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The single-stranded viral RNA (ssvRNA) known as the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) that causes COVID-19 can be effectively inactivated by a
number of natural ribonucleic acid-based host cell defenses. One of the most important of
these defenses includes the actions of a class of small non-coding RNAs (sncRNAs)
known as microRNAs (miRNAs). Via base-pair complementarity miRNAs are capable of
specifically targeting ssvRNA sequences such as SARS-CoV-2 promoting its inactivation
and neutralization. RNA-sequencing and bioinformatics analysis indicate that multiple
naturally-occurring human miRNAs have extensive complementarity to the SARS-CoV-2
ssvRNA genome. Since miRNA abundance, speciation, and complexity vary significantly
amongst human individuals, this may in part explain the variability in the innate-immune
and pathophysiological response of different individuals to SARS-CoV-2 and overall
susceptibility to ssvRNA-mediated viral infection.

Keywords: Alzheimer’s disease, COVID-19, hsa-miRNA-15b-5p, hsa-miRNA-146a-5p, messenger RNA (mRNA),
microRNA (miRNA), SARS-CoV-2, single-stranded viral RNA (ssvRNA)
OVERVIEW – SEVERE ACUTE RESPIRATORY SYNDROME
CORONAVIRUS-2 (SARS-CoV-2)

Possessing an unusually large, positive-sense, ssvRNA genome of about ~29,903 nucleotides (nt;
SARS-CoV-2 isolate Wuhan-Hu-1, Ke et al., 2020; Sah et al., 2020; Wu et al., 2020; Mousavizadeh
and Ghasemi, 2021; National Center for Biological Information (NCBI) GenBank Accession No.
NC_045512.2; last accessed 16 May 2022), SARS-CoV-2: (i) is a member of the genus
Betacoronavirus in the family Coronaviridae that includes other common pathogenic human
influenza-causing ssvRNA Coronaviruses (hCoV-OC43, HKU1 and 229E), SARS and MERS-CoV
(Sah et al., 2020; Mousavizadeh and Ghasemi, 2021; Raghuvamsi et al., 2021); (ii) consists of a
nucleocapsid core containing genomic ssvRNA within a lipoprotein envelope forming a ~100 nm
diameter spherical virion particle (Ke et al., 2020); (iii) structurally resembles a ‘typical’ large
messenger RNA (mRNA) possessing a 5′ methyl cap structure, a 3′ poly(A) tail and ~10-14
Abbreviations: COVID-19, coronavirus disease of the year 2019; has, Homo sapien; KEGG, Kyoto encyclopedia of genes and
genomes; mRNA, messenger RNA (mRNA); miRNA, microRNA; RdRp, RNA dependent RNA polymerase; SARS-CoV-2,
severe acute respiratory syndrome coronavirus-2; single-stranded viral RNA, (ssvRNA); WHO, World Health Organization.
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overlapping open reading frames (ORFs) with minimal spacer
regions, encoding ~29 proteins, not all of which have been fully
characterized (Ke et al., 2020; Sah et al., 2020; Raghuvamsi et al.,
2021); (iv) possesses one of the largest ssvRNA genomes of all
known ssvRNA viruses and a correspondingly huge target for
potential sncRNA and miRNA interaction (Finkel et al., 2021;
Mousavizadeh and Ghasemi, 2021; Pogue and Lukiw, 2021;
Lukiw, 2022); (v) as an ssvRNA virus is representative of the
most common type of emerging viral disease in humans; this
appears to be attributable to the high mutation rate in RNA
viruses (compared to DNA viruses) that possess extremely high
mutation rates of up to 106 times higher than that of their hosts
(Pachetti et al., 2020); and (vi) orchestrates a multipronged
strategy to impede host protein synthesis including the
accelerated degradation of host cytosolic cellular mRNAs, thus
facilitating viral takeover of the host mRNA pool in infected cells
(Finkel et al., 2021; Lukiw, 2022). The main structural proteins of
SARS-CoV-2 include the envelope (‘E’), membrane (‘M’),
nucleocapsid (‘N’), replicase (‘R’; an RNA dependent RNA
polymerase or RdRp), surface spike (‘S’) protein and several
accessory viral-encoded proteins (Ke et al., 2020; Finkel et al.,
2021; Siniscalchi et al., 2021). The SARS-CoV-2 viral lipoprotein
envelope is decorated with ‘E’, ‘M’, and ‘S’ proteins - the ‘S’
protein is a class 1 homo-trimeric viral fusion protein possessing
distinctive ‘head’ and ‘stalk’ domains essential for host cell entry
via the angiotensin converting enzyme 2 (ACE2) receptor (see
below; Ke et al., 2020; Raghuvamsi et al., 2021; Lukiw, 2021). As
discussed further below, using various miRNA-mRNA and
miRNA-ssvRNA search algorithms, ‘in silico’ analysis and
experimental validation, multiple naturally occurring human
host miRNAs have been both predicted and verified to target
several of these key SARS-CoV-2 genomic protein-encoding
regions (Arisan et al., 2020; Finkel et al., 2021; Zhao et al.,
2021). This Perspectives paper will address some of the most
current findings and emerging concepts in this fascinating
research area of potential miRNA contribution to human
innate-immunity with special reference to natural host
miRNAs, SARS-CoV-2, and the current COVID-19 pandemic.
miRNA, Mechanism of Action and the
Innate-Immune System

