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populations in Mtb infection; we also discuss how host
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Introduction

Tuberculosis (TB), caused by the Mycobacterium

tuberculosis (Mtb) complex, is one of the most successful

infectious diseases in humans, resulting in millions of TB cases

annually. The global estimate of TB cases in 2020 was 10 million

(WHO Global Tuberculosis Report 2021). Although recent

advances in the development of new vaccines and

immunomodulatory drugs would provide a more effective

means of fighting Mtb infection, the precise mechanisms of

protective and pathological immunity have not been

fully elucidated.

TB is commonly initiated by the inhalation of respiratory

droplet nuclei (≤1–2 mm) containing Mtb, which are small

enough to pass down the respiratory tract and into the alveoli

(Schluger and Rom, 1998). Cell types, such as macrophages,

neutrophils, dendritic cells (DCs), and permissive monocytes,

can be infected by Mtb. However, the alveolar macrophages are

primarily the initially infected cells from which Mtb is

disseminated to the lung interstitium (Cohen et al., 2018). The

relocalization of alveolar macrophages enables recruited

macrophages, neutrophils, and DCs to phagocytose Mtb,

resulting in the formation of initial granulomas (Cohen et al.,

2018). Subsequently, along with other cells, the Mtb antigen

(Ag)-specific T cells infiltrate the infection site, progressing

granuloma formation to control Mtb.

DCs are major cell populations capable of presenting Mtb-

specific Ags to T cells using major histocompatibility complex

(MHC) class I and class II molecules along with various

cytokines. Proinflammatory cytokines, such as the IL-1 family

and IL-6, promote the recruitment of immune cells (Giacomini

et al., 2001) for effective defense. Importantly, mature DCs

following Mtb infection or Ag-uptake migrate to the draining

lymph nodes (dLNs) and promote pathogen recognition by T

cells, resulting in specific T cell polarization in the diverse

microenvironments of infection sites (Marino et al., 2004).

Distinct populations of CD4+ T helper (Th) cells differ based

on cytokine profiles, transcription factors, and their responses to

various classes of pathogens. The immune response against

intracellular bacteria, such as Mtb and Ag-specific IFN-g-
producing Th1, is a key factor in restraining Mtb growth

(Flynn et al., 1993). After the adaptive immune response is

initiated, DCs continuously uptake Mtb-Ags to induce a

systemic T cell response while moving in and out of

granulomas following granuloma formation and are

continuously replaced during Ag sampling (Harding et al.,

2011; Schreiber et al., 2011a). They can also regulate local T

cell responses and can carry bacteria into the lymph nodes,

which is crucial for generating systemic T cell responses

(Harding et al., 2015).

The induction of these T cell-related protective immune

responses has been studied focusing primarily on Ag acquisition
Frontiers in Cellular and Infection Microbiology 02
by DCs at the infection site in the early stage of infection and the

interaction with T cells in the LNs. However, DCs can be affected

by their interactions with various cell types and immunological

environments. Thus, a better understanding is important for TB

control by developing improved vaccines and control strategies

based on additional research into the DC cell population,

including host-directed therapy (HDT). In this review article,

we address the molecular and cellular aspects of DCs according

to their subsets and interactions with other immune cell
immunomodulation through DCs in response to Mtb and its

products affects susceptibility and how innate and adaptive

immunity is regulated by different types of DCs in Mtb infection.

General roles of dendritic cells in
Mtb infection

DCs bridge innate and acquired immunity. In a steady-state,

DCs are derived from hematopoietic bone marrow progenitor

cells and are present in an immature state in most tissues to

detect and uptake foreign pathogens and their products. In an

inflammatory environment, monocyte-derived DCs (moDCs)

can differentiate in situ from monocytes (Hespel and Moser,

2012). As TB is a chronic disease in which the disease status

alters the frequency of DCs. Patients with TB have fewer myeloid

and plasmacytoid DCs (pDCs) in their peripheral blood than

healthy controls (Uehira et al., 2002; Lichtner et al., 2006). After

antibiotic treatment, the absolute number of pDCs was

recovered; however, the number of myeloid DCs was not

restored (Lichtner et al., 2006), indicating that DCs are

involved in immunological changes in TB pathogenesis.

Once DCs detect and phagocytose pathogens or Ags, they

undergo a maturation process, increasing the expression of

MHC class I and II molecules, costimulatory molecules

(CD80, CD86, and CD40), and chemokine receptor 7 (CCR7)

to drive effective immunity (Mellman and Steinman, 2001).

