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Apicomplexan parasites live in hostile environments in which they are challenged
chemically and their hosts attempt in many ways to kill them. In response, the parasites
have evolved multiple mechanisms that take advantage of these challenges to enhance
their survival. Perhaps the most impressive example is the evolutionary co-option of DNA
repair mechanisms by the parasites as a means to rapidly manipulate the structure,
antigenicity, and expression of the products of specific multigene families. The purpose of
variant proteins that mediate cytoadhesion has long been thought to be primarily the
avoidance of splenic clearance. Based upon known biology, I present an alternative
perspective in which it is survival of the oxidative environment within which Babesia spp.
parasites live that has driven integration of DNA repair, antigenic variation, and
cytoadhesion, and speculate on how genome organization affects that integration. This
perspective has ramifications for the development of parasite control strategies.
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INTRODUCTION

Many unsuccessful years of effort aimed at continuous in vitro cultivation of Plasmodium
falciparum came to fruition in 1976 at the Trager Laboratory of Rockefeller University. A key
element turned out to be the fortuitous use of a “candle jar” to provide the elevated CO2 atmosphere
assumed to be needed for growth, which also had lowered the O2 tension (Trager and Jensen, 1976).
When parasites were found to continue replicating it was realized, and later established, that P.
falciparum is a microaerophile (Scheibel et al., 1979). This lead was followed in establishing an in
vitro culture system for the related hemoparasite, Babesia bovis, which also thrives under
microaerophilic conditions (Levy and Ristic, 1980). This trait may be important in unobvious ways.

The shared trait of microaerophilia dovetails with another bit of shared biology in these two
species: infected-erythrocytes (IE) of each species cytoadhere to the capillary and post-capillary
venous endothelium of major organs [reviewed elsewhere (Allred and Al-Khedery, 2004)].
Cytoadhesion is thought to mediate avoidance of IE passage through the spleen, where
disruption of normal erythrocyte membrane characteristics and rheologic properties might result
in their removal (Berendt et al., 1994; Allred et al., 2003). However, it is likely that cytoadhesion also
provides the opportunity to complete developmental maturation and genome replication under
hypoxic conditions. While all Babesia and Plasmodium parasites studied to date benefit from
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reduced oxygen tension (Trager and Jensen, 1976; Levy and
Ristic, 1980; Vega et al., 1985; Takagi andWaki, 1987; Long et al.,
1989; Zweygarth et al., 1995; Chotivanich et al., 2001; Sunaga
et al., 2002; McCormack et al., 2019), only a few are known to
cytoadhere or sequester as blood stages. If hypoxic conditions
during development are not essential, then why does
cytoadhesion occur at all? I propose for consideration that the
answer is the intersection of DNA repair, cytoadhesion, antigenic
variation … and chance.

WHY CYTOADHESION?

Cytoadhesion in B. bovis is mediated through the VESA1 protein
(O’Connor and Allred, 2000), a heterodimeric protein with two
subunits, VESA1a and 1b (Allred et al., 1993; Allred et al., 1994;
O’Connor et al., 1997). By contrast, in P. falciparum this function
is mediated by a monomeric protein, PfEMP1 (Baruch et al.,
1995; Smith et al., 1995; Su et al., 1995). Despite the shared
function and similar ecological niches occupied by each species,
the proteins mediating this function and the genes encoding
them are unrelated. They do, however, share the trait of being
members of large multigene families that arose through
amplification and diversification of progenitor genes. Among
the Babesia sensu stricto, recognizable ves multigene families
encoding VESA1-related proteins are consistently present but
have undergone further evolutionary innovation and functional
diversification into at least two unique branches in each species
(Jackson et al., 2014). In B. bovis, this diversity is manifested by
the two major branches, ves1a and ves1b, together comprised of
over 110 members, and a third branch of three ves1g genes. Other
Babesia spp. are not known to undergo ligand-mediated
cytoadhesion. Why are these amplified gene families retained
when most species do not cytoadhere? The answer may be that
cytoadhesion has repeatedly arisen independently during
speciation in different parasite lineages. In the case of Babesia
spp. the ves gene families of different species all differ
significantly in sequence and sometimes structure, yet are
consistent in these traits within a species. Despite these
differences there is widespread synteny among Babesia spp. in
chromosomal regions inhabited by ves loci. This indicates the
presence of amplified ves loci in a common ancestor (Jackson
et al., 2014), with subsequent innovation and selection, including
evolution of ves gene sequences and structures capable of
mediating cytoadhesion in B. bovis during or after speciation.
By definition, speciation is the outcome of having arrived at
different evolutionary solutions to survival challenges. One
cannot expect all species to cytoadhere if this trait was not
present in the progenitor, and most do not. It is significant
that cytoadhesion also arose in P. falciparum and closely related
species, whereas other Plasmodium spp. do not share var genes
or cytoadhere.

