
Frontiers in Cellular and Infection Microbiolo

Edited by:
Wioletta Adamus-Białek,

Jan Kochanowski University, Poland

Reviewed by:
Krzysztof Skowron,

Nicolaus Copernicus University in
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Aeromonas spp. are recognized as opportunistic pathogens causing diseases. Infections
in humans can result mainly in gastrointestinal and wound diseases with or without
progression to septicemia. Although Aeromonas spp. are not known uropathogens and
they rarely cause urinary tract infection, we hypothesize that the presence of these
bacteria in the water and the contact during, e.g., recreational and bathing activity can
create the conditions for the colonization of the human body and may result to diseases in
various locations, including the urinary tract. Our study presents the occurrence of
aeromonad fluoroquinolone-susceptible phenotypes with the presence of plasmid-
mediated fluoroquinolone resistance (PMQR) genes in a natural freshwater reservoir
occasionally used for recreational activities. Sixty-nine isolates collected during the
bathing period were identified by mass spectrometry and screened for the presence of
fluoroquinolone-resistant phenotypes and genotypes. Fluoroquinolone susceptibility was
determined as minimal inhibitory concentration values. PMQR qnr genes were detected
by PCR. Isolates comprising eight species, namely, mainly Aeromonas veronii (50.7%
isolates) and Aeromonas media (24.6% isolates) and rarely Aeromonas eucrenophila,
Aeromonas caviae, Aeromonas bestiarum, Aeromonas ichthiosmia, and Aeromonas
hydrophila, were selected. All isolates were phenotypically susceptible either to
ciprofloxacin or levofloxacin. Unexpectedly, at least one to three of the PMQR genes
were detected in 42.0% of the fluoroquinolone-susceptible Aeromonas spp. phenotypes.
Mainly the qnrS (34.8% isolates) and qnrA (14.5% isolates) determinants were detected.
In conclusion, the freshwater reservoir occasionally used for bathing was tainted with
aeromonads, with a high occurrence of opportunistic pathogens such as A. veronii and A.
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media. MALDI‐TOF MS is a powerful technique for aeromonad identification. Our data
reveals the mismatch phenomenon between fluoroquinolone-susceptible aeromonad
phenotypes and the presence of plasmid-mediated qnr resistance genes. It suggests
that phenotypically susceptible bacteria might be a potential source for the storage and
transmission of these genes. The exposure during, e.g., a recreational activity may create
the potential risk for causing infections, both diagnostically and therapeutically difficult,
after expressing the resistance genes and quinolone-resistant strain selection.
Keywords: Aeromonas spp., surface freshwater, occasional bathing, opportunistic pathogens, PMQR genes
INTRODUCTION

The genus Aeromonas (family Aeromonadaceae) has been
described as comprising several species of Gram-negative
autochthonic bacteria widely found in different sites in a
variety range of habitats. Their principal reservoirs represent
the aquatic environment in both surface freshwater and brackish
water (Janda and Abbott, 2010). Moreover, Aeromonas bacteria
were usually found in food products, vegetables, and farm animal
fecal contents and as a member of the animal digestive tract
microbiota (Janda and Abbott, 2010). However, Aeromonas
species are commonly described as etiological agents causing
animal and human infections (Ghenghesh et al., 2008; Grim
et al., 2013; Mosser et al., 2015; Obeidat et al., 2021). These
bacteria have been classified into two groups in terms of their
host and physiological characteristics: (a) mesophilic (optimal
growth temperature range, 35–37°C) and motile aeromonads
such as Aeromonas hydrophila or Aeromonas veronii, which
causes different diseases mostly in human and other mammals
both in immunocompetent and immunocompromised people—
and (b) group of psychrophilic (optimal growth temperature
range, 22–25°C) and nonmotile aeromonads such as Aeromonas
salmonicida, which are the etiological agents of fish diseases
(Parker and Shaw, 2011; Dallaire-Dufresne et al., 2014).
Aeromonas spp. infections are rare and not so important in
human health problems; therefore, the pathomechanisms and
epidemiology are not very well known. According to some
authors, only selected pathotypes of Aeromonas spp. with both
specific phenotypic and genotypic features can create infections
in certain individuals (Grim et al., 2013; Mosser et al., 2015).
However, according to earlier studies, aeromonad infections
should not be underestimated (Ghenghesh et al., 2008).