These phenotypic changes enable DCs to migrate toward the

dLNs and effectively educate T cells. In an animal Mtb-challenge

model, IL-12p40 deficient mice did not activate CD4+ T cells

after Mtb infection and exhibited poor migration in response to

the CCR7 ligands CCL19 and CCL21. However, IL-12p40

deficient DCs activated CD4+ T cells in vitro, where DCs do

not need to migrate. The migration ability of DCs was recovered

by additional IL-12p40 treatment (Khader et al., 2006). An

analysis of 5530 patients with pulmonary TB and 5607 healthy

controls showed that the DC migration regulator, ArfGAP with

SH3 domain, ankyrin repeat, and PH domain 1 (ASAP1), was

associated with susceptibility to TB (Curtis et al., 2015; Waltl,

2015). Once DCs arrive in local dLNs, they successfully present

Ags to T lymphocytes with the molecules described above

helping T cell activation, and induce effective cell-mediated
frontiersin.or
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immunity (Tascon et al., 2000; Marino et al., 2004). However, into moDCs, conventional DCs (cDCs), and pDCs (Guilliams
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and TGF-b (Zhang et al., 2020). Below, we review the major DC

subsets involved in TB protection and pathogenesis.

Dendritic cell classification and their
interaction with Mtb

The classification of DC subset tends to be complex due to

the lack of clear-cut differences in functionality, differences in

markers depending hosts, and different properties depending on

differentiation environment (in vitro or in vivo). Furthermore,

classifications according to functionality such as inflammatory

DCs and tolerogenic DC, make it more complex. DC subsets,

previously classified by various nomenclatures, have been

reclassified into a recently proposed simplified nomenclature

based on ontogeny and function (Guilliams et al., 2014;

Eisenbarth, 2019; Anderson et al., 2021). DCs can be divided
Frontiers in Cellular and Infection Microbiology 03
Schlitzer et al., 2013; Williams et al., 2013; Calabro et al., 2016).

pDC is E2-2 dependent and expresses B220 and Siglec-H in mice

and HLA-DR+CD123+CD303+ in humans (Cox et al., 1999;

Onai et al., 2007; Poulin et al., 2010). moDC expresses CD11b

and migrates to the inflammation site in a CCR2-dependent

manner (Eisenbarth, 2019), and the differentiation of moDC is

regulated by key transcription factors KLF4 and MAFB (Goudot

et al., 2017; Jurkin et al., 2017). In particular, CD11b is expressed

on both moDC and cDC2; therefore, distinguishing between the

two subsets could be difficult in studies that have not used

sufficient markers to discriminate the DC subsets.

It has been reported that DC subsets exhibit different

properties and play various roles in Mtb infection. However,

the functions of individual DC subsets remain controversial and

require a detailed study. In Mtb-infected mice, both cDC1 and

cDC2 are widely distributed and can be found in lymph nodes,

blood and mucous membranes and migrate to the lung upon
compared with other infectious diseases, the accumulation of

Mtb-specific CD4+ T cell response in the lungs is delayed in

Mtb-infected mouse models from two weeks post-infection

(Reiley et al., 2008; Wolf et al., 2008), which is related to the

obstruction of Ag presentation by Ag-presenting cells (APCs)

such as DCs (Harding and Boom, 2010; Urdahl, 2014; Srivastava

et al., 2016). Thus, the mechanical reasons for the delayed T cell

response are dependent on how fast DCs interact with and

recognize Mtb and its products. In addition, the combination of

the Ag and DC subset that initially interact is important in

inducing host-protective immunity.