How could cytoadhesion provide sufficient selection for it to
repeatedly arise independently? The evolution of cytoadhesion in
B. bovis was accompanied by formation of abnormal ridge-like
structures in the IE membrane at which VESA1 cytoadhesion
ligands are assembled (Aikawa et al., 1997; O’Connor and Allred,
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2000; Xiao et al., 2010). As most VESA1 protein isoforms are not
adhesive these ridge-like modifications would increase IE
removal by the spleen and would be deleterious if they did not
serve some beneficial purpose (O’Connor et al., 1999). Despite
ready availability of many nutrients in the plasma, to live within a
red blood cell is to survive in a harsh, difficult environment.
Intraerythrocytic parasites must contend with significant
challenges, such as surviving frequent rheologic contortions,
obtaining nutrients despite being surrounded by membranes of
host origin, and modifying those membranes to serve the
parasite’s purposes. One major challenge is simply living
within a pool of hemoglobin (Hb). The parasite first must
compete with Hb for O2 needed for its own metabolism
(Barry, 1984). As plasma pH drops within hypoxic tissues the
parasite is then inundated with free O2 given up by Hb. As the O2

diffuses in all directions the parasite lives in the line of fire.
During the brief bouts of high O2 partial pressure oxidative
damage may occur to many components, perhaps exacerbated by
hemoglobin peroxidase activity and associated radicals (Reeder,
2017; Zhang et al., 2020). It is clear that appreciable oxidative
damage occurs, based upon the accumulation of the lipid
oxidation product, malondialdehyde, in IE membranes and
fragmentation of DNA (Commins et al., 1988; Murase et al.,
1996; Esmaeilnejad et al., 2020), challenging parasite genome
integrity. Malondialdehyde is itself carcinogenic, forming DNA
base adducts (Marnett, 2000). Damage generated by reactive
oxygen species or nitrosylation from innate immune responses
also would contribute to selective pressure (Asada et al., 2015;
Zhang et al., 2020). Cytoadhesive parasites avoid both clearance
by the spleen and genotoxic damage from O2 acquired in the
lungs. The advantage of enhanced genome integrity may have
offset the accompanying enhanced susceptibility to splenic
removal. Therefore, both the spleen and lungs would be
applying different selective pressures, in a synergistic manner.
HOW DO THE PARASITES RESPOND TO
GENOTOXIC STRESS?

Oxidation damage occurring to DNA typically occurs in the
form of oxidized bases, most commonly 8-oxo-7,8-
dihydroguanine (8-OG), although many forms are possible
(Merta et al., 2019; Kumar et al., 2020). Reactive nitrogen
species (RNS) may also damage DNA and affect parasite
viability, including through direct deamination (Dong and
Dedon, 2006; Ohshima et al., 2006; Asada et al., 2015; Li et al.,
2017). Damaged bases must be replaced in order to allow
replication to continue and to maintain integrity of the
genome (Radak and Boldogh, 2010; Garcia-Rodriguez et al.,
2018; Kumar et al., 2020). Mechanisms for base replacement
involve a single- and often double-stranded DNA break- a
potentially lethal event. Repair of these breaks is essential to
maintaining genome integrity. Viewed differently, the cycles of
damage and repair provide opportunities for loosely targeted
sequence modifications during the repair process, an important
point to which I will return.
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Beyond sparse experimental evidence and what can be
gleaned from genomic sequences, little is known about DNA
repair among apicomplexan parasites, other than it is a robust
example of the adage, “less is more”. For example, canonical non-
homologous end-joining (cNHEJ) is a major repair process in
higher eukaryotes (Rulten and Grundy, 2017) and would seem
essential for haploid asexual parasites. Yet, while present in
Toxoplasma gondii, most or all of the enzymatic machinery for
cNHEJ is absent in Babesia and most apicomplexan parasites
(Fox et al., 2011; Mack et al., 2019; Nenarokova et al., 2019).
Homologous recombination (HR), another major repair process
in eukaryotes, is also not utilized equivalently by B. bovis. Rad51
(and related) proteins are integral to HR (Symington et al., 2014),
yet knock-out of the B. bovis Bbrad51 gene surprisingly had no
effect on in vitro parasite survival, growth rate, or chromosome
reassembly kinetics following g-irradiation. Although the
sensitivity phenotype of Bbrad51 knockouts for the alkylating
agent, methylmethane sulfonate, is consistent, it is not large
(Mack et al., 2019). Loss of BbRad51 does, however, eliminate the
ability to recombine exogenous DNA into the B. bovis genome,
an HR form of recombination (Mack et al., 2019). Thus, the
overall in vitro viability of parasites is unaffected by simultaneous
natural and induced lack of cNHEJ and HR, respectively,
suggesting that alternative mechanisms are robust at genome
maintenance in the absence of overt insult.
CYTOADHESION AND DNA REPAIR
ARE RELATED?