The presence of human aeromonad infections was rarely
reported in the literature. As opportunistic pathogens,
Aeromonas spp. are often associated with either animal (e.g.,
fish) or human diseases, such as foodborne gastroenteritis and
diarrheal illnesses, as well as extraintestinal infections, comprising
wound infections with or without progression to septicemia, soft
tissue infections, bloodstream infections, meningitis, endocarditis,
Culture Collection; MIC, minimum
and Laboratory Standards Institute;
timicrobial Susceptibility Testing;
ance, TSA, triptic soy agar.
Ab
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and osteomyelitis ulcerative disease (Tena et al., 2007; Janda and
Abbott, 2010; Alhazmi, 2015; Fewtrell and Kay, 2015; Gauthier
et al., 2017; Fernández-Bravo and Figueras, 2020). There are also
data on vaginal colonization with Aeromonas spp. from healthy
pregnant women (Damiain et al., 1995) and patients during labor
(Ekwempu et al., 1981). Non-gastrointestinal complications that
may arise subsequent to aeromonad infections also include
respiratory tract infections and genitourinary or urinary tract
infections (UTIs) and hematuria (Bartolomé et al., 1989;
Hussain et al., 2018). Most human Aeromonas spp. diseases
were reported to be associated with mainly three species,
including A. hydrophila, A. veronii, and Aeromonas caviae. It
has been found to develop in patients with immunocompromised
conditions (Chao et al., 2012; Hussain et al., 2018). Moreover, A.
caviae and A. hydrophila were shown as the most common species
causing urinary tract infections (Mandal et al., 2010; Chao et al.,
2012). Aeromonas spp. infections are mostly induced by human
activity (e.g., bathing, swimming, and other recreational activities)
in natural reservoirs of surface waters in which these
environmental bacteria are widely distributed (Janda and
Abbott, 2010; Igbinosa et al., 2012; Fewtrell and Kay, 2015). The
number of infection cases increased in the summer months after
human contact with Aeromonas spp.-contaminated water. Some
of these cases were related to a high mortality rate in
immunocompromised patients (Bravo et al., 2003; Di Pinto
et al., 2012; Igbinosa et al., 2012; Obeidat et al., 2021).

Among others, Aeromonas species are able to produce a
number of putative virulence factors such as fimbriae,
egzotoxins, and hemolysins (Alvandi and Anathan, 2003;
Al-Benwan et al., 2007; Chopra et al., 2009; Alperi and
Figueras, 2010; Dacanay et al., 2010; Mandal et al., 2010;
Dallaire-Dufresne et al., 2014). The importance of bacterial
fimbriae as a possible virulence factor in the adhesion process
was observed among other known uropathogens such as
Escherichia coli (Mizunoe and Wai, 1998; Olorunmola et al.,
2013). It is widely accepted that fimbriae are the important
initiating factors in every UTI through their adhesive properties
that allow bacterial adherence to mucous membranes and
urinary tract colonization. Fimbriae enable bacteria to survive
and multiply in vivo. Aeromonas species are recognized as
opportunistic pathogens causing, among others, UTIs in
humans. It is confirmed that the urinary tract is easily
accessible to Aeromonas spp., and UTIs caused by A.
hydrophila, A. veronii biotype sobria, Aeromonas popoffii, and
May 2022 | Volume 12 | Article 885360
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A. caviae are scientifically reported as well (Al-Benwan et al.,
2007; Dacanay et al., 2010; Janda and Abbott, 2010; Mandal
et al., 2010). Waterbathing and other recreational activities
within freshwater natural reservoirs may be considered as
favorable conditions for exposure to these opportunistic
bacteria. When the potential risk associated with external
environment and occasional recreation water baths was
investigated, attention focused on specific microorganism
species and on the ways of their penetration. It is well
documented that, due to water contact with human bodies
during such recreational activities as swimming, bathing,
fishing, canoeing, and other water sports, human infections
caused by Aeromonas bacteria may occur as a consequence of
exposure to these pathogens (Janda and Abbott, 2010; Di Pinto
et al., 2012; Igbinosa et al., 2012; Fewtrell and Kay, 2015).

The available literature data show that the pathogenesis and
the mechanism of UTIs due to Aeromonas spp. have not been
explained or described anywhere. Emerging cases of such
infections confirm the strong need for attention to these
bacteria while investigating for the etiology of UTI, especially
in adults with occupational exposure to aquatic ecosystems. Of
the patients with such documented diseases, two had a history of
occupational exposure to an aquatic environment. The first-ever
reported case of UTI infection attributed to A. popoffii isolated
from freshwater was found in a 13-year-old boy suffering from
spina bifida with enterocystoplasty (Hua et al., 2004).
Furthermore, Aeromonas species were also rarely associated
with hemolytic uremic syndrome (Hsueh et al., 1998).

According to Baron et al. (2017), Aeromonas spp. are a very
good candidates for being indicator bacteria to follow
ant imicrobia l res i s tance d is seminat ion in aquat ic
environments. Despite the lack of phenotypically expressed
resistance, Aeromonas spp. isolates derived from recreational
bathing sites may harbor some drug resistance genes or may be
the etiological agents of serious opportunistic infections, which is
difficult both diagnostically and therapeutically.

For common bacterial infections, including sexually
transmitted diseases and urinary tract infections, resistance
against a variety of antimicrobials frequently used to treat
these infections has been observed worldwide, indicating that
we are running out of effective antibiotics [Redgrave et al., 2014].
For UTIs, considered as the most commonly diagnosed diseases
in urological patients, fluoroquinolones are regarded as a good
option to include in the therapy scheme of UTIs, with good
effectiveness and efficacy and a low risk of developing resistant or
multi-drug-resistant bacteria (Chao and Farrah, 2019). However,
the surveillances demonstrate increasing antimicrobial resistance
rates in Gram-negative bacteria, especially Enterobacteriaceae, in
the past few years. As was reported to the Global Antimicrobial
Resistance and Use Surveillance System, the rate of resistance
varied from 8.4 to 92.9% for Escherichia coli and from 4.1 to
79.4% for Klebsiella pneumoniae in reporting countries
(WHO, 2021).