Mtb infection induces a bacteria-favoring environment by

regulating DC differentiation and function. In patients with TB,

Mtb regulates the differentiation of DCs into the CD14+ moDC

subset, which has a weak IL-12p70-producing capacity

(Súndergaard et al., 2014). The Mtb-promoted CD14+ moDC

subset induced a suboptimal T cell response, IL-17A-producing

CD4+ T cells, rather than IFN-g producing CD4+ T cell response

(Súndergaard et al., 2014). Similarly, the generation of human

monocyte-derived DCs with Mtb infection decreased CD80-

expressing IL-12 and increased IL-10 secretion patterns, while

CD1 expression that induces CD1-restricted T cell activation

was inhibited (Gagliardi et al., 2007). In the same study,

treatment with mycobacterial cell wall alpha-glucan elicited

the Mtb-induced altered differentiation of DC (Gagliardi et al.,

2007). Myeloid DCs and pDCs exhibited higher expression of B

and T lymphocyte attenuator (BTLA), an immune inhibitory

receptor, in patients with active TB than in healthy controls

(Wang et al., 2017; Zhang et al., 2020). BTLA-positive myeloid

DCs in patients with TB showed increased CCR7 expression,

decreased IL-12 secretion, and decreased CD80 and CD83

expression. In addition, this DC subset showed a poor ability

to uptake Ags and activate allogeneic T cell response but

promoted Th2 and regulatory T cell response by secreting IL-4

et al., 2014; Eisenbarth, 2019; Anderson et al., 2021). cDCs can

be further divided based on surface molecules and transcription

factors into type 1 cDCs (cDC1) and type 2 cDCs (cDC2). These

DC subsets are differentiated into each subset through a slightly

different process. In this model, multipotent progenitor

differentiated from hematopoietic stem cells can be

differentiated into macrophage DC progenitor (MDP). pDC is

differentiated through pre-pDC populations derived from CDP

or common lymphoid progenitor (Rodrigues et al., 2018; Dress

et al., 2019). In addition, Feng et al. confirmed that pDC and

cDC, especially cDC1, have a close relationship in development

by using the FlipJump system (Feng et al., 2022). The

differentiation of moDC occurs through common monocyte

progenitor (cMop) differentiated from MDP rather than

common DC progenitor (CDP). In tissues, Ly6C+ monocytes

can be differentiated into cells functioning as macrophages or

DCs (Mildner et al., 2013). The process through which

monocytes differentiate into DCs is regulated by the

concentration of PU.1, which suppresses the activity and

expression of MafB, a macrophage transcription factor

(Mildner et al., 2013; Menezes et al., 2016).

The cDC1 subset is IRF8- and BATF3-dependent and

expresses the chemokine XC receptor 1 (XCR1) (Dorner et al.,

2009; Bachem et al., 2010; Crozat et al., 2010) in humans and

mice. In addition, cDC1 expresses different surface molecules

such as CD8a, Dec-205, or CD103 in mice, and CD141 in

humans (Edelson et al., 2010; Poulin et al., 2010; Satpathy et al.,

2012; Williams et al., 2013) depending on tissues and organs.

cDC2s are interferon regulatory factor 4 (IRF4)-dependent and

can be identified by the surface marker CD11b (in humans and

mice) along with different surface markers, such as DC

immunoreceptor (DCIR) -2, CD301b, CD4, or signal

regulatory protein-a (SIRPa) in mice, and CD1a in humans

(Vremec et al., 2000; Suzuki et al., 2004; Satpathy et al., 2012;
frontiersin.org
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infection; however, after Mtb infection, CD103+ cDC1 is present

in parenchyma and lung airways, with migratory ability to the

dLNs (Geurtsvankessel et al., 2008; Geissmann et al., 2010;

Guilliams et al., 2013; Leepiyasakulchai et al., 2013; Anderson

et al., 2014). Similar to CD103+cDC1, CD8+cDC1 are primarily

located in LNs. Koh et al. reported that CD103+ cDC1 has

functions in constructing adaptive immunity, especially in the

early stages of infection, by transporting bacteria to dLNs (Koh

et al., 2017). However, CD11b+ Ly6Clow and CD11b+Ly6Chi

moDCs are primarily located in the lung parenchyma and LNs

during Mtb infection (Mayer-Barber et al., 2011; Anderson et al.,

2014; Norris and Ernst, 2018). In addition, CD11b+ DCs have

been reported as the major subset harboring Mtb and migrating

to the LNs of Mtb-infected mice (Wolf et al., 2007). Lai et al.

reported that CD11b+ cDC2 is involved in protective immunity

(Lai et al., 2018). CD103+ cDC1 inhibited CD11b+ DC-induced

Th1 cell proliferation by secreting IL-10 (Lai et al., 2018). In

contrast, other authors reported that CD103+ cDC1 is the main

subset involved in the induction of protective response, secreting

IL-12 (Leepiyasakulchai et al., 2013), inducing Th1 and Th17

responses (Sërgio et al., 2015), and restraining excessive

inflammat ion th rough the r e c ru i tmen t o f T reg s

(Leepiyasakulchai et al., 2013). In addition, the adoptive

transfer of CD103+DCs pulsed with Ag85B peptide

significantly boosted Mycobacterium bovis bacillus Calmette-

Guérin (BCG)-vaccinated mice with enhanced Th1 and Th17

responses (Griffiths et al., 2016). Meanwhile, failure to recruit

CD103+ DCs diminished CD4+FoxP3+ regulatory T cells,

resulting in increased Mtb susceptibility and excessive lung

inflammation (Leepiyasakulchai et al., 2012). These studies

showed that there is still controversy over the function of DC

subsets and indicated that DC subsets could have different

functions in Mtb infection, depending on the infection stage

and environment.