It was recognized more than 50 years ago that the surface of B.
bovis-IE is antigenically distinct from that of uninfected
erythrocytes (Callow, 1968). This difference is due at least in
part to parasite-derived proteins integrated into the IE
membrane (Allred et al., 1993). Cytoadhesion depends upon
parasite-derived components that are targets of host adaptive
immunity. In an in vitro assay antibody recognition of the
cytoadhesion ligand, the protein VESA1, was found to block or
reverse this function (O’Connor and Allred, 2000). Under
constant hydrodynamic shear in vivo this presumably would
result in the IE re-entering the circulation covered in antibody,
and removal by the spleen (Allred, 1995). This outcome was
demonstrated directly for P. falciparum in vivo cytoadhesion and
sequestration in Aotus monkeys (David et al., 1983). In the case
of B. bovis the antigenicity of VESA1 was found to vary clonally
over brief periods in the infected host, reflecting rapid antigenic
variation (Allred et al., 1994). This finding led to identification of
the ves multigene family encoding VESA1 polypeptides (Allred
et al., 2000; Xiao et al., 2010), and determination that variation is
achieved through a process of segmental gene conversion (SGC)
(Al-Khedery and Allred, 2006). During SGC short segments (109
bp on average) of the actively transcribed ves genes are replaced
with alternative sequences from silent ves genes in loci scattered
about the genome (Al-Khedery and Allred, 2006; Mack et al.,
2020). The outcome of this back-and-forth between recognition
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and destruction versus variation and escape is long-term
persistence with wide population fluctuations (Allred et al.,
1994; Calder et al., 1996). Not surprisingly, cytoadhesive
function varies along with ligand antigenicity (O’Connor and
Allred, 2000), and selection by survival may determine the major
expressed isoform within the parasite population.

The ves multigene family is large and scattered over all B.
bovis chromosomes (Al-Khedery and Allred, 2006; Brayton et al.,
2007), yet only one ves locus (comprised of one ves1a and one
ves1b) is transcriptionally active at a time, the locus of active ves
transcription (LAT) (Al-Khedery and Allred, 2006; Żupańska
et al., 2009; Mack et al., 2020). Importantly, transcriptionally
active chromatin is more susceptible than silent chromatin to
adoption of oxidation-prone higher-order structure, damage,
and mutation (Makova and Hardison, 2015). It remains
unclear how such damage is repaired, but we propose that the
observed unidirectional movement of duplicated sequence
patches that identifies SGC reflects the repair process. In most
instances SGC appears as though it represents canonical HR, but
this was not supported by knock-out of the Bbrad51 gene, which
had little effect on SGC (Mack et al., 2019; Mack et al., 2020). As
the Rad51 superfamily is pivotal to HR throughout all three
biological Kingdoms (Jiang et al., 2018) this outcome raises real
doubt that SGC is a product of classical HR. While the
underlying mechanisms are unclear, the result of SGC is a
seemingly endless variety of slightly modified alternative
versions of the actively transcribed ves genes and the proteins
they encode.

As a mechanism to create structural and antigenic diversity of
VESA1 proteins, SGC seems ideal. VESA1 has minimal well-
conserved sequences and, given its massive sequence variability,
likely accommodates considerable tertiary and quaternary
structural diversity despite maintaining consistent overall
structural organization of each subunit (Allred et al., 2000; Al-
Khedery and Allred, 2006; Brayton et al., 2007; Jackson et al.,
2014). SGC occurs in both ves1a and ves1b genes (Al-Khedery and
Allred, 2006), and VESA1 holoproteins are comprised of
comparably variant VESA1a and 1b subunits. The variety that
can be expressed, and thus the unique molecular space that can be
sampled by the protein’s surface, is extremely large. Consistent
with in vitro observations (O’Connor et al., 1999) one would
anticipate that many- perhaps most- VESA1 variants are non-
functional in cytoadhesion. However, the extreme diversity arising
from the assembly of mosaic ves genes and proteins, and the
correspondingly large molecular space that can be sampled results
in selection of VESA1 isoforms capable of binding to one or more
endothelial receptors. With the enhanced in vivo survival of
cytoadhesive parasites and immunologic elimination of non-
cytoadhesive parasites, episodic establishment of dominant
variant populations differing in their adhesive specificities would
be favored. Such extreme variability, coupled with repeated rounds
of positive selection and amplification, is essentially the same
mechanism as that underlying in vivo peptide phage display
(Pasqualini and Ruoslahti, 1996; George et al., 2003), albeit on a
larger structural scale, and is readily mimicked in the laboratory
(O’Connor et al., 1999).
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DISCUSSION