Broad-spectrum fluoroquinolones are frequently used to treat
UTIs (Parker and Shaw, 2021). These antimicrobials are also very
important during a range of Aeromonas-infective diseases in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
human and in animal treatment (Alcaide et al., 2010). The
constant persistence of Aeromonas in various environments
and its increasing resistance are widely observed nowadays
(Poirel et al., 2012; Redgrave et al., 2014; Piotrowska and
Popowska, 2015; Wimalasena et al., 2017). An aquatic
environment creates favorable conditions for the horizontal
transfer of resistance genes (Tennstedt et al., 2003). The
exposure to resistant bacteria during, e.g., swimming, bathing,
or other activities, may create a potential risk of bacterial
influence as opportunistic pathogens. Clinically and
environmentally relevant Aeromonas spp. are resistant to many
agents such as fluoroquinolones on the basis of gene alterations,
efflux, and transferable quinolone resistance. Moreover, various
clinical and natural water source aeromonads demonstrate
greater resistance against different antibiotics (Jacobs and
Chenia, 2007; Beaz-Hidalgo and Figueras, 2013). In many
cases, Aeromonas species resistance relates to the occurrence of
mobile resistance genes (Piotrowska and Popowska, 2015;
Wimalasena et al., 2017). Although aeromonads are causative
uropathogens, the likelihood of their isolation with respect to
resistant pathotypes or genotypes from aquatic environments,
such as freshwater reservoirs, occasionally used for recreational
activity cannot be exaggerated.

The aim of our invest igation was to detect the
fluoroquinolone-resistant phenotypes and/or genotypes of
Aeromonas spp. presenting on freshwater surface used only
seasonally for recreation and bathing activities. Although
Aeromonas spp. are not known uropathogens and they rarely
cause UTI, we hypothesize that the presence of these bacteria in
the freshwater environment, especially with antimicrobial
resistance phenotypic and/or genetic factors, and the contact
with them during a recreational and bathing activity can create
the risk condition for the colonization of the human body and
may result to opportunistic diseases in various locations,
including the urinary tract. The isolates, obtained from
occasional bathing freshwater reservoir, were identified and
screened for the following plasmid-mediated quinolone
resistance determinants (PMQR): qnr (qnrA, qnrD, and qnrS)
and aac-6′-Ib-cr. Hence, it is presumed that these bacteria may
pose a risk to the expression of resistance genes under in vivo
conditions and can cause a difficult-to-treat disease in an
infected organism.
MATERIALS AND METHODS

Sample Collection
The samples were collected in natural freshwater reservoir
Domaniów (51°26′16.945″ N, 20°50′53.967″ E) which is
occasionally used for bathing and other forms of human
recreational activities. This freshwater reservoir is also used as
a retention tank of Radomka River located in east-central Poland,
in the Masovian Voivodeship. The isolates were sampled during
bathing season (June 29, 2019). The following sampling sites
were chosen based on their location and distance to the beach: I
—two places in front of the beach, II and III—two places in the
May 2022 | Volume 12 | Article 885360
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middle of the beach, 1 and 30 m (III) away from the shoreline,
respectively, and IV—two places behind the beach. A total of 18
water samples (six sampling locations with three samples taken
from each one) were aseptically placed in sterile, dark glass
bottles and transported to the laboratory of the Department of
Pharmaceutical Microbiology of Medical University of Lublin,
Poland. The collected samples were then placed on routinely
used microbiological agar media plates (Difco, Detroit, MI, USA)
in two different volumes (10 and 100 µl) and in duplicate to
differentiate aerobic Gram-negative bacteria. Tryptic soy agar as
a nutrient medium for non-selective heterotrophic
microorganisms and McConkey agar medium for Gram-
negative rods were used to isolate potentially pathogenic
bacteria and to distinguish them initially. All plates were
incubated at 35°C for 24–48 h. All media were purchased from
Difco (Detroit, MI, USA). These culture media were selected to
increase the likelihood of isolating microorganisms that are
present in a given tank and so to favor the growth of
potentially pathogenic bacteria.