Despite recent studies on the role of type I IFN in the TB

pathogenesis (Moreira-Teixeira et al., 2018), studies on pDCs,

one of the major sources of type I IFN, have not yet drawn much

attention compared to other DC subsets. Studies on pDCs in TB

have primarily focused on their frequency. Indirect evidence has

been reported to suggest that pDC could be recruited to the

infection site both in mice (Kim et al., 2015) and humans (Lu

et al., 2017; Dirix et al., 2018). In addition, pDCs cooperate with

Mtb-infected CD1c+ DCs, promoting the stimulation of CD4+ T

cells in the LNs of TB patients (Lozza et al., 2014; Donovan et al.,

2017). Despite the documented roles of DC subsets in Mtb
infection across species, further studies are required to
determine whether individual DC subsets with their unique

features are drivers of host-protective or pathological

immunity. In addition, these controversial outcomes should be

considered along with the interactions of DCs with other cellular

compartments in lung environments according to the Mtb

infection stage.
Frontiers in Cellular and Infection Microbiology 04
DC interaction with various cells

DCs play a sentinel role as APCs against pathogen invasion

and induce an adaptive immune response via Ag presentation.

This process is not unilateral but is regulated by bidirectional

interactions with various cell populations. In this section,

emerging evidence on the interaction and biological processes

between DCs and innate and adaptive immune cells is reviewed

with respect to the protective or pathological outcomes of TB.

DC interactions with adaptive immune
cells in Mtb infection

The IFN-g produced by CD4+ T cells is considered a

principal driver of host-protective immunity against TB

(North, 1973; Shimokata et al., 1986; Orme et al., 1993). IFN-g
can activate macrophages promoting bactericidal ability The

CD4+ T cell response could be primed with Ag presentation by

DCs with MHC class II molecules (Chen and Kolls, 2013). In

addition, IL-12p70 produced by Mtb-infected DCs is a key

upstream cytokine that induces Th1 response (Cooper et al.,

2007). Moreover, Mtb-infected DCs can promote the protective

Th17 response against highly virulent Mtb infection by secreting

IL-23, IL-6, and IL-1b (Gopal et al., 2014).

Granulocyte-macrophage colony-stimulating factor (GM-

CSF) is a major factor for the differentiation and homeostasis

of DCs (Van De Laar et al., 2012). GM-CSF−/− mice are highly

susceptible to Mtb infection (Gonzalez-Juarrero et al., 2005;

Szeliga et al., 2008). It has been recently reported that GM-

CSF produced and secreted by T cells in Mtb-infected mice from

3 weeks after Mtb infection, and it can mediate protection in vivo

(Rothchild et al., 2017). iNKT and gdT cells, unconventional T

cells with innate responsiveness, in the early phase of Mtb

infection, and CD4+ T cells after the third week of infection

were the major sources of GM-CSF (Rothchild et al., 2017). In

addition, the continuous production of GM-CSF by

conventional T cells (Rothchild et al., 2017) may promote the

differentiation of moDCs. Moreover, moDCs initiated acquired

immune responses in the early stages of infection and took up

Mtb-Ags, continuously moving in and out of granulomas to

induce a protective T cell response (Harding et al., 2011;

Schreiber et al., 2011a; Schreiber et al., 2011b). Therefore, the

generation of GM-CSF by T cells in Mtb infection plays an

important role in maintaining a continuous protective immune

response through DC generation (Figure 1A).

CD8+ T cells are considered less critical for protection

against Mtb infection than CD4+ T cells; however,

accumulating emerging evidence has indicated the importance

of CD8+ T cell response in protecting against TB (Chen et al.,

2009; Nunes-Alves et al., 2014; Silva-Sanchez et al., 2015). Like

CD4+ T cells, CD8+ T cells can produce IFN-g, TNF-a, and IL-2,
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and exhibit an additional cytolytic function that kills Mtb-

infected cells by producing perforin, granzyme, and granulysin

(not in a mouse model), and it could induce apoptosis of Mtb-

infected cells through Fas-Fas ligand interactions (Watson et al.,

2000). The depletion of CD8+ T cells in Mtb-infected mice

allows the uncontrolled growth of Mtb bacilli (Flynn et al., 1992;