The discovery of the first microRNA (miRNA) Lin-4 in 1993 in
the nematode Caenorhabditis elegans and its post-transcriptional
targeting and down-regulation of the target mRNA encoded by
the heterochronic developmental gene Lin-14 revolutionized the
entire field of molecular biology (Lee et al., 1993; Wightman
et al., 1993; Bartel, 2018). It was not until almost a decade later
that multiple miRNAs were first identified and characterized in
Homo sapien cells and tissues (Lagos-Quintana et al., 2001;
Hammond, 2015). About 15 years ago appeared the first
reports on the interplay between host-derived miRNAs,
inflammation and innate-immunity during health, viral
infection, neurological disease and cancer (Calin and Croce,
2006; Lukiw, 2007; Bhela and Rouse, 2018; O'Brien et al., 2018;
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Mishra et al., 2020; Finkel et al., 2021; Padda et al., 2021). It has
been established that the major mechanism of miRNA action is
to bind via base-pair complementarity to single-stranded target
mRNA, and in doing so, down-regulate or neutralize their
biological activities (Hammond, 2015; Bartel, 2018; Lukiw,
2021). Taken together these studies uncovered complex, highly
interactive and selective miRNA-viral and host-cell interactions.
These included interplay among the pro-inflammatory- and
innate-immune microRNA-146a (miRNA-146a), the
neurotropic double-stranded DNA (dsDNA) herpes-simplex
virus 1 and human neurons (HSV-1; Hill et al., 2009; Pogue
and Lukiw, 2021). Largely based upon these original studies on
direct miRNA-target mRNA interaction there is currently an
expanding interest linking direct host miRNA interaction with
ssvRNA species such as SARS-CoV-2 and subsequent viral
inactivation, degradation and down-regulation of viral activity
and capability for successful infection in the human host
(Plotnikova et al., 2019; Mishra et al., 2020; Pierce et al., 2020;
Wicik et al., 2020; Lukiw, 2021; Mousavizadeh and Ghasemi,
2021; Narożna and Rubiś, 2021; Okuyan and Begen, 2021).
Current research further supports the concept that the actions
of the 2,650 known ~20-24 nucleotide (nt) human miRNAs and
other small non-coding RNAs (sncRNAs) and/or interfering
RNAs (iRNAs) form the functional basis for a novel division
of the host innate-immune system and its management of viral
genomic activity that has implications for the efficiency of
ssvRNA invasion and potential for infection.
THE ANGIOTENSIN CONVERTING
ENZYME 2 (ACE2) RECEPTOR