Isolate Identification
An initial phenotypical identification of isolates, according to
colonies grown in different morphotypes, was performed. The
isolates growing in aerobic conditions (facultative anaerobic
bacteria) were previously characterized as Gram-negative,
nonlactose-fermenting, and oxidase-positive bacteria. Thus, a
total of 71 isolates, growing in various colony morphotypes, were
selected from the water samples. These isolates were
phenotypically identified at the species level by matrix-assisted
laser desorption ionization–time-of-flight mass spectrometry
(MALDI-TOF MS) technique using the UltrafleXtreme
MALDI-TOF mass spectrometer (Bruker Daltonics, Germany).
The classification of Aeromonas species based on protein profile
detection was described previously (Benagli et al., 2012). The
analyses of isolates from surface water samples for Aeromonas
species were conducted at the Department of Epizootiology and
Clinic of Infectious Diseases, Faculty of Veterinary Medicine,
University of Life Sciences of Lublin, Poland. The identification
was preceded by the extraction of proteins with ethanol and
formic acid by using the MALDI-TOF MS technique. Next, sets
of bacterial ribosomal proteins were compared with the protein
profile reference spectra contained in MALDI Biotyper 3.1
library (Bruker Daltonics, Bremen, Germany). Two major
parameters—ion mass-to-charge ratio (m/z) and relative ion
intensity—allow the identification of the bacteria at the genus,
species, or strain level. After the protein profile analysis, a total
collection of 69 Aeromonas spp. isolates identified by MALDI-
TOF MS was selected for further analysis. Once the taxonomic
position of the microorganism was determined, to determine the
relationship between the obtained Aeromonas spp. isolates, the
MALDI main spectra dendrograms were created.

The proteomic identification step was preceded by a standard
ethanol/formic acid extraction procedure, according to the
manufacturer’s instructions.

A comparative analysis of collected data with reference
bacterial spectra was performed by using MALDI Biotyper 3.1
software (Bruker Daltonics, Germany), comprising 8,468 strains
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
and 47 Aeromonas spectra. The report presenting the results
included the top 10 identified matches for each sample, along
with confidence scores ranging from 0.00 to 3.00. The following
score values proposed by the manufacturer were applied: a log
(score) <1.70 indicated no reliable identification (-), a log (score)
of 1.700–1.999 allowed identification at the genus level (+), a log
(score) of 2.00–2.299 indicated highly probable identification at
the genus level and probable identification at the species level
(++), and a log (score) ≥2.300 indicated highly probable
identification at the species level (+++).

Dendrogram Construction for Aeromonas
spp. Isolates
To determine the relationship between Aeromonas spp. strains, a
MALDI main spectra dendrogram was created by using MALDI
Biotyper 3.1 software (Bruker Daltonics, Germany). For this
purpose, to identify a high level of reproducibility, the spectra
were analyzed in FlexAnalysis software and used to create the
main spectra profile (MSP). Each MSP was matched against all
MSPs of the analyzed set. The list of score values was used to
calculate the normalized distance values between strains,
resulting in a matrix of matching scores.

Fluoroquinolone Sensitivity Detection
The antimicrobial susceptibility of 69 Aeromonas isolates
identified at the species level was determined by VITEK2
Compact Automatic System (bioMerieux, France) using AST-
N331 cards containing the following fluoroquinolones:
ciprofloxacin and levofloxacin. The bacterial colony suspension
equivalent to 0.5 McFarland was diluted in 0.45% saline into
1.5 × 107 CFU/ml, according to the manufacturer’s procedure.
The results for Aeromonas spp. were interpreted on the basis of
minimum inhibitory concentration (MIC) cutoff values
according to the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) 2021 recommendation and
Clinical and Laboratory Standards Institute (CLSI) guideline
M45 (CLSI, 2015; CLSI, 2019). On the basis of expert rules,
Pseudomonas aeruginosa ATCC 27853 (CLSI, 2015; EUCAST,
2021) and Escherichia coli ATCC 25922 were used as quality
control. Additionally, A. veronii DSM 7386 (Deutsche
Sammlung von Mikroorganismen, Leibniz-Institut, Germany)
was used as positive control.

DNA Extraction and Fluoroquinolone
Resistance Genes
Bacterial DNA was extracted by using the Genomic Mini (A&A
Biotechnology, Poland) according to the manufacturer’s
protocol. The resulting DNA was stored at 4°C until further
analysis. The determination of PMQR genes was performed by
PCR amplification from extracted DNA using oligonucleotide
primers (Genomed, Poland) with a final concentration of 20 mM
(presented in Table 1).

The PCR cycling conditions were 34 to 35 cycles of the
following: 95°C for 60 s, 50–55°C for 60 s, and 72°C for 60 s.
All reactions were carried out using the REDTaq® ReadyMix™

PCR Reaction Mix (Sigma-Aldrich, USA) in a total volume of 25
May 2022 | Volume 12 | Article 885360
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µl containing 1 µl of each 20 µM primer and 2 µl of extracted
DNA, followed by electrophoresis in 1.5% agarose gel (Sigma-
Aldrich, USA).
RESULTS

Proteomic Identification of Freshwater-
Borne Aeromonas spp. Isolates Using the
MALDI-TOF MS Method
On the basis of protein profile, all 69 (100%) isolates were
identified as Aeromonas spp. Among these (Supplementary
Table S1), 67/69 (97.1%) isolates were identified at the species
level [log(score) ≥2.0], and two isolates (2.9%) were identified at
the level of probable genus identification [log(score) = 1.978–
1.99]. A total of eight different Aeromonas species were identified
(Table 2). The most prevalent species were A. veronii (50.7%; 35/
69 isolates) and A. media (24.6%; 17/69 isolates), followed by A.
eurenophila (7.25%; 5/69 isolates), A. caviae (4.35%; 3/69
isolates), A. ichthiosmia (4.35%; 3/69 isolates), A. bestiarum
(4.35%; 3/69 isolates), A. hydrophila (2.9%; 2/69 isolates), and
A. popoffii (1.5%; 1/69 isolate). These positive identification
results were related to members of species presented in the
Biotyper database (Supplementary Table S1).