Mogues et al., 2001). In addition, increased CD8+ T cell

depletion resulted in more detrimental outcomes in latent

infections with antibiotic treatment than in acute infection

mouse models (Van Pinxteren et al., 2000). In mice lacking

perforin, one of the bactericidal apparatuses of CD8+ T cells, the

cytolytic effect was decreased in vivo, and adoptive transfer of

wild-type CD8+ T cells showed protective efficacy against Mtb

infection (Woodworth et al., 2008). It is difficult to find human

disease models lacking CD8+ T cells, but the depletion of CD8

E

F

G

A

H

FIGURE 1

Bidirectional interactions between DCs and diverse cells are involved i
the unilateral direction of pathogen uptake-migration-Ag presentation
diverse cells are involved in the TB pathogenesis. (A) DCs secrete IL-12
Conversely, IFN-g derived from activated T cells (A) and NK cells (F) ca
promoted. (B) CD8+ T cells are activated by DCs to secrete granzyme
infected cells such as macrophages, thereby enabling effective Ags up
in the formation of immune complexes. The function of DCs is affecte
activating Fcg receptors with varying binding affinity depending on the
in an Mtb-dependent manner, resulting in effective Ag presentation th
infected neutrophils secrete alarmins, CCL3, and CCL5 through degra
migration to LNs, and induce maturation. In contrast, Mtb inhibits neu
protective response. (F) In NK cells, DC maturation can be induced thr
defensin to induce the migration of immature DCs to the infection site
maturation. (H) DCs expressing integrin b2 bind to endothelial cells an
expression of CD18 containing integrin b2, decreasing DC migration to
stimulating factor; GzmB, granzyme B; FcgR, Fc Gamma Receptors; IT
immunoreceptor tyrosine-based activation motif; dLN, draining lymph
cells in rhesus macaque (Macaca mulatta) displayed a significant

decrease in protection against Mtb infection in BCG-vaccinated
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and reinfection models (Chen et al., 2009). CD8+ T cells can be

primed by MHC class I molecules loaded with antigenic

peptides, generally in the cytosol. This peptide-loading process

B

C

D

TB pathogenesis and protective response DCs do not function in
action with T cells. Bidirectional interactions between DCs and
induce a Th1 immune response secreting IFN-g or GM-CSF.
uce DC activation, and differentiation into mature DCs can be
perforin, and CD8+ T cells simultaneously induce apoptosis of
y DCs. (C) IgG-produced B cells can bind to specific Ags, resulting
whether Abs or immune complexes bind to the inhibitory or
ype. (D) Apoptosis of macrophages is suppressed by NuoG or SecA
uld be suppressed, thereby suppressing T cell activation. (E) Mtb-
on to promote migration of immature DCs to the infection site, DC
il apoptosis in a NuoG-dependent manner, thereby preventing this
IFN-g secretion. (G) Alveolar epithelial cell type II secretes b-
simultaneously regulates the DC Hif1a-NOS2 axis to induce DC
smigrate to afferent lymphatic vessels. Mtb infection disturbs the
l lymph nodes. GM-CSF, granulocyte-macrophage colony-
munoreceptor tyrosine-based inhibitory motif; ITAM,
.

(Van Der Wel et al., 2007; Kaufmann, 2013) or phagocytosis of

apoptotic vesicles of Mtb-infected DCs or macrophages by DCs

(Schaible et al., 2003; Winau et al., 2006). In addition, after

recognizing antigenic peptide displayed by DCs, CD4+ T cells

release IFN-g, whereas CD8+ T cells preferentially lyse APCs and

recognize heavily infected DCs (Lewinsohn et al., 2003). In

addition, the immunization of mice with DCs pulsed

simultaneously with CD4, and CD8 peptides showed increased

protection against Mtb infection but not immunization of DCs

pulsed with CD4 peptide alone (Mcshane et al., 2002). These

studies show that CD8+ T cells are important in inducing
protective immune response through DCs against Mtb

infection (Figure 1B). However, Mtb is also capable of

frontiersin.org
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endocytic receptor that recognizes sialylated glycans, was

correlated with extrapulmonary dissemination of Mtb (Benet

suggesting the importance of the interaction between DCs and
+
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interfering with CD8+ T cell priming by regulating the

interaction of DCs through various mechanisms as will be

discussed later.

Although T cell-mediated cellular immunity has been

accepted as the major immune response to protect the host

from Mtb (Nunes-Alves et al., 2014), evidence indicating the

importance of B cell-mediated humoral immunity has also been

accumulating. B cells are found in the lymphocytic cuff of

human granulomas (Ulrichs et al., 2004; Tsai et al., 2006), and

patients with TB show significant changes in B cell-associated

genes after TB treatment (Cliff et al., 2013). In B cell-deficient

mouse models, the administration of high-dose Mtb

(Vordermeier et al., 1996; Maglione et al., 2007) induced

higher bacterial loads compared to controls. In the same study,

B cell-deficient mice showed neutrophilic inflammation and an

upregulated Th17 response to Mtb infection (Maglione et al.,

2007), suggesting that B cells could affect the disease outcome of

Mtb infection by regulating inflammatory responses. Notably, B

cells can modulate the inflammatory responses in DCs and can

regulate the maturation, migration, and functional processes of

DCs by producing cytokines (Skok et al., 1999; Kaser et al., 2000;

Gonnella et al., 2001), chemokines (Xu et al., 1996; Lin et al.,

1998; Crowley et al., 1999; Krzysiek et al., 1999), and antibodies

that bind to the Fc receptor of APCs. DCs express Fc receptor

(FcR) binding to the Fc region of antibodies, which is divided

into stimulatory and inhibitory, depending on their intracellular,

immunoreceptor tyrosine-based activation (ITAM), or

immunoreceptor tyrosine-based inhibitory motifs (ITIMs)

(Ravetch and Bolland, 2001; Nimmerjahn and Ravetch, 2006).