The ACE2 receptor is a zinc-containing carboxypeptidase
membrane-integral cell-surface receptor widely expressed in
multiple cell types that is uniquely recognized by the SARS-
CoV-2 virus ‘S’ glycoprotein for initial human host cell entry (Ke
et al., 2020; Pierce et al., 2020; Hill et al., 2021; Lukiw, 2021;
Raghuvamsi et al., 2021; Zhao et al., 2021). As the major SARS-
CoV-2 cell surface-exposed transmembrane glycoprotein
receptor ACE2 displays a significant variability in abundance
on multiple human cell types and this may not only add another
degree of variability for SARS-CoV-2 cellular invasion but also
modulates SARS-CoV-2 exposure to the variable miRNA
abundance and speciation in different human cell types (Ke
et al., 2020; Hill et al., 2021; Zhao et al., 2021). In fact, the ACE2
receptor, the gateway for SARS-CoV-2 entry into the host cell,
has a remarkable ubiquity, and has been detected on the surface
of every human cell type so far analyzed with the exception of the
erythrocyte, thus making it among the most prevalent receptor
subtype encountered in all of human physiology (Hill et al., 2021;
Jones et al., 2021; Zhao et al., 2021). Interestingly, the ACE2
receptor mRNA is itself targeted by multiple natural host
miRNAs and this may also have a bearing on the availability of
ACE2 receptor abundance on multiple cell and tissue types in
different human hosts – an observation that may be useful in the
personalized diagnosis of COVID-19 (Wicik et al., 2020).
June 2022 | Volume 12 | Article 887800

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Hill and Lukiw microRNA and SARS-CoV-2
Together these findings support the concept: (i) that multiple cell
types and tissues of the human respiratory, circulatory,
cardiovascular, digestive and genitourinary system, hematic,
lymphatic and glymphatic systems, and the central and
peripheral nervous systems (CNS, PNS) provide multiple
potential entry portals for SARS-CoV-2 invasion; and (ii) that
the invasion of SARS-CoV-2 into multiple human cell types
would also expose this ssvRNA to multiple cell-enriched or cell-
specific species of miRNA. This may explain in part the wide and
variable range of systemic involvement of SARS-CoV-2 infection
and the wide spectrum of symptoms observed in COVID-19
patients. Indeed, while SARS-CoV-2 initially causes severe and
acute respiratory distress and a highly lethal viral pneumonia it
also presents with multiple ancillary complications involving
multiple cell and tissue systems. An important example of
focused SARS-CoV-2 attack is that within the normal human
brain and CNS, extremely high levels of ACE2 receptor
expression and abundance are found within the Botzinger
complex of the rostral ventrolateral medulla, ventral
respiratory column and other medullary respiratory centers of
the brainstem, and this in part may explain the susceptibility of
numerous COVID-19 patients to serious disturbances in quiet,
restful breathing (eupnea) and the onset of severe respiratory
complications (Hill et al., 2021; Mousavizadeh and Ghasemi,
2021; Lukiw, 2021; Raghuvamsi et al., 2021; Zhao et al., 2021). An
increasing gradient of ACE2 receptor density in the human
visual system may aid in the translocation of SARS-CoV-2
from the moist surface of the exterior of the eye into deeper
regions of the visual brain (Lukiw, 2022). Another noteworthy
example is that about one third of all COVID-19 patients
experience neurological and/or neuropsychiatric symptoms,
and a pre-existing diagnosis of Alzheimer’s disease (AD)
predicts the highest risk for COVID-19 yet identified,
especially among elderly AD patients. ACE2 expression and
the density of ACE2 receptors have recently been found to be
significantly up-regulated in the temporal lobe neocortex and
hippocampal CA1 regions of AD-affected brain, anatomical
regions targeted by the inflammatory neuropathology that
characterizes AD, and this suggests a significant mechanistic
overlap between AD and successful SARS-CoV-2 and other viral
infections of the human CNS (Hill et al., 2009; Zhao et al., 2021;
Choe et al., 2022; Lingor et al., 2022; Sirin et al., 2022; Szabo et al,
2022; Wang et al., 2022).
HUMAN microRNA AND SARS-CoV-2 –