Dendrogram of the Analyzed Aeromonas
spp. Isolates
After determination of the taxonomic position of the
microorganism, the relationship between identified Aeromonas
spp. isolates was determined by using the MALDI main spectra
dendrograms (Figure 1 and Figure 2). In order to present the
results clearly, four dendrograms were prepared for the following
species: A. veronii (n = 35), A. media (n = 17), A. eucrenophila
(n = 5), and other Aeromonas spp. (n = 12). First, the A. veronii
dendrogram was divided into two separate clusters. Cluster 1
included 3 strains with the lowest score value. The largest one,
cluster 2 (subclusters 2A and 2B), contained 31 strains, which
showed the most closely related strains. The strain R138
remained separately on its own at the distance level between
900 and 1,000 (Figure 1).

The dendrograms for A. media and rarely identified
Aeromonas spp. species (A. hydrophila, A. ichtiosmia, A.
caviae, A. popoffi, and A. bestiarum) showed two to three
clusters (Figure 2). As shown in Figure 2A, the dendrogram
of A. media isolates was divided into 3 more clusters: blue
(cluster 1), red (cluster 2), and green (cluster 3) comprising 4,
2, and 11 isolates, respectively. Two other dendrograms, both for
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
A. eucrenophila (Figure 2B) and other Aeromonas spp.
(Figure 2C), showed branching at the distance level below 400.

Antimicrobial Susceptibility
All Aeromonas spp. isolates tested revealed the ciprofloxacin and
levofloxacin MIC values of ≤0.25 and <0.5 µg/ml, respectively, so
they were categorized as susceptible to these antimicrobials,
regardless of the recommendations used to interpret the AST
results. Of these, 42.0% (29/69) isolates harbored one or more
PMQR genes (Figure 3). Co-carriage of two PMQR genes was
detected in 11.6% (8/69) isolates.

The presence of PMQR genes among Aeromonas spp. isolates
was confirmed. QnrS was the most frequent gene (34.8%, 24/69)
of fluoroquinolone-susceptible isolates, which was found in an
average of three isolates from eight species tested, followed by
qnrA (14.5%, 10/69) gene detected in an average of 1.25 isolates
from eight Aeromonas species (Figure 4).

Figure 5 presents the PMQR gene distribution of Aeromonas
spp. freshwater-borne isolates according to the PCR detection
results. Of Aeromonas spp., isolates within each of the eight
identified species carried at least one PMQR gene, except A.
hydrophila and A. bestiarum isolates. Depending on the species,
23.2% (16/69) A. veronii isolates had at least one PMQR gene,
while the same factor was in 13.0% (9/69) and 5.8% (4/69) of A.
media and A. caviae isolates, respectively. QnrD was the most
frequent (10.1%, 7/69) gene among A. media isolates, while both
qnrA and qnrS were found in 7.2% (5/69) and 14.5% (10/69) A.
veronii isolates, respectively.
DISCUSSION

Given the worldwide distribution of Aeromonas genus, the
occurrence of virulence factors, and antimicrobial resistance, as
well as the ability of these bacteria to survive safety treatments,
interest in this genus (especially in its members as human
pathogens) has grown over the last years (Sen and Rodgers,
2004; Khajanchi et al., 2010; Pablos et al., 2010). Aeromonad
identification, virulence factors, and antimicrobial sensitivity
remain poorly understood due to the variable characteristics
and behavior of the strains. Furthemore, infective diseases with
Aeromonas spp. as an etiological agent may be polymicrobial,
and they are often difficult to classify.

The environmental microbes found in the natural surface of
water reservoir occasionally used for recreational activity may
pose a health risk and possibilities of infection by opportunistic
pathogens harboring possible resistance against antimicrobial
TABLE 1 | Characteristics of primers used for the amplification of selected fluoroquinolone resistance genes by the PCR method.

Gene Primer name Sequence (5′!3′) Product length (bp) Reference

qnrA QnrAm-F
QnrAm-R

AGAGGATTTCTCACGCCAGG
TGCCAGGCACAGATCTTGAC

580 Cattoir et al., 2007

qnrS QnrSm-F
QnrSm-R

GCAAGTTCATTGAACAGGGT
TCTAAACCGTCGAGTTCGGCG

428 Cavaco et al., 2008

qnrD qnrD-F
qnrD-R

CGAGATCAATTTACGGGGAATA
AACAAGCTGAAGCGCCTG

582
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agents. In this work, we studied the presence of Aeromonas spp.
in the natural reservoir of freshwater occasionally used for
bathing and other recreational activities. Additionally, on a
large panel of aeromonads, the presence of fluoroquinolone-
resistant or fluoroquinolone-susceptible phenotypes of these
bacteria was checked automatically using phenotypic methods
with the fluoroquinolones such as ciprofloxacin and levofloxacin.
Next, the presence of PMQR genes in the examined isolates was
observed by the PCR technique. Under favorable conditions,
these genes may cause resistance to these drugs important in the
treatment of infections, e.g., in urinary tract diseases. As a
consequence of humans’ activity in water, Aeromonas spp., as
opportunistic pathogens with adhesive properties and possessing
virulence factors, may enter the body and colonize it. Then, they
may cause diseases, including UTIs, which can be difficult to
diagnose and treat.

