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Australian wild deer populations have significantly expanded in size and distribution in
recent decades. Due to their role in pathogen transmission, these deer populations pose a
biosecurity risk to the livestock industry. However, little is known about the infection status
of wild deer in Australia. The intestinal parasite Entamoeba bovis has been previously
detected in farm and wild ruminants worldwide, but its epidemiology and distribution in
wild ruminants remain largely unexplored. To investigate this knowledge gap, faecal
samples of wild deer and domestic cattle from south-eastern Australia were collected and
analysed for the presence of Entamoeba spp. using PCR and phylogenetic analysis of the
conserved 18S rRNA gene. E. bovis parasites were detected at high prevalence in cattle
and wild deer hosts, and two distinct Entamoeba ribosomal lineages (RLs), RL1 and RL8,
were identified in wild deer. Phylogenetic analysis further revealed the existance of a novel
Entamoeba species in sambar deer and a novel Entamoeba RL in fallow deer. While we
anticipated cross-species transmission of E. bovis between wild deer and cattle, the data
generated in this study demonstrated transmission is yet to occur in Australia. Overall, this
study has identified novel variants of Entamoeba and constitutes the first report of
Entamoeba in fallow deer and sambar deer, expanding the host range of this parasite.
Epidemiological investigations and continued surveillance of Entamoeba parasites in farm
ruminants and wild animals will be required to evaluate pathogen emergence and
transmission to livestock.
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INTRODUCTION

Parasites of the genus Entamoeba comprise unicellular anaerobic organism that infect humans
(Shirley et al., 2018; Cui et al., 2019), domestic animals (Noble and Noble, 1952; Stensvold et al.,
2010; Cui et al., 2019; Ai et al., 2021) and wild animals (Stensvold et al., 2010; Shilton et al., 2018; Cui
et al., 2019). Entamoeba parasites develop through a faecal-oral life cycle, and infections with
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pathogenic species can cause intestinal disease and damage the
liver and brain (Ngui et al., 2012). The initial classification of
Entamoeba species was established based on the type of host in
which the parasites were identified (Noble and Noble, 1952) and
on parasite morphological features (Stensvold et al., 2011), such
as cyst size and the number of nuclei. Using this approach,
Entamoeba species have been classified into four distinct groups,
including E. gingivalis-like group (species without cysts), E.
bovis-like group (uni-nucleated cysts), E. histolytica-like group
(quadri-nucleated cysts), and E. coli-like group (octo-nucleated
cysts) (Clark et al., 2006; Stensvold et al., 2011). In recent years,
the analysis of Entamoeba 18S ribosomal RNA (18S rRNA)
sequences has significantly expanded the repertoire of
genetically distinct Entamoeba organisms (Clark et al., 2006;
Stensvold et al., 2011; Jacob et al., 2016). Although morphology-
based analysis will be required to consolidate such findings, they
provide unique insights into variation within species,
evolutionary relationships, and host specificity (Clark et al.,
2006; Stensvold et al., 2011; Jacob et al., 2016). Moreover,
analysis of Entamoeba DNA sequences is an essential tool in
endemic countries where microscopy does not allow for the
distinction of pathogenic and non-pathogenic Entamoeba
species (Nath et al., 2015). The genetic diversity of
morphologically identical parasites, and the host promiscuity
of Entamoeba organisms, highlights an ongoing need for further
characterisation of genetic variants and host range, particularly
in pathogenic species and emerging zoonotic species infections.

