HIF1a, which
depends on bacterial viability and protein synthesis (Figures 3A,
B). The data suggests that the T4SS is involved (Figures 4A, B)
indicating that a bacterial factor is required for this activity. The
T4SS, an essential virulence factor of C. burnetii, injects over 150
effector proteins into the host cell to manipulate several host cell
pathways enabling the pathogen to survive and replicate
intracellularly (Lührmann et al., 2017). Only a few of these
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
effector proteins have been functionally characterized. They
interfere with host cell transcription, apoptosis, pyroptosis, ER
stress, autophagy, and vesicular trafficking (Cordsmeier et al.,
2019; Burette and Bonazzi, 2020b; Thomas et al., 2020; Dragan
and Voth, 2020). The effector protein(s) involved in destabilizing
HIF1a is currently unknown. The reason why increasing
infection rates, which most likely result in increased numbers
of secreted effector proteins, did not result in increased HIF1a
degradation (Figures 2B, C), is currently unknown. It might be
the balance between activation by PAMPs and dampening by
effector proteins. As we could not show the biological
consequence of the T4SS-dependent HIF1a destabilization
(Figures 5 – 8), we hypothesize that HIF1a destabilization
might be a side effect and not the primary function of a so far
unknown effector protein. Thus, an effector protein interfering
with the NF-kB signaling pathway might be involved, as NF-kB
regulates HIF1a (Rius et al., 2008). Importantly, NF-kB
modulation by the C. burnetii T4SS has been described
(Mahapatra et al., 2016) and recently the C. burnetii T4SS
effector protein NopA was identified to perturb NF-kB
activation (Burette et al., 2020a). Thus, it can be speculated
that NopA or a so far unknown effector protein might be
indirectly involved in HIF1a activation. The increased level of
FIGURE 7 | A pro-apoptotic expression signature is more prominent in C. burnetii-infected or hypoxic macrophages. BMDM were either uninfected (mock), infected
with C. burnetii (wt), the T4SS transposon mutant (DdotA), or treated with LPS (100 ng/ml) for 24 h under normoxia (N) and hypoxia (H). Using qRT-PCR, the gene
expression of murine Bcl2, Bax, Trp53, Becn1, Bnip3, and Bnip3l was analyzed. The data are depicted as Mean ± SD of 2^-DDCT values (using murine HPRT as a
calibrator). Fold changes are shown relative to uninfected cells under N. The data shown for each of the C. burnetii (wt and DdotA) infection experiments and the LPS
treatment experiment represent 3 independent experiments with biological duplicates. One sample t test or t test, n=5-6. ***p < 0.001, **p < 0.01, *p < 0.05.
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HIF1a in cells infected with the T4SS mutant (DdotA) in
comparison to cells infected with wild-type C. burnetii did not
correlate with differences in the expression levels of HIF1a
modulators (Figure 5), suggesting that a so far unknown
effector protein might not interfere with the expression of
HIF1a modulators. It might be possible that the effector
protein interferes with the enzymatic activity of the PHDs or
the availability of PHD co-factors (Siegert et al., 2015). Further
research will be necessary to determine the molecular
mechanisms leading to T4SS-dependent reduction of C.
burnetii-induced HIF1a stabilization.

Nevertheless, we did not detect a difference in the expression
of most of the HIF1a target genes analyzed in BMDM infected
with either wild-type C. burnetii or the DdotA mutant
(Figures 6 – 8), suggesting that the HIF1a protein level does
not correlate with the level of HIF1a target gene expression. This
was an unexpected finding, as correlation between HIF1a
protein level and HIF1a target gene expression has been
reported (Lee and Thorgeirsson, 2004; Lv et al., 2021).
However, those reports analyzed the role of HIF1a in cancer
or in cell lines, while we analyzed the role of HIF1a in primary
cells during infection. Infected tissue is commonly found to be
hypoxic, which triggers HIF1a stabilization (Jantsch and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
Schödel, 2015), and pathogens or their products are known to
trigger HIF1a accumulation also under normoxia. In addition,
bacterial products also activate transcription factors that might
act synergistically or antagonistically with HIF1a (Hayek et al.,
2021). Importantly, our data clearly demonstrates that the C.
burnetii infection under hypoxia leads to upregulation of the
pro-inflammatory genes IL1b , IL6 and Nos2 , and to
downregulation of the anti-inflammatory gene IL10 (Figure 8).
This is in line with reports that HIF1a is required for mounting a
pro-inflammatory response to bacterial and fungal pathogens
(Peyssonnaux et al., 2005; Tannahill et al., 2013; Mills et al., 2016;
Li et al., 2018). Especially the increased expression of Nos2 and
IL1b might be of biological consequence for the C. burnetii
infection. The homodimeric enzyme NOS2 converts L-arginine
and oxygen into L-citrulline and nitric oxide (NO) (Bogdan,
2015). The latter is important for controlling bacterial infections
(Nathan and Shiloh, 2000), including a C. burnetii infection
(Howe et al., 2002; Zamboni and Rabinovitch, 2003; Brennan
et al., 2004). IL1b is produced as an inactive pro-form, which has
to be cleaved to its active form following inflammasome
activation (Dinarello, 2018). C. burnetii avoids activation of the
inflammasome, and thus, pyroptosis (Cunha et al., 2015; Delaney
et al., 2021). However, whether C. burnetii is able to prevent IL1b
FIGURE 8 | A pro-inflammatory profile is observed through C. burnetii infection under hypoxia. BMDM were either uninfected (mock), infected with C. burnetii (wt),
the T4SS transposon mutant (DdotA), or treated with LPS (100 ng/ml) for 24 h under normoxia (N) and hypoxia (H). Using qRT-PCR, the gene expression of murine
IL1b, Nos2, IL10, and IL6 was analyzed. The data are plotted as Mean ± SD of 2^-DDCT values (using murine HPRT as a calibrator). In case of IL1b and IL10, fold
changes are shown relative to uninfected cells under N, while for Nos2 they are represented relative to uninfected cells under H. For IL6, fold changes are shown
relative to wt-infected cells or LPS-treated cells under N. The data shown for each of the C. burnetii (wt and DdotA) infection experiments and the LPS treatment
experiment represent 3 independent experiments with biological duplicates. One sample t test or t test, n=5-6. ***p < 0.001, **p < 0.01, *p < 0.05.
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secretion induced by potent inflammasome stimuli has to be
clarified, as conflicting reports exist (Cunha et al., 2015; Delaney
et al., 2021). Of note, NO was found to inhibit the NLRP3
inflammasome-dependent processing of IL1b (Mishra et al.,
2013). Thus, it will be of importance to analyze whether not
only the expression of IL1b is increased, but also its secretion. In
addition, we have to elucidate whether the increased levels of NO
in hypoxic C. burnetii infected BMDM might inhibit IL1b
processing and secretion.

In summary, our data demonstrate that C. burnetii influences
HIF1a stability and activity. As HIF1a is important for
mounting anti-bacterial responses, this might have
consequences for the host-pathogen interaction and, thus,
disease outcome.
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