There are several problems resulting from the widespread
presence of Aeromonas spp. and their potential to be agents of
infections. One is the correct taxonomy and problematic
classification (Alvandi and Anathan, 2003; Al-Benwan et al.,
2007; Alperi and Figueras, 2010; Mandal et al., 2010), and the
other relates to Aeromonas spp. drug susceptibility testing and
interpretation of its results (Bedearden and Danziger, 2001;
Huddleston et al., 2006; Lamy et al., 2012).

In this study, a protein profile based on MALDI-TOF MS
technique was used to complete the identification of Aeromonas
spp. isolated from recreational freshwater. As shown in the
literature, the main problem is constantly changing and
causing many mistakes in Aeromonas spp. taxonomy (Abbott
et al., 2003; Beaz-Hidalgo et al., 2010; Vávrová et al., 2015). A key
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problem in understanding the significance of isolated strains of
Aeromonas spp. is the choice of the identification method.
Traditional microbiological methods (i.e., morphological,
physiological, or biochemical) might not result in the proper
identification down to the species level due to the variable
characteristics and behaviors of strains (Beaz-Hidalgo et al.,
2010). Protein profile-based methods are now becoming more
popular and widely accepted in a clinical setting due to their
strong reproducibility, simplicity, and high discriminatory
power. This technique is used much less frequently in the
identification of egzogenic pathogens as well as commensal or
symbiotic microorganisms and has limited environmental
applicability, whereas most of the currently available mass
spectral libraries were developed for human pathogens. It is
known that a rapid, cost-effective, and accurate method for the
classification of these microbials, such as mass spectrometry
(MALDI-TOF MS), would improve our understanding of the
microorganisms living in various environments and how to
facilitate water use safely. Pinar-Méndez et al. (2021) created a
database and defined a MALDI-TOF MS drinking water library.
It was developed specifically by targeting bacteria present in
drinking or mineral bottled water; however, there is a strong
need for such directory for the faster identification of
environmental aeromonads isolated from surface freshwater,
e.g., on the basis of our protein profile results, all tested
bacteria were identified as Aeromonas spp., among which all
isolates were described to the species level, including 97.1% ones
with log(score) ≥2.0 and only two isolates with log(score) <2.0.
During our investigation, mass spectrometry and protein profile-
based phenotypic identification were very useful for the
FIGURE 1 | Main spectra profile dendrograms generated by MALDI Biotyper to determine the relationship between Aeromonas veronii (n = 35) strains.
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classification of the bacteria tested and collected from surface
freshwater down to species level.

According to our results, A. veronii and A. media were the
most frequent species among those tested from freshwater-borne
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
isolates. Our data highlighted that Aeromonas species present in
recreational water should be kept in mind as the probable
waterborne opportunistic pathogens important to human
health. The mucous membranes in the mouth, nose, as well as
FIGURE 3 | Number of plasmid-mediated fluoroquinolone resistance determinants possessed by Aeromonas spp. freshwater-borne isolates.
A

B C

FIGURE 2 | Main spectra profile dendrograms determining the relationship between freshwater reservoir Aeromonas strains: (A) Aeromonas media, (B) Aeromonas
eucrenophila, and (C) other Aeromonas spp. generated by MALDI Biotyper.
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respiratory or urinary tract are easily accessible to those bacteria,
which may support the hypothesis on Aeromonas spp. being the
etiological agents of many infective diseases, including as a causal
agent in urinary tract infections. A. hydrophila, A. caviae, and A.
veronii (biovar sobria) are treated as the most common species
associated with human infections (Janda and Abbott, 2010; Tang
et al., 2014). The cases of UTIs with aeromonad etiology have
been proven in the literature, as shown in Table 2. As identified,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
A. caviae and A. hydrophila were shown as the most common
species causing urinary tract infections.

Both the misuse and overuse of medicines used for the
prevention and treatment of infections in various organisms,
including humans, animals, and plants, appear to be the greatest
source of microbial resistance emergence. The importance of
various environments ’ role in the dissemination of
antimicrobial-resistant bacteria is now well recognized. The
FIGURE 5 | Presence of plasmid-mediated fluoroquinolone resistance genes in different species of Aeromonas bacteria isolated from freshwater samples.
FIGURE 4 | Presence of plasmid-mediated quinolone resistance genes in Aeromonas spp. isolates from freshwater samples.
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primary objective of our research on Aeromonas spp. isolates
from freshwater was to understand the potential risks connected
with the exposure to resistant bacteria residing in natural water
reservoir seasonally used for bathing and other recreational
purposes. It was important to us because of the possible role of
various water reservoirs as an ideal place for dissemination and
acquisition of antimicrobial resistance by microorganisms
forming environmental biomes.