In animals, ruminants such as cattle and sheep appear to be
common hosts of the uni-nucleated cyst Entamoeba species
(Noble and Noble, 1952; Clark et al., 2006; Stensvold et al.,
2010). Nevertheless, cyst morphology varies greatly within and
between uni-nucleated cyst-producing species isolated from
different ruminant hosts (Stensvold et al., 2010). The term
“ribosomal lineage” (RL) was introduced to name newly
discovered Entamoeba 18S rRNA sequences with greater than
5% divergence from known species. These RLs represent
organisms not yet described morphologically and not
referrable to described species (Jacob et al., 2016). The analysis
of Entamoeba 18S rRNA sequences detected in farmed and wild
ruminants over the last decade revealed the presence of E. bovis
and eight RLs. Of these, four RLs are closely related to E. bovis
(Entamoeba RL 1-3 and 8) (Jacob et al., 2016). Besides being
detected in cattle (Bos taurus) (Stensvold et al., 2010; Jacob et al.,
2016; Nolan et al., 2017; Matsubayashi et al., 2018; Ai et al., 2021)
and sheep (Ovis aries) (Stensvold et al., 2010; Jacob et al., 2016;
Ai et al., 2021), E. bovis and Entamoeba RLs have also been
detected in goats (Capra hircus) (Nolan et al., 2017; Al-Habsi
et al., 2017; Ai et al., 2021), horses (Equus ferus) (Ai et al., 2021),
camels (Camelus ferus) (Ai et al., 2021), and cervids. Among the
studies conducted on cervids, white-tailed deer (Odocoileus
virginianus) from the USA (Kingston and Stabler, 1978), fallow
deer (Dama dama) from Mauritius (Jacob et al., 2016), and
reindeer (Rengifer tarandus) from Iceland (Stensvold et al., 2010)
tested positive for E. bovis, while Entamoeba RL 1 was detected in
roe deer (Capreolus capreolus) from Sweden (Stensvold et al.,
2010). Information about the pathogenicity of E. bovis and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
Entamoeba RLs in ruminants remains limited; however, their
detection in cattle in the absence of clinical symptoms such as
diarrhoea, suggests low pathogenicity (Matsubayashi et al., 2018;
Ai et al., 2021). E. bovis have a broad ruminant host range and
can be transmitted by faecal excretion of cysts followed by oral
ingestion of contaminated food or water (Noble and Noble, 1952;
Clark et al., 2006; Stensvold et al., 2010). Based on the oral-faecal
life cycle of Entamoeba parasites, the transmission of E. bovis
between different host taxa that share common land is
highly likely.

To date, Entamoeba parasites have only been identified
twice in Australian wild animals. E. ranarum was detected
and characterised in wild cane toads (Rhinella marina) (Shilton
et al., 2018), and E. bovis was detected in feral goats in Western
Australia rangeland with a 6.4% prevalence (Al-Habsi et al.,
2017). The prevalence and distribution of Entamoeba species in
Australian farmed and wild ruminants, such as wild deer,
remains yet to be investigated. Wild deer and livestock
commonly share grazing areas in agricultural landscapes and
are equally susceptible to a wide range of pathogens of
agricultural importance (Cripps et al., 2019). Wild deer
represent a significant source of pathogen transmission; thus,
we hypothesised wild deer to be involved in the transmission of
Entamoeba parasites to livestock and vice versa. In recent years,
our team has investigated the role of wild deer as carriers of
livestock pathogens in Australia (Huaman et al., 2020; Huaman
et al., 2021; Huaman et al., 2021a; Huaman et al., 2021b), and
here, we report the first detection of Entamoeba parasites
in wild deer sampled in Australia. Further, we assess
the prevalence, distribution, and characterisation of
Entamoeba species and RLs as well as the potential of cross-
species transmission.
MATERIALS AND METHODS

Sample Collection
Faecal samples were collected from Australian wild deer to assess
their infection status (Huaman et al., 2021a; Huaman et al.,
2021b). Opportunistic sampling during field necropsies was
carried out on deer culled with the assistance of recreational
and professional hunters as part of control operations in New
South Wales and Victoria (Figure 1) between August 2019 and
October 2020. All samples were collected from the large intestine
and placed in sterile plastic containers (Techno Plas, Australia).