FcR engagement can be strongly influenced by the antibody (Ab)

isotype (Granstrøm et al., 1992). Therefore, the activation of

DCs can be regulated through FcR by antibodies or immune

complexes formed by antibodies, depending on the type of FcR

engaged (Regnault et al., 1999; Geissmann et al., 2001;

Schuurhuis et al., 2002; Bãnki et al., 2003; Dhodapkar et al.,

2005). In an Mtb-challenged mouse model, an inhibitory FcR, Fc

gamma receptor IIB (FcgRIIB) deficiency reduced Mtb growth

and immunopathology compared with WT mice. In the same

study, Fcg RIIB-deficient mice showed increased IFN-g-
producing CD4+ T cells and elevated MHC class II expression,

costimulatory CD80, and CD86 in the lungs (Maglione et al.,

2008). These studies show potential for the interaction between

DCs and B cells via Abs (Figure 1C). Thus, understanding how

DCs modulate host immune responses by interacting with T and

B cells is critical for developing anti-TB vaccines.

Interactions between DCs and innate
immune cell compartments in
Mtb infection

In addition to interacting with T cells, DCs, directly and

indirectly, interact with various types of immune cells, thereby
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affecting the outcomes of Mtb infection. Macrophages are major

host cells involved in the invasion, growth, and restriction of

Mtb in infected hosts. Mtb-infected macrophages undergo

apoptosis, and efferocytosis of apoptotic macrophages by DCs

promotes acquired immunity. After phagocytosis of apoptotic

macrophages, DCs can present Mtb-Ags through the cross-

presentation pathway, leading to activating CD8+ T cells in

vitro (Schaible et al., 2003; Weiss and Schaible, 2015; Sia et al.,

2017). Macrophages infected with secA2-deleted Mtb promoted

macrophage apoptosis by decreasing mycobacterial superoxide

dismutase (Hinchey et al., 2007). Increased apoptosis by deleting

Mtb secA2 induces significant priming of CD8+ T cells in in vivo

mouse models (Hinchey et al., 2007).

Similarly, Velmurugan et al. reported that nuoG of Mtb,

which encodes a subunit of the type I nicotinamide adenine

dinucleotide (NADH) dehydrogenase complex, inhibits Mtb-

infected macrophage apoptosis, and the infection of

macrophages with the nuoG-deleted Mtb mutant induced

increased macrophage apoptosis in vitro and increased

macrophage survival with controlled bacterial burden and lung

pathology in in vivo mouse studies (Velmurugan et al., 2007)

(Figure 1D). Recently, it was confirmed that a single-nucleotide

polymorphism of Siglec-1 (CD169), a cell adhesion and
et al., 2021), susceptibility to Mtb infection, and activation of

pulmonary TB in human cohort studies (Souza De Lima et al.,

2017). Mtb infection induced the local spread of bacteria within

the lung of CD169 deficient mice, resulting in more extensive

pathogenic lesions than wild-type mice. In the same study,

human DCs activated T cells by the uptake of extracellular

vesicles purified from Mtb-infected THP-1-derived

macrophages in a CD169 dependent manner (Benet et al.,

2021). It has been recently reported that CD169 on

macrophages preferentially binds to and interacts with CD8a+

cDCs for CD8+ T cell cross-priming (Van Dinther et al., 2018),
macrophages in CD8 T cell immunity formation in

TB pathogenesis.

The role of neutrophils in TB pathogenesis remains

controversial (Lowe et al., 2012; Kroon et al., 2018), and

studies on the role of neutrophils and their relationship with

other immune cells are continuing for more accurate

identification. Abundant neutrophils are observed in the

bronchoalveolar lavage fluid of patients with pulmonary TB

(Law et al., 1996) and are the most commonly infected

phagocytes in patients with TB (Eum et al., 2010). At the site

of inflammation, neutrophils secrete chemokine profiles, such as

the induction of CCL3 and CCL5 (Scapini et al., 2000) and

alarmins during degranulation (Yang et al., 2000), which

contributes to the chemoattraction of immature DCs. In

addition, DCs directly infected by Mtb showed a poor

response to CCL19 in migration experiments, whereas DCs
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suggesting that the inhibited apoptosis of neutrophil delayed

Interactions between DCs and non-

mechanism of Mtb for a specific cell can also affect the
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adaptive immunity in TB (Velmurugan et al., 2007) (Figure 1E).

Collectively, DC-neutrophil interaction has a role in protective

immunity in TB.