COMPLEXITY BY THE NUMBERS

In Homo sapiens miRNAs possess very highly selected and
‘evolutionary engineered’ ribonucleotide sequences and
currently represent the smallest known information-carrying
sncRNA sequences yet described. With regard to evolutionary
selection, a fascinating and often overlooked fact is that a ~22
nucleotide miRNA with the possibility of 4 ribonucleotides (A,G,
C or U) at each of the 22 positions could yield the staggering
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possibility of 422 (an exponentiation of four by the power of
twenty-two) or about ~1.76x1013 potential sncRNA sequences,
however only about ~2.65 x103 miRNA sequences have been
detected in all of human biology (miRBase ver 22.1, https://www.
mirbase.org/; GENCODE data ver 38, https://www.
gencodegenes.org/human/; last accessed 30 April 2022). This
represents an extraordinary evolutionary selection pressure of
just one ‘biologically useful’ miRNA out of every 6.8x109

prospective possible miRNA sequences that had potential to be
generated. These ~2.65 x103 highly selected miRNAs that are
present and function in human biology are currently believed to
collectively regulate one third all of the genes in the human
genome and are involved in the post-transcriptional control of
gene expression patterns, the dynamic regulation of the cell’s
transcriptome, neurodevelopment, aging and disease, including
many human systemic disorders ranging from multiple types of
cancer to Alzheimer’s disease (AD), other forms of age-related
neurodegenerative disease and the modulation of the invasion of
the host by pathogenic microbes (Lukiw, 2007; O'Brien et al.,
2018; Plotnikova et al., 2019; Chakraborty et al., 2020; Fregeac
et al., 2020; Padda et al., 2021; Pogue and Lukiw, 2021; Rybak-
Wolf and Plass (2021).

Regarding this latter function, recent evidence further
indicates that miRNAs play an important role in the complex
interplay between viruses (containing both DNA and RNA
genomes) and host cell genetics (Hill et al., 2009; Mishra et al.,
2020; Wicik et al., 2020; Narożna and Rubiś, 2021; Schultz et al.,
2021; Siniscalchi et al., 2021; Zhao et al., 2021). An interesting
relevant example is that the NF-kB-sensitive Homo sapiens
microRNA-146a (hsa-miRNA-146a-5p) is significantly over-
expressed within brain and CNS tissues of progressive and
often lethal viral-mediated neurological syndromes associated
with age and advancing inflammatory neurodegeneration, and
these include ~18 different viral-induced encephalopathies
involving both single- and double-stranded RNA and/or DNA
viruses (Pogue and Lukiw, 2021; Kucher et al., 2022). Despite
huge research efforts, whether this represents part of the host’s
adaptive immunity, innate-immune response or a mechanism to
enable the invading virus a successful infection is currently not
well understood (Jones et al., 2021; Narożna and Rubiz 2021;
Pogue and Lukiw, 2021). Another specific and rather enigmatic
example is that recent in silico analyses have determined that
about ~600 of these host miRNAs, representing about one
quarter of the total number of currently identified miRNAs in
human cells have potential to interact with the SARS-CoV-2
genome (Siniscalchi et al., 2021; Ying et al., 2021; unpublished
observations; see below). The RNA dynamics, sequence
selectivity and complexity of this large family of potentially
‘anti-viral host miRNAs’ is certainly perplexing because their
existence has long preceded the appearance and invasion of the
SARS-CoV-2 virus into human populations. One explanation
may be that conserved areas of the SARS-CoV-2 genome such as
the ORF that encodes the SARS-CoV-2 viral replicase (RdRp)
complex, consisting of a set of proteins required to produce
infectious genomes, retain very highly conserved features in
eukaryotic replicase-type enzymes and the RNA sequences that
June 2022 | Volume 12 | Article 887800
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encode them over considerable periods of evolution (https://
www.sciencedirect.com/topics/neuroscience/rna-viruses; last
accessed 30 April 2022; Hillen et al., 2020; Pachetti et al., 2020).
ANTI-SARS-CoV-2 miRNA’s