Cattle faecal samples collected for clinical investigations
independent from this study were analysed here for the
presence of Entamoeba parasites. Cattle samples were collected
from beef and dairy farms within a 20 kilometres radius of the
deer sampling areas between September 2020 and April 2021. All
samples were collected directly from the animals, placed
in individual sterile plastic containers and immediately
refrigerated. Samples were transported to the Laboratory
of Molecular Parasitology within the Department of
Microbiology, Anatomy, Physiology and Pharmacology at La
Trobe University, and stored at -80° C until further use.
June 2022 | Volume 12 | Article 883031
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DNA Extraction and PCR Amplification
Frozen faecal samples were aliquoted into 0.25 g frozen portions.
Genomic DNA was extracted using a DNeasy® PowerSoil® Kit
(Qiagen, Valencia, CA, USA) following the manufacturer’s
instructions. PCR was performed with primers EntboF2 and
EntboR3 (Matsubayashi et al., 2018; Ai et al., 2021) to amplify an
internal fragment of 850 bp of the 18S rRNA Entamoeba gene. In
addition, the methodology published by Ali et al. (2005) was
employed to detect tRNA-linked short tandem repeats (STRs).
Six previously published primer pairs (A-L5/A-L3, D-A5/D-A3, N-
K5/N-K3, R-R5/R-R3, STGA-D5/STGA-D3, S-Q5/S-Q3) were
selected and tested in all the deer and cattle samples. These
primers were originally designed to amplify E. hystolytica t-RNA
STRs. PCR amplification was performed in a 25 mL reaction
mixture containing 1x Green GoTaq Flexi buffer, 2 mM of
MgCl2, 10 mM of dNTPs, 0.2 mM of each primer, 0.625 units of
GoTaq G2 DNA polymerase (Promega, Madison, WI, USA), and 1
mL of template DNA. Amplification was carried out in a T100
thermal cycler (BioRad, Hercules, CA, USA), and amplification
products were visualised by gel electrophoresis, using a 2% agarose
gel stained with RedSafe™ (iNtRON Biotechnology, Gyeonggi-do,
Korea), and the high-resolution ChemiDoc™MP Imaging System
(Bio-Rad, Hercules, CA, USA).

DNA Sequencing and
Phylogenetic Analysis
PCR products were sequenced by bi-directional Sanger sequencing
at the Australian Genome Research Facility (Melbourne, Australia),
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
then analysed and edited using Geneious software 11.1.4
(Biomatters Ltd., Auckland, New Zealand, version 11.1.4).
Multiple sequence alignments were performed using Clustal X
(Thompson et al., 1997). A phylogenetic tree was built based on
Entamoeba 18S rRNA sequences using the substitution model with
the lowest BIC scores (Tamura 3-parameter model + G) and the
maximum-likelihood method in MEGA 7 (Kumar et al., 2016).
Thus, Entamoeba sequences obtained in the present study were
aligned with 31 Entamoeba reference sequences deposited in
GenBank (Table S1). These reference sequences represented 17
recognised species and 5 published ribosomal lineages. Statistical
support for the trees was evaluated by bootstrapping based on
1,000 repetitions. Moreover, the number of nucleotide differences
and the mean sequence divergence of Entamoeba clades identified
in our sequences were calculated in MEGA 7. The nucleotide 18S
rRNA sequences detected in this study were submitted to GenBank
under accession number OM415364 - OM415424 (Table S2).

Bayesian Divergence Time Estimates
As deer were introduced in Australia only 200 years ago,
estimating the most recent common ancestors (TMRCA) of E.
bovis detected in wild deer and cattle can reveal whether parasite
transmission occurred between the two hosts in Australia.
Therefore, the reported split ages (Romero et al., 2016) between
E. nuttalli and E. hystolytica (5.93 ± 0.28Mya), along with E.
hystolytica and E. invadens (68.18 ± 16.04 Mya), were used as
calibrations for the Bayesian analysis using a lognormal
distribution with a mean of 1.78 and 4.5, and a standard
FIGURE 1 | Geographic locations of deer (1 to 4) and cattle (1, 2 and 4) sample collection in south-eastern Australia. (1) Kiah, (2) Outer Melbourne, (3) Yellingbo, (4)
Bunyip. ©d-maps.com.
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deviation of 0.05 and 0.25, respectively. The phylogenetic trees
were modelled using a birth-death tree prior, a lognormal relaxed
clock in BEAST v2.6.3 (Bouckaert et al., 2019), and a gamma
distribution (shape=1, rate=0.00001) for the substitution rate
parameter. Two independent runs of 200 million steps were
computed, sampling parameters every 10,000 steps and
discarding the first 10% of each chain as burn-in. Tracer v1.7.1
(Rambaut et al., 2018) was used to ensure that the length of the
burn-in phase was sufficient and guaranteed convergence of the
two analyses. Results were obtained after combining the two
chains with LogCombiner. The programs TreeAnnotator v2.6.2
(Bouckaert et al., 2019) and FigTree v1.4.4 (http://tree.bio.ed.ac.
uk/software/figtree/) were used to summarise the posterior tree
distribution and visualise the annotated Maximum Clade
Credibility (MCC) tree.
RESULTS