Natural killer (NK) cells are observed at the site of infection

immediately after Mtb infection (Junqueira-Kipnis et al., 2003),

and are increasingly recognized as a key component of the innate

immune response linking innate and adaptive immunity

(Gabrielli et al., 2016; Choreño Parra et al., 2017). NK cells are

potent producers of IFN-g that promote DC maturation and

stimulate naïve T cell differentiation into Th1 cells (Pan et al.,

2004; Frasca et al., 2008; Ferlazzo and Morandi, 2014). In Mtb

infection, the cytolytic activity of NK cells freshly isolated from

human PBMCs was strongly augmented by co-culture with Mtb-

infected DCs, and NK cells reciprocally enhanced DC

maturation and IL-12 production (Gerosa et al., 2002).

Moreover, BCG-vaccinated mice with NK cell depletion

showed fewer activated DCs which in turn reduced the

frequency of IFN-g producing CD4+ T cells in the lungs and

spleen (Junqueira-Kipnis et al., 2020). These results indicated

that NK cells influence adaptive immune responses through

interactions with DCs (Figure 1F).
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interaction of the cell with DCs. However, existing studies are

the results of observations in a specific experimental situation or

specific disease state. Since the interaction between DC and other

cells may exhibit different aspects depending on conditions such

as location or disease state, therefore an integrated study is

required. Understanding the crosstalk between cells could

provide a new perspective on TB control. Furthermore,

considering cell-cell interactions, vaccine development and

HDTs could improve TB control.

New perspective on the role of DCs
in inducible bronchus-associated
lymphoid tissue and germinal center
formation in Mtb infection

While secondary lymphoid organs have specific locations for

the immune response, a chronic immune response could induce

organized accumulations of lymphoid cells similar to those of

secondary lymphoid organs in non-lymphoid tissue. These
showed unimpaired migration capacity that facilitates the

initiation of CD4+ T cell response (Blomgran and Ernst, 2011).

In this line, neutrophil-depleted mice with Mtb infection showed

decreased DC trafficking in the mediastinal LNs (mLNs),

resulting in delayed activation and proliferation of Ag85B-

specific CD4+ T cells in mLNs (Blomgran and Ernst, 2011).

Neutrophils also interact with DCs during BCG infection to

induce protective immunity. Morel et al. reported that non–

apoptotic BCG-infected neutrophils clustered with immature

DCs, establishing intimate contact with DC dendrites in vitro;

this physical interaction induced DC activation in humans and

mice (Morel et al., 2008). In addition, BCG-infected neutrophils

decreased IL-10 secretion in human DCs, sustained secretion of

IL-2 in mouse DCs, and promoted CD4+ T and CD8+ T cell

proliferation by promoting Ag presentation of DCs, suggesting

that neutrophils promote Ag-cross-presentation of DCs

(Alemãn et al., 2007; Morel et al., 2008). Mtb-induced

neutrophil apoptosis induced the functional maturation of

DCs (Hedlund et al., 2010). However, Blomgran et al. reported

that Mtb delayed T cell response by inhibiting the ability of DCs

to act as APCs via Mtb-infected neutrophil-apoptosis inhibition

(Blomgran et al., 2012). However, similar to macrophages

(Velmurugan et al., 2007), infection with Mtb mutants lacking

nuoG reduced neutrophil life span with the acquisition of fewer

Mtb per neutrophil, induced earlier Mtb infected-DC migration

to LNs, resulting in the acceleration of CD4+ T cell priming.

However, neutrophil depletion in mice infected with Mtb

mutants lacking nuoG reduced priming of CD4+ T cell,

immune cell populations in Mtb infection

Type II alveolar epithelial cells (AEC-II) can be infected by

Mtb and provided as a niche (Ryndak et al., 2015). However, it

has been recently reported that Mtb-infected AEC-II interacts

with and modulates DC function. Mtb-infected AEC-II

indirectly induced DC maturation by negatively regulating

HIF-1a induced NOS2 and switching DC metabolism

(Rodrigues et al., 2020). In addition, beta defensin-2 can be

produced by Mtb-infected human AEC-II (Rivas-Santiago et al.,

2005) and recruits immature DCs to the infection site by binding

to the DC chemokine receptor CCR6 (Yang et al., 1999; Biragyn

et al., 2002). These results suggest that AEC-II affects the

recruitment of DCs to the infection site at the beginning of

Mtb infection (Figure 1G).

After Mtb phagocytosis, DCs migrate from the lung to local

LNs through lung endothelial cells, and Mtb-infected human

DCs show reduced expression of CD18-containing cell surface

integrins (Roberts and Robinson, 2014). These molecules

regulated the adhesion and transmigration of DCs through

endothelial cells (D’amico et al., 1998; De La Rosa et al., 2003).