Quinolones are considered to be the most successful and
frequently used in many infection therapies, such as diarrhea,
skin infections, as well as digestive or urinary system infectious
diseases (Pablos et al., 2010; Parker and Shaw, 2011). Hence, we
investigated the sensitivity of the tested isolates against 2nd- and
3rd-generation fluoroquinolones, ciprofloxacin and levofloxacin,
respectively. An increasing emergence of bacterial resistance and
number of various resistance genes detected in Aeromonas genus
nowadays may be the consequence of antibiotic overuse
worldwide. There are numerous genes in the Aeromonas spp.
genome, antibiotic resistance genes, e.g., which do not always
indicate their phenotypic expression (Grim et al., 2013; Mosser
et al., 2015; Chenia, 2016; Wimalasena et al., 2017). Even if a
sampled isolate is identified, it is possible that it will obtain the
susceptible phenotype in an in vitro test. Thus, such bacteria may
pose a risk of transmission and expression of resistance genes in
in vivo conditions and may cause difficulty in the treatment of a
disease in an infected organism (Sen and Rodgers, 2004; Rahman
et al., 2007). The importance of the drastic upward trend in
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resistance to quinolones among Gram-negative bacteria is worth
noting due also to their wide use in the treatment of infectious
diseases during hospitalization as well as in UTI and respiratory
tract infections in outpatient settings (Dalhoff, 2012).

Quinolones may inhibit bacterial DNA synthesis by
interfering with the action of two crucial enzymes for that
process—DNA gyrase and topoisomerase IV (Yoshida et al.,
1990; Goñi-Urriza et al., 2002; Soler et al., 2004; Küpfer et al.,
2006; Picão et al., 2008; Picão et al., 2013). The clinically
important mechanism of bacterial resistance against
fluoroquinolones is amino acid substitutions, leading to
structural changes in the quinolone resistance-determining
regions of DNA gyrase (gyrA and gyrB) and DNA
topoisomerase IV (parC and parE) subunits, the so-called
quinolone resistance-determining regions (QRDR), together
leading to target modification. Quinolone resistance may also
result from horizontal gene transfer, during which bacteria can
acquire various mobile genetic elements, including PMQR genes.
It can be mediated by qnr genes encoding the pentapeptide
repeat family (Küpfer et al., 2006; Grim et al., 2013; Mosser et al.,
2015; Chenia, 2016).

Based on the MIC values obtained for a collection of isolates
tested, we have shown during our investigation that all
Aeromonas spp. isolates selected from freshwater were
identified as phenotypically susceptible in an in vitro test
against both ciprofloxacin and levofloxacin. In this study,
among the PMQR genes, three qnr determinants (qnrA, qnrD,
and qnrS) were examined, although during our examination
some bacteria were fluoroquinolone resistance silenced gene
carriers without their expression. One or more PMQR genes
have been reported in the same 42.0% (29/69) of isolates. A very
good agreement was observed between the interpretation of
quinolone sensitivity results for both CLSI (2015; 2019) and
EUCAST [2022] recommendation.

According to Aravena-Roman et al. (2011), the Aeromonas
spp. strains of environmental origin are not the principial source
of resistance. Both antimicrobial resistance mechanisms and its
determinants may be acquired from clinical strains. Researchers
observed that some common clinical strains, such as A. veronii
bv. sorbia and A. hydrophila, were more resistant than the
corresponding bacteria isolated from the environment. In
contrast, the results of Huddleston et al. (2006) suggested the
heavily polluted waters as the source of multiple resistance
plasmids. Consistent with these reports, the in vivo Aeromonas
strains examined during our studies and derived from
recreational bathing freshwater created a potential risk as
opportunistic pathogens and, after expressing the resistance
genes, can cause serious opportunistic infections that are
difficult both diagnostically and therapeutically. According to
WHO (https://www.who.int/news-room/fact-sheets/detail/
antimicrobial-resistance), among the main drivers of resistance
against antimicrobials is not only poor infection or disease
prevention and control in healthcare facilities and farms but
also the lack of awareness and knowledge.

Unfortunately, recommendations and criteria for
antimicrobial susceptibility tests and MIC values interpretation
TABLE 2 | Distribution of Aeromonas spp. as the etiological agents of urinary
tract infections (UTIs) on the basis of literature data.