High Prevalence of Entamoeba DNA
Found in Wild Deer and Cattle Samples
A total of twenty-three cattle faecal samples were obtained from
south-eastern Australia, as well as seventy-one wild deer faecal
samples, including sixty samples from fallow deer (Dama dama)
and eleven samples from sambar deer (Rusa unicolor) (Table 1).
All samples were screened by PCR for the presence of the 18S
rRNA Entamoeba gene using primers EntboF2 and EntboR3
(Matsubayashi et al., 2018). The overall prevalence of
Entamoeba spp. in wild deer from south-eastern Australia was
found to be 81.7% (58/71), ranging from 72.9% to 100%
depending on the host species and the sample geographic
location (Table 1). In the cattle faecal samples, the prevalence of
Entamoeba spp. was 100% (Table 1). All the Entamoeba 18S
rRNA PCR amplicons generated (seventy-one from wild deer
samples and twenty-three from cattle samples) were analysed by
Sanger sequencing. Subsequent analysis of the ninety-four 18S
rRNA sequences revealed E. bovis as the dominant species
detected with a total prevalence of 74.6% (53/71) in wild deer
and 100% (23/23) in cattle.

Phylogenetic Analysis of Entamoeba
Sequences Reveals the Existence of RL
Variants in Wild Deer Samples
Out of the 850 bp Entamoeba 18S amplicons generated by PCR, a
good quality DNA fragment of 778 bp was successfully
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
sequenced for each of the ninety-four deer and cattle samples.
This 778 bp fragment covered nearly 50% of the Entamoeba 18S
rRNA gene and was therefore used to investigate the
phylogenetic relationship and the levels of divergence of the
ninety-four Entamoeba sequences. A high proportion of the wild
deer-derived sequences fell into the E. bovis clade, which includes
isolates from rangeland goats, cattle, sheep, and reindeer
(Figure 2). Further, the cattle-derived sequences clustered
exclusively within the E. bovis clade. The genetic similarity
among all E. bovis sequences obtained in this study (both
derived from deer and cattle) ranged from 92.5% to 100%.
Moreover, the mean divergence within the cattle-derived
sequences is 5 to 7-fold smaller than the divergence observed
within the deer-derived sequences (Table 2). Within the 778 bp
18S rRNA gene fragment, a mean of 21 nucleotide differences
was found between the two host group sequences (Table 2).

Interestingly, five 18S rRNA sequences of deer origin (VIC89,
NSW304, NSW332, VIC93 and VIC91) clustered with distinct
Entamoeba RLs, while none of the sequences identified in this
study clustered with Entamoeba RLs 2, 3 and 4, which were
previously reported in ruminants (Figure 2). Sequence VIC89,
sourced from sambar deer, clustered with Entamoeba RL1
(FN666253) detected in roe deer from Sweden and shared 98.6%
of the nucleotide sequence. Sequence NSW304 sourced from fallow
deer, clustered with Entamoeba RL8 (KR025406), detected in cattle
from the United Kingdom, with a homology of 99.9%. Comparison
of sequence NSW304 with two additional Entamoeba RL8
sequences detected in camel (MN749974) and goat (MN749989)
from China revealed a nucleotide identity of 99.9% and 95.1%,
respectively. The alignment of these four Entamoeba RL8 sequences
(NSW304, FN666253, MN749974, and MN749989) revealed an
identity of 100% between sequences NSW304, FN666253, and
MN749974; while three insertions (at positions 715, 716 and 750)
and one deletion (at position 677) were identified in the strain
detected in the goat (MN749989) (Figure S1). Sequences VIC93
and NSW332 sourced from fallow deer fell into the same clade,
displaying 99% sequence identity; however, these two sequences did
not cluster with any Entamoeba RL reference sequence, therefore
emerging as a divergent Entamoeba RL (Figure 2). Sequence VIC91
obtained from sambar deer was genetically distinct from the
Entamoeba sequences identified in other deer and cattle samples
with high sequence divergence (mean 26.2%) and nucleotide
difference (mean 133.76) (Table 2). Nucleotide similarity between
sequence VIC91 and the reference Entamoeba sequences ranged
from 82% to 86%. Overall, these findings suggest sample VIC91
belongs to a novel Entamoeba species.
TABLE 1 | Entamoeba species and RLs identified in deer and cattle faecal samples collected across south-eastern Australia.