It is well established that the major functions of host miRNAs
include: (i) mRNA silencing involving miRNA-mediated
repression of the expression of genetic information encoded in
the target mRNA; (ii) the post-transcriptional regulation of gene
expression patterns that extends into the shaping of the
transcriptome of the cell during development and in health,
aging and disease; and (iii) in playing a potential host-protective
role in neutralizing microbial and ssvRNA invasion, including
those by Coronaviruses such as SARS-CoV-2, thus contributing
to a novel miRNA-facilitated innate-immune system for that
host (Hammond, 2015; Trobaugh and Klimstra, 2017; Bartel,
2018; Plotnikova et al., 2019; Pierce et al., 2020; Wicik et al., 2020;
Jones et al., 2021; Lukiw, 2021; Pogue and Lukiw, 2021;
Siniscalchi et al., 2021). The two most important parameters
for miRNAs to find their target ssRNAs, ssvRNAs or mRNAs are:
(i) base-pair complementarity between the ssRNA, the ssvRNA
or the mRNA ‘seed region’; and (ii) the thermodynamic stability
of the miRNA-target RNA hybrid (DG or free energy of
association EA) with values of EA of less than −20 kCal/mol
between the miRNA and its ssRNA target being most highly
favored (Lagos-Quintana et al., 2001; Bartel, 2018; Pierce et al.,
2020; Jones et al., 2021; Lukiw, 2021; Siniscalchi et al., 2021). In
general, depending on the stringency of RNA hybridization
parameters and most favorable energies of association (EA),
over the last ~2 years multiple possible binding sites have been
predicted for miRNA binding to SARS-CoV-2 ssvRNA targets
and multiple recent examples are next given here.

The Uysal-Onganer group first predicted seven miRNAs
including miRNA-1307-3p, miRNA-1468-5p, miRNA-3611,
miRNA-3691-3p, miRNA-3934-3p, miRNA-5197 and miRNA-
8066 could strongly bind to the SARS-CoV-2 genome and linked
these to host responses and virus pathogenicity-related KEGG
pathways significant for comorbidities (Arisan et al., 2020). In a
similar in silico study the McLellan group described 10 miRNAs
expressed in SARS-CoV-2 target cells filtered according to
databases and published data, and reported miRNA-18b-5p,
miRNA-197-5p, miRNA-338-3p, miRNA-1273d, miRNA-3154,
miRNA-3935-5p, miRNA-4436a, miRNA-4661-3p, miRNA-
4761-5p and miRNA-5096 strongly targeted the ORF1a,
ORF1b, ORF7a and ‘S’ regions of the SARS-CoV-2 genome
(Hosseini Rad Sm and McLellan, 2020). Another recent in
silico study using miRBase, MiRanda and Gene Set Enrichment
Analysis (GSEA) software provided evidence: (i) that the
miRNA-29 family had the most binding sites (N=11) on the
SARS-CoV-2 ssRNA genome; and (ii) that the top human host
miRNA candidates targeting the SARS-CoV-2 ssvRNA genome
include those of the miRNA-16, miRNA-21, miRNA-29a/b, let-
7b, let-7e, miRNA-122 and miRNA-146a microRNA families
and others (Jafarinejad-Farsangi et al., 2020). These in silico
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
prediction studies often display variable end results due to the
settings for miRNA-target RNA base-pair complementarity
algorithms and the thermodynamic stability of the miRNA-
ssRNA hybrid itself. In silico studies have most recently been
integrated with experimental target validation to ascertain bona
fide SARS-CoV-2 targeting and ssvRNA neutralization. For
example, in one recent study RNAhybrid 2.2 and MirTarget
analytical programs predicted between 857 and 2654 miRNA-
SARS-CoV-2 pairings, respectively. About ~600 target sequences
common to both analytical programs were subsequently filtered
to select miRNAs expressed in respiratory cells of the lung (one
natural site of SARS-CoV-2 infection) that revealed a perfect
match to the seed region (nucleotides 2–8) of the hybridizing
miRNA (Pierce et al., 2020; Siniscalchi et al., 2021). Experimental
target validation using psiCheck-2 luciferase reporter plasmids
transfected into the human lung cell line A549 indicated that
several SARS-CoV-2 ssvRNA targets were experimentally
validated including; importantly, a Homo sapien 22 nt, lung-
enriched hsa-miRNA-15b-5p that targets and represses ‘S’
protein expression (Trobaugh and Klimstra, 2017; Siniscalchi
et al., 2021; https://www.genecards.org/cgi-bin/carddisp.pl?gene =
MIR15B; https://www.mirbase.org/cgi-bin/mirna_entry.pl?
acc=MI0000438; last accessed 30 April 2022; see below; Table 1.
Taken together these data suggest that the identified miRNAs
should interact with ssvRNAs within infected cells, thus
contributing to the regulation of SARS-CoV-2 gene expression,
viability and capability for host-cell invasion.