The survival of B. bovis relies upon DNA repair mechanisms
resulting in creation of variant protein structures. Thus, there is a
real need to understand these mechanisms and their
ramifications. How could sequence patches recombine into
transcribed ves genes to replace existing sequences by a non-
HR process without affecting the donor? One possibility is that
this feat might be accomplished by repair enzymes with the
capacity to switch templates repeatedly during replication or
repair, similar to the formation of immunoglobulin genes in
birds (Nakazato et al., 2018). In the B. bovis genome a single Polz
DNA polymerase can be identified, orthologs of which have
template-switching capacity in yeast and mammalian cells
(reviewed in (Brayton et al., 2007; Northam et al., 2013; Martin
and Wood, 2019)). Interestingly, among Plasmodium spp. the
presence of a Polz ortholog influences the extent of antigenic
variation (Kirkman and Deitsch, 2020; Siao et al., 2020).
Template-switching involving a second ves locus as template
would be facilitated by close proximity among ves genes.
Evidence consistent with such proximity was found in a
limited chromatin-conformation capture assay (Wang et al.,
2012). Similarly, organization of P. falciparum var genes into
“bouquets” at the nuclear periphery was observed (Freitas-Junior
et al., 2000), likely facilitating the cascade of crossover reactions
occurring during repair of double-strand DNA breaks in the var
gene family encoding PfEMP1 (Zhang et al., 2019).

How are SGC-mediated sequence changes focused on ves
genes? As mentioned, B. bovis lives within an environment that
experiences periodic high levels of oxidative stress. The guanine
bases of G-G dinucleotide pairs present in G-quadruplex (G4)
DNA are highly susceptible to oxidation, being readily damaged to
give 8-OG (Fleming et al., 2017; Merta et al., 2019). A simple
search of the B. bovis genome for sequences predicted to be
competent to form G4 structure reveals that such sequences are
highly enriched within or near (≤ 8 Kbp) ves loci (Figure 1). The
full extent of enrichment is difficult to predict, as G4 structure may
form with only two stacked G-quartets (Figure 1A), or may
involve three or more (Figure 1B). Due to a need for DNA
strand separation in order to form, actively transcribed DNA is far
more prone to G4 formation than non-transcribed DNA
(Rodriguez et al., 2012). This would have the effect of focusing
oxidative damage and mutation on the ves family and specifically
the LAT, and could act as a trigger for the SGC process. The G4
“focusing” effect is so strong that it serves to regulate promoter
function in some DNA repair protein genes (Clark et al., 2012;
Fleming et al., 2019). In concert with a second translesion
polymerase, Rev1, DNA Polz activity is important to lesion
bypass of damaged bases such as 8-OG and stalled replication
forks (Freisinger et al., 2004; Northam et al., 2013). Orthologs of
both Rev1 and Polz translesion polymerases are transcribed by
asexual stage B. bovis parasites (Brayton et al., 2007; Pedroni et al.,
2013). The significance of these components to SGC, antigenic
variation, and cytoadhesion is not known, but we are pursuing this
potential connection.

To summarize, hemoparasites live in a highly oxidative
environment, and I suggest that cytoadhesion evolved to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
mitigate this damage. The B. bovis genome is greatly enriched in
sequences with the potential to form G4 structure within and/or
near ves genes. As G4 DNA is formed primarily within actively-
transcribed sequences, can disrupt replication, and is overtly
susceptible to oxidative damage this could make the LAT a
sensitive target for damage. Repair of damage via a translesion
polymerase with template-switching capabilities could both help
to maintain overall genome integrity and result in local inclusion
of ectopic sequence patches, the basis of SGC. Mosaic VESA1
protein isoforms created by SGC enable selection for adhesion,
simultaneously avoiding immune recognition and oxidative
damage. The ability to disrupt important mediators of SGC
could not only affect parasite viability directly, but also diminish
antigenic variation and cytoadhesion, reducing parasite survival
and pathology.
A

B

FIGURE 1 | Distribution of predicted G-quadruplex sequences relative to
ves genes in the B. bovis genome. The B. bovis C9.1 genome (Jackson
et al., 2014) was concatenated and surveyed for G4 motifs, using (A) the
low stringency motif (G≥2(N)1-7)3G≥2 or (B) a high-stringency motif (G≥3(N)

1-12)3G≥3. These results were plotted as histograms of G4 density per 8
Kbp genome segments. Inverted red triangles indicate the “left”-most ends
of ves coding sequences. The dashed horizontal lines represent the mean
G4 density across the genome (black), or +2 s.d. (red).
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