Host species Geographic loca-
tion

Total PCR positive (%) Entamoeba species (n)

Fallow deer NSW 48 35 (72.9) E. bovis (33), Entamoeba RL 8 (1), Entamoeba RLa (1)
VIC 12 12 (100) E. bovis (11), Entamoeba sppb (1)

Sambar deer VIC 11 11 (100) E. bovis (9), Entamoeba RL 1 (1), Entamoeba RLa (1)
Cattle NSW 15 15 (100) E. bovis (23)

VIC 8 8 (100)
NSW, New South Wales; VIC, Victoria; a novel Entamoeba RL, b novel Entamoeba species.
June 2022 | Volume 12 | Article 883031
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STRs Were Amplified in Deer and Cattle
Samples But Not Successfully Sequenced
Amplicons were obtained for all the STRs tested except for D-
A5/D-A3 (Figure S4), albeit a slight difference in size when
compared to amplicons of E. histolytica (Ali et al., 2005). A
total of ten samples, including 4 wild deer samples and 6
cattle samples (Figures S4A, B, respectively) were sequenced
using primers STGA-D5 and STGA-D3 (Ali et al., 2005).
However, DNA sequences of good quality could not
obtained, even when cloning the STR amplicons prior
to sequencing.
TABLE 2 | Mean sequence divergence and number of differences (nucleotides)
between Australian deer and cattle sequences within clades.

Clades Sequence divergence % Number of
differences

E. bovis deer vs E. bovis cattle 2.9 % ± 0.4 % 20.88 ± 2.8
Within E. bovis deer 3.5 % ± 0.4 % 24.32 ± 2. 8
Within E. bovis cattle 0.7 % ± 0.2 % 5.06 ± 1.3
All deer vs all cattle 4.2 % ± 0.5 % 27.72 ± 3
within all deer 5.8 % ± 0.6 % 36.70 ± 3.1
within all cattle 0.7 % ± 0.2 % 5.06 ± 1.3
Non-VIC91 deer vs VIC91 26.2 % ± 2.9 % 133.76 ± 10
FIGURE 2 | Cladogram of Entamoeba partial 18S rRNA sequences. Deer sequences are indicated in blue and cattle sequences in red. Reference sequences are
indicated in black. The tree was constructed using the maximum likelihood method and Tamura 3-parameter + G substitution model. Bootstrap values above 70%
are shown at the nodes. Note: substitutions do not scale branches in this tree. The phylogenetic tree with scaled branches and alignment is shown in Figures S2,
S3, respectively.
June 2022 | Volume 12 | Article 883031
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Divergence Time Analysis Suggests Lack
of Entamoeba Transmission Between Wild
Deer and Cattle
To determine the transmission of Entamoeba parasites between
wild deer and cattle in this study, a phylogenetic tree was
constructed using a birth-death tree prior under a Bayesian
framework and two calibration nodes (Figure 3). This
approach aims to reconstruct the speciation process and, by
using the time of divergence between two taxa as calibration, it
converts the unit of the branches from substitutions to time
(years in this case). The trees explored are then annotated in a
maximum clade credibility (MCC) tree. The MCC tree revealed a
clear species structure with the cattle-derived Entamoeba
sequences well separated from the wild deer-derived
Entamoeba sequences, like the previously generated maximum
likelihood (ML) tree (Figure 2). Sequence NSW340 was,
however, an exception to the species separation as it clustered
with LV7 and LV14 (Figure 3). Overall, sequences sourced from
wild deer clustered within four clades (Figure 3). There was little
resolution within the deer group, as reflected in the low node
posterior probabilities (< 0.7); however, deer clade 2 and 3
grouped with posterior probabilities > 0.8, and similar strong
support was found in the ML tree. The MCC tree confirmed that
sequences VIC89 and NSW304 belong to Entamoeba RL1 and
RL8, respectively, and corroborated that sequence VIC91 is
genetically distinct from the other sequences analysed in this
study. In the ML tree sequences, LN1 (cattle origin) and VIC92
(deer origin) clustered within the E. bovis clade, although they
fell outside of any other cluster, which is in contrast with the
output of the ML tree (Figure 2). The most recent node between
sequences obtained from a deer and a cow in Australia was
estimated to be 171 million years ago (Mya) (95% HPD: 31.5 –
377.9 Mya). While the most recent common ancestors (TMRCA)
between Australian wild deer and cattle clades was estimated at
632 Mya, but with considerable uncertainty (95% HPD: 163 -
1308 Mya) (Figure 3).
DISCUSSION