It should also be mentioned: (i) that both the ACE2 receptor
and accessory ACE2-associated viral entry proteins such as the
transmembrane serine protease 2 (TMPRSS2) and other cellular
membrane ACE2-associated proteins may also have their
encoding mRNAs targeted by specific sncRNAs and/or
miRNAs which may further modulate the success of SARS-
CoV-2 infectivity (Pierce et al., 2020; Wicik et al., 2020); and
(ii) that the actions of host miRNAs on ssvRNAs are variable and
depend on multiple endogenous and exogenous factors. While
some host miRNAs may reinforce host antiviral responses
against viruses by neutralizing ssvRNA sequences, some may
also promote viral RNA stability, replication, and support
successful infectivity (Trobaugh and Klimstra, 2017; Wicik
et al., 2020). Another interesting consideration is that human
population differences in individual miRNA abundance,
speciation and complexity have been shown in different human
and animal populations and in different cell- and tissue-types
(Huang et al., 2011; He et al., 2017; Pogue and Lukiw, 2021).
Different endogenous miRNA populations of human cells and
tissues and the heterogeneous repertoire of different miRNAs in
individual humans may in part explain: (i) the widely observed
differential variability and human sensitivity and susceptibility to
ssRNA viral infection such as SARS-CoV-2; (ii) the endogenous
innate-immune capability to neutralize these and other invading
microbial species; and (iii) the basis for a potential strategy in
using stabilized miRNAs for the neutralization of SARS-CoV-2
and the therapeutic management of COVID-19 and other life-
threatening microbial-mediated diseases (Lukiw, 2021; Padda et
al., 2021; Ying et al., 2021).
June 2022 | Volume 12 | Article 887800
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CONCLUSION

Emerging evidence continues to support the concept that as a
novel form of immune surveillance, human miRNAs, sncRNAs
and small iRNAs have a significant potential to shape the host’s
innate-immune response to infection by invading ssvRNA viruses
that include SARS-CoV-2. This ‘Perspectives’ paper proposes that
the actions of the ~2,650 known human miRNAs constitute, in
part, the basis for an under-recognized and under-appreciated
innate-immune regulatory system for modulating ssvRNA viral
genome activities that also has implications for the efficiency of
SARS-CoV2 invasion, infectivity and viral replication. As miRNA
abundance, speciation, and complexity varies significantly among
human individuals, this may: (i) explain in part the variability in
the innate-immune immunological and pathophysiological
response of different human individuals to the initiation and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
progression of SARS-CoV-2 infection; and (ii) further support
our understanding of the variable susceptibility and resistance of
individuals to ssvRNA-mediated viral infection and COVID-19
and perhaps to other ssvRNA and related viral-mediated
pandemics that may arise in the future on a global scale.

Lastly, evolving evidence continues to suggest that pathological
ssvRNA genomes like SARS-CoV-2 are susceptible to attack,
destruction, neutralization, and/or modulation by multiple
naturally-occurring host miRNAs. While the basic mechanisms
of miRNA-ssvRNA natural hybrid formation and selection are
becoming increasingly understood, the specific interaction of
human host miRNA with ssvRNAs like SARS-CoV-2 in human
physiology remains extremely complicated and perplexing.
Cellular, transcriptional, genetic, epigenetic, immunological,
metabolic, developmental , environmental and other
epidemiological conditions affect the generation and processing
of host miRNAs leading to dynamic, temporal and cell- and tissue-
specific patterns of miRNA abundance, speciation and complexity
(O'Brien et al., 2018; Pogue and Lukiw, 2021; Wicik et al., 2020;
Ying et al., 2021). There are also aging-, gender- and disease-
associated effects on miRNA expression patterns in human
biology. For example, some ‘beneficial’ human anti-viral
miRNAs naturally down-regulated with aging may display
modified SARS-CoV-2‐host cell interactions that enhance the
severity and mortality among elderly COVID-19 patients,
particularly those greater than 65 years of age (Fulzele et al.,
2020; Choe et al., 2022; Kucher et al., 2022; Lingor et al., 2022).
When compared to normal cells and tissues, diseases such as
cancer and AD display different intrinsic patterns of host miRNA
expression throughout these disease processes. Inter-current
SARS-CoV-2 infection with these and other life-threatening/
incapacitating diseases usually predict an unfavorable clinical
outcome. One of the initial miRNA-based pharmaceuticals
which specifically targets and down-regulates ssvRNA levels
(Miravirsen; Santaris Pharma A/S/Hoffmann-La Roche-
Genentech, San Francisco USA) is currently in Phase III clinical
trials and there is emerging and supportive evidence that stabilized
miRNAs have strong potential to down-regulate and/or neutralize
viral replication, modulate the progress of viral infection and/or
enhance survival rates especially in the more advanced and
severely-affected COVID-19 patients (Chakraborty et al., 2020;
Narożna and Rubiś, 2021; Okuyan and Begen, 2021; Schultz et al.,
2021; Choe et al., 2022; Kucher et al., 2022).
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TABLE 1 | miRNAs predicted to interact with the ssvRNA of SARS-CoV-2.