Aeromonas
species

Number of isolates from
recreational water—own

data (n = 69)

Number of
UTI cases

References

A. veronii/A.
veronii biovar
sobria

35 2 Chao et al.,
2012

1 Hsueh et al.,
1998

2 Mohanty et al.,
2020

2 Mandal et al.,
2010

A. caviae 3 6 Chao et al.,
2012

4 Mandal et al.,
2010

1 Al-Benwan
et al., 2007

A. hydrophila 2 12 Chao et al.,
2012

1 Bartolomé
et al., 1989

2 McCracken and
Barkley, 1972

3 Washington,
1972

1 Mohanty et al.,
2020

A. popoffii 1 1 Hua et al., 2004
May 2022 | Volume 12 | Article 885360

https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Kosikowska et al. PMQR Genes in Freshwater-Borne Aeromonas
of Aeromonas spp. were scarce in the guidelines and literature for
a long time. Aeromonas spp. antimicrobial susceptibility was
usually evaluated using Enterobacteriaceae breakpoints.
According to Lamy et al. (2012), data for Enterobacteriaceae
ciprofloxacin breakpoints can be accepted for testing Aeromonas
spp. quinolone sensitivity. Only since 2018 has EUCAST been
developing breakpoint tables for the interpretation of MICs and
the zone diameters for the genus Aeromonas (version 8.0, valid
from 2018-01-01). The CLSI M45 document (CLSI, 2015)
provided separate limits for Aeromonas only, already including
in 2015 members of Aeromonas caviae complex, Aeromonas
hydrophila complex, and Aeromonas veronii complex.

During our investigations, the PMQR determinant qnr (qnrA,
qnrD, and qnrS) in the Aeromonas spp. isolates obtained from
freshwater reservoir has been confirmed in fluoroquinole-
susceptible phenotypes. Hence, it is presumed that these
bacteria may pose a risk to the expression of resistance genes
under in vivo conditions and can cause a difficult-to-treat disease
in an infected organism, although from the lack of
phenotypically expressed quinolone resistance, these bacteria
were identified as bearing the susceptible phenotype, which
means that, under in vivo conditions, these drugs will become
ineffective in the infected organism. Over half (58.0%) of the
tested Aeromonas spp. did not harbor any of the PMQR genes
analyzed. Fluoroquinolone usage during infective disease
therapy, especially against bacterial infections of the urinary
tract, is often the best and cost-effective option between
considering the risk and positive effects of treating the patient,
which altogether proves their importance. Additionally, it allows
to create safe conditions to lower the risk of emerging resistant or
multi-resistant pathogens. Among molecular quinolone
resistance mechanisms, the most common are mutations both
in chromosomal genes encoding gyrase and topoisomerase IV
and in regulatory genes which control the expression of efflux
pumps present in bacterial membranes. Moreover, among the
known three mechanisms of PMQR are Qnr proteins, AAC(6’)-
Ib-cr (the aminoglycoside acetylotransferase variant), as well as
QepA and OqxAB efflux pumps mediated by plasmids.
According to literature, the presence of the two genes
simultaneously—qnrA and aac(6’)-lb—means that the level of
resistance for this isolate is increased fourfold more than that
conferred by qnrA alone (Park et al., 2006; Rodrıǵuez-Martıńez
et al., 2011; Seyedpour and Eftekhar, 2014). The presence of
PMQR genes, such as qnr and aac (6’)-lb-cr, in E. coli fosters a
mutation in the QRDR region and the selection of strains
resistant to ciprofloxacin and levofloxacin after the use of these
drugs in therapy (Park et al., 2006; Piekarska et al., 2015).

The resistance to fluoroquinolones mediated by plasmids is
defined to be low-grade resistance with the MIC breakpoint
proper for a susceptible strain (Picão et al., 2008; Rodrıǵuez-
Martıńez et al., 2011; Picão et al., 2013; de Walthoffen, 2020).
Moreover, it was detected that the presence of a plasmid in a
bacterial cell promotes mutations in the topoisomerase and
gy ra s e gene s and the s e l e c t i on o f r e s i s t ance to
fluoroquinolones. Genes placed on plasmids may also be
localized on other mobile genetic elements, such as
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
transposons and/or integrons, together with genes for
resistance to other antimicrobials, like to beta-lactams in
strains of multidrug-resistant Gram-negative bacteria.
Furthermore, the same plasmids with resistance mechanisms
against one antimicrobial may complement other chromosomal
resistance types. Natural transformation is the basic way of
horizontal gene transfer in microorganisms. Unfortunately,
genetic changes naturally occur over time and usually create
microorganisms resistant against antimicrobials.
CONCLUSIONS

We confirmed the Aeromonas species as a good candidate for
bacterial indicators to follow the antimicrobial resistance
phenomena and resistance dissemination in aquatic
environments. It was shown that the Aeromonas genus, being
autochthonous in surface freshwater environment, is easy to
detect using the proteomic method. We recommend proteomics
as a useful method for evaluating species-level freshwater-borne
Aeromonas identification. The presence of plasmid-mediated
fluoroquinolone resistance qnr determinants in Aeromonas
spp. and the higher prevalence of qnrA than qnrS and qnrD
was detected in the tested fluoroquinolone-susceptible
phenotypes isolated from freshwater. These genes may serve as
reservoir for dissemination to other aquatic bacteria and risk of
expression in vivo in infected humans. Therefore, it is imperative
to monitor in Aeromonas species the development of
antimicrobial resistance to common clinical treatment
recommendations, including quinolone susceptibility tests that
should be made out. Additionally, the results should be respected
in practice for proper and positive results of treatment in water-
borne opportunistic infections and to reduce selective pressure
that could result in the spread of fluoroquinolone-resistant (uro)
pathogens in the environment.
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