In recent decades, Australian wild deer populations have
significantly increased in abundance and distribution, leading
to regular close interactions between deer and livestock, which
increases the risk of pathogen transmission (Davis et al., 2016;
Cripps et al., 2019). However, little is known about the
epidemiology of pathogens that Australian deer may transmit
to livestock, other domestic animals, or wildlife. The present
study complements our initial work on investigating pathogens
in wild deer across multiple geographic locations in Australia
(Huaman et al., 2020; Huaman et al., 2021; Huaman et al., 2021a;
Huaman et al., 2021b). Here we report the identification of
Entamoeba sequences in wild deer and cattle faecal samples
collected in south-eastern Australia, with subsequent
phylogenetic analysis to evaluate the cross-species transmission
of Entamoeba parasites. This baseline information is of value for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
monitoring the status of parasitic infections in Australian deer
and evaluating the risk of disease transmission between wild deer
and livestock. Additionally, the data provided by this study
increases our knowledge of the host range and distribution of
Entamoeba, a group of parasites prevalent in ruminant livestock.
Finally, this study represents the first molecular screening and
characterisation of Entamoeba in Australian wild deer.

The predominant Entamoeba species identified in the wild
deer and cattle samples collected and analysed in this study was
Entamoeba bovis, a species recognised to infect ruminants,
including livestock animals (Stensvold et al . , 2010;
Matsubayashi et al., 2018; Ai et al., 2021). The prevalence of
Entamoeba infections previously reported in cattle are relatively
low [2.5% in Costa Rica (Jimenez et al., 2007), 4.8% in Korea
(Ismail et al., 2010)] when detected by microscopic analysis;
while higher prevalences have been reported following PCR
analysis [72% in Japan (Matsubayashi et al., 2018), 80% in
Uganda (Nolan et al., 2017), 100% in China (Ai et al., 2021)].
Similar to these last reports, the present study detected a
prevalence of 100% for E. bovis in cattle samples (n=23) using
a PCR-based analysis.

E. bovis has also been previously detected in wild cervids,
including in wild goats fromWestern Australia with a prevalence
of 6.4% (Al-Habsi et al., 2017). This relatively low E. bovis
prevalence contrasts with the much higher prevalence of 74.6%
(53/71) reported here in fallow deer and sambar deer from
eastern Australia. This difference could be attributed to
methodology, as E. bovis was identified in wild goats from
Western Australia (Nolan et al., 2017) by microscopy analysis.
Indeed, microscopy and morphology-based detection methods
are likely to underestimate parasite prevalence, as discussed
above for the case of cattle samples, and are less sensitive
methods when compared to the molecular detection tools
employed in the present study. Although microscopy detection
methods might underestimate the number of E. bovis infections,
it is not excluded that lower parasite prevalence can exist, for
example, due to climatic reasons. The sampling areas of this
study are located in south-eastern Australia, where a
Mediterranean-like climate prevails with significantly humid
winters, which can facilitate the maintenance of parasites in
the environment (Shirley et al., 2018). In contrast, the sampling
area of Al-Habsi et al. (2017) was the semiarid rangeland area in
Western Australia.

Wild deer and cattle-derived Entamoeba 18S rRNA sequences
cluster within the E. bovis clade, although different species-
specific clades are formed (Figure 3). Pairwise analysis
revealed differences within sequences of wild deer origin,
indicating high parasite diversity within this host. Polymorphic
markers such as serine-rich protein genes and tRNA-linked short
tandem repeats (STRs) have been used for the genotyping and
correlation with the geographical distribution of other
Entamoeba species such as E. histolytica, E. dispar, and E.
nuttalli (Tawari et al., 2007; Weedall and Hall, 2011; Feng
et al., 2014). However, this approach is yet to be used to
identify E. bovis. We employed a methodology previously used
in E. histolytica (Ali et al., 2005); however, the sequencing of ten
June 2022 | Volume 12 | Article 883031
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samples (4 wild deer and 6 cattle samples) using primers STGA-
D5 and STGA-D3 did not generate good quality DNA sequences,
even when STR amplicons were cloned prior to sequencing. The
primers used here were originally designed to amplify E.
hystolytica t-RNA STRs (Ali et al., 2005). Therefore, the
presence of polymorphisms in the t-RNA gene of E. bovis and/
or the sensitivity of the primers could account for the low quality
of the sequences generated.