microRNA Reference

let-7b Jafarinejad-Farsangi et al., 2020
let-7e Jafarinejad-Farsangi et al., 2020
miRNA-15b-5p Trobaugh and Klimstra, 2017; Siniscalchi et al., 2021
miRNA-16 Jafarinejad-Farsangi et al., 2020
miRNA-18b-5p Hosseini Rad Sm and McLellan, 2020
miRNA-21 Jafarinejad-Farsangi et al., 2020
miRNA-29a/b Jafarinejad-Farsangi et al., 2020
miRNA-122 Jafarinejad-Farsangi et al., 2020
miRNA-146a Jafarinejad-Farsangi et al., 2020
miRNA-197-5p Hosseini Rad Sm and McLellan, 2020
miRNA-338-3p Hosseini Rad Sm and McLellan, 2020
miRNA-1273d Hosseini Rad Sm and McLellan, 2020
miRNA-1307-3p Arisan et al., 2020
miRNA-1468-5p Arisan et al., 2020
miRNA-3154 Hosseini Rad Sm and McLellan, 2020
miRNA-3611 Arisan et al., 2020
miRNA-3691-3p Arisan et al., 2020
miRNA-3934-3p Arisan et al., 2020
miRNA-3935-5p Hosseini Rad Sm and McLellan, 2020
miRNA-4436a Hosseini Rad Sm and McLellan, 2020
miRNA-4661-3p Hosseini Rad Sm and McLellan, 2020
miRNA-4761-5p Hosseini Rad Sm and McLellan, 2020
miRNA-5096 Hosseini Rad Sm and McLellan, 2020
miRNA-5197 Arisan et al., 2020
miRNA-8066 Arisan et al., 2020
SARS-CoV-2 or other single-stranded viral RNAs (ssvRNAs) may be recognized (via base-
pair complementarity) and degraded by miRNA-mediated interactions within the cell
cytoplasm; there are multiple types of evidence that at least 25 miRNAs have potential
to target SARS-CoV-2 and other ssvRNA sequences (Arisan et al., 2020; Hosseini Rad
Sm and McLellan, 2020; Jafarinejad-Farsangi et al., 2020; Kucher et al., 2022); the natural
functions of most of the miRNAs listed in Table 1 are not known (see manuscript text);
interestingly one recent in silico study using miRBase, MiRanda and Gene Set Enrichment
Analysis (GSEA) software provided evidence: (i) that the miRNA-29 family had the most
binding sites (N=11) on the SARS-CoV-2 ssvRNA genome (Jafarinejad-Farsangi et al.,
2020); and (ii) using RNA-sequencing analysis, RNAhybrid 2.2 and MirTarget analytical
programs between 857 and 2654 miRNAs have potential to interact with the ~29,903 nt
SARS-CoV-2 ssvRNA genome (SARS-CoV-2 isolate Wuhan-Hu-1, National Center for
Biological Information (NCBI) GenBank Accession No. NC_045512.2; last accessed 30
April 2022; Ke et al., 2020; Sah et al., 2020; Wu et al., 2020; Mousavizadeh and Ghasemi,
2021; Kucher et al., 2022). The SARS-CoV-2 ssvRNA genome thereby presents a
potential target for naturally occurring human miRNA-mediated ssvRNA inactivation and
neutralization; this may play an under-appreciated role in natural host immunity and the
high variability in the innate-immune and pathophysiological response of different human
individuals to SARS-CoV-2 and their overall susceptibility to ssvRNA-mediated viral
infections that include COVID-19.
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