In the absence of STR data and to determine whether a
potential E. bovis cross-species transmission was possible, the
time of the most common ancestor between E. bovis sequences
of wild deer and cattle origin was estimated (Figure 3). The most
common ancestor of E. bovis identified in wild deer and cattle
hosts was estimated to have existed well before 200 years ago
(before cattle and deer were introduced in Australia). BothML and
Bayesian phylogenetic analyses grouped the sequences according
to their host species with moderate sequence divergence.
Therefore, taken together, these results provide no evidence of
E. bovis transmission between wild deer and cattle in Australia.
This finding was somewhat unexpected, but it is possible that since
wild deer populations have only recently increased in density, they
did not play an important role in the transmission of these
parasites thus far. However, this may change in the future due
to deer density expansion, increasing contact rates (direct or
indirect) and transmission events with livestock species.
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Phylogenetic analysis of all Entamoeba sequences of deer origin
identified that two sequences (VIC89 and NSW304) cluster with
two distinct Entamoeba RL. The term “ribosomal lineage” (RL)
was proposed to name Entamoeba strains with greater than 5%
sequence divergence from known species (Jacob et al., 2016).
Sequence VIC89 detected in a sambar deer from Victoria
clustered with high genetic similarity with an Entamoeba RL1
sequence from a roe deer from Sweden (FN666253). This RL was
also detected in one gazelle and one bighorn sheep in the USA;
however, their sequences are not available for comparison (Jacob
et al., 2016). Sequence NSW304, detected in a fallow deer from
NSW, clustered with an Entamoeba RL8 sequence (KR025406).
This ribosomal lineage has been previously identified in a variety
of hosts, including cow (Jacob et al., 2016), camel (Ai et al., 2021)
and goat (Ai et al., 2021). The sequence NSW304 presents high
homology with an RL8 sequence of a cow (99.9%; KR025406) and
camel (99.9%; MN749974) origin and lower homology with a
sequence of goat origin (95.1%; MN749989). Here we present the
first identification of Entamoeba RL1 and Entamoeba RL8
sequences in wild deer. These results broaden the host range of
both RLs.

Interestingly, Entamoeba sequences (NSW332, VIC93 and
VIC91) detected in three wild deer animals did not cluster with
any 18S rRNA reference sequence. One sambar deer-sourced
sequence (VIC91) was genetically distinct from other Entamoeba
FIGURE 3 | Maximum clade credibility tree of Entamoeba obtained from Bayesian inference using split ages reported previously as calibrations (green dots). Yellow
dots indicate the estimated mean ages for the most recent common ancestor (TMRCA) of Entamoeba detected in Australian wild deer and cattle. Deer sequences
are indicated in blue and cattle sequences in red. Reference sequences are indicated in black. HPD, highest posterior density, Mya, Million years ago.
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species found in ruminants, suggesting a possible novel
Entamoeba species. Sequences NSW332 and VIC93 of fallow
deer origin displayed 100% identity with each other and
clustered as a sister clade with the VIC89/Entamoeba RL1
clade. Jacob et al. (2016) proposed the classification for RL
sequences based on two criteria: i) sequences with ≥ 80%
coverage of the 18S rRNA region, and ii) ≥ 5% difference with
previously known sequences. Our phylogenetic analysis has
identified NSW332 and VIC93 as a putative novel RL;
however, the sequences generated here are shorter than 80%
(48%) of the full Entamoeba 18S rRNA gene. Therefore, future
studies to determine the complete 18S rRNA gene sequence of
NSW332 and VIC93 are needed to confirm this finding.

In conclusion, here we present evidence of three Entamoeba
RLs in Australian ruminants: E. bovis in wild deer and cattle,
Entamoeba RL1 in wild sambar deer, and Entamoeba RL8 in wild
fallow deer. Our study represents the first identification of
Entamoeba parasites in Australian deer, expanding the host
range of Entamoeba parasites. Further, we present evidence of
a potential novel Entamoeba species (VIC91) of wild deer origin,
closely related to Entamoeba RL1. We detected a high prevalence
of E. bovis (100%) in cattle in the absence of clinical signs, which
aligns with the low pathogenicity of E. bovis and its alleged
commensal relationship with its cattle host (Ai et al., 2021).
Finally, our study suggests a lack of current E. bovis transmission
between wild deer and cattle in Australia. However, considering
the ongoing expansion of wild deer populations in Australia,
both in size and distribution, this scenario is likely to change in
the future.
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