Consistent with reduced integrin surface expression, Mtb-

infected DCs displayed a significant reduction in adherence to

lung endothelial cells and migration toward lymphatic

chemokines (Roberts and Robinson, 2014) (Figure 1H).

There are remain many gaps in our understanding of the

interaction between DCs and other cells. The fact that DCs

interact with various cells means that the immune evasion
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a better prognosis for patients with TB (Khader et al., 2011;

Slight et al., 2013). Although the exact mechanism by which the

TB vaccine-derived IBALT induces a protective effect has not yet

been precisely elucidated, it would be a reasonable goal to

develop a vaccine that induces iBALT, considering its

protective effect in TB.

Follicular dendritic cells (FDCs) are non-hematopoietic cells

of stromal origin (Krautler et al., 2012) that play an important

role in B cell activation and bind and retain Ags in B cell hair

follicles for long periods (Kranich and Krautler, 2016; Melzi

et al., 2018). CCL19 and CCL21 are expressed by FDCs and
Frontiers in Cellular and Infection Microbiology 08
DC immune response. The cell wall of mycobacteria contains

various glucoconjugates such as peptidoglycan, arabinogalactan,

and glycolipids. Some of these glucoconjugates regulate host

immune responses mainly by binding to C-type lectin receptors

(CLRs), a family of pattern recognition receptors that include the

mannose receptor (MR), DC-SIGN, Dectin-2, DCIR, and Mincle

(Figure 2A). For example, mycobacterial glycolipid Di-O-acyl

trehalose promoted IL-10 secretion and indoleamine 2, 3-

dioxygenase (IDO) and downregulated IL-12 secretion and

costimulatory molecule expression in DCs, promoting FoxP3+

regulatory T cell expansion (Magallanes-Puebla et al., 2018b).
tertiary lymphoid organs have structures similar to secondary

lymphoid organs, especially LNs, and are identified in chronic

inflammatory processes, such as cancer (Bergomas et al., 2011;

Martinet et al., 2011), chronic infection (Drayton et al., 2006),

and atherosclerosis (Græbner et al., 2009). Inducible bronchus-

associated lymphoid tissue (iBALT) is a tertiary lymphoid

structure that resembles secondary lymphoid structure that is

found in various pulmonary infectious diseases, including TB,

and has been suggested to play a role in protection (Silva-

Sanchez and Randall, 2020). The iBALT structure can

maintain a locally activated Ag-specific lymphocyte pool that

elicits a rapid and effective immune response (Moyron-Quiroz

et al., 2004; Jones and Jones, 2016).

iBALT formation in Mtb infection correlates with

protection. iBALT induction is mediated by CXCL13 (Khader

et al., 2009; Rangel-Moreno et al., 2007; Rangel-Moreno et al.,

2011; Khader et al., 2011) that controls the formation of B cell

follicles, T cell placement, and optimal macrophage activation

for Mtb control (Khader et al., 2009; Khader et al., 2011). Mtb

infection induces the formation of granulomas characterized by

a central core of infected macrophages surrounded by

lymphocytes. Granuloma can isolate Mtb to inhibit growth,

and at the same time can act as a shelter for Mtb against host

immunity (Cadena et al., 2017). iBALT is found in the

perivascular space along the airways of the lung, enabling

rapid protective immune response (Hwang et al., 2016; Fleige

and Førster, 2017). In a nonhuman primate model (Kaushal

et al., 2015) and patients with TB (Ulrichs et al., 2004; Ulrichs

et al., 2005), the presence of B cell follicles correlates with

protection in TB (Kaushal et al., 2015). In addition, the

presence or absence of iBALT was associated with the

maintenance of latent infection or the development of active

disease (Ulrichs et al., 2004; Slight et al., 2013). The use of

alternative vaccination routes, such as mucosal or intravenous,

leads to the generation of iBALT, which has been associated with

reduced bacterial burden (Perdomo et al., 2016; Christensen

et al., 2017; Counoupas et al., 2020; Darrah et al., 2020). The

iBALT structure is maintained for a specific time even after the

inflammatory response is over (Rangel-Moreno et al., 2011;

Morissette et al., 2014), and considering the characteristics of

iBALT, it may provide a site for the localization of protective

recruit naïve, Ag-specific memory T cells and cDCs in the early

T cell regions of iBALT (Moyron-Quiroz et al., 2004; Fleige et al.,

2018). In addition, FDC-derived CXCL13 can induce the

homing of CXCR5-expressing B and T cells to iBALT

(Moyron-Quiroz et al., 2004). Previous iBALT studies have

mainly focused on the functions of FDCs that induce germinal

center formation in secondary lymphoid organs; however,

several studies have reported that traditional DCs affect the

formation and maintenance of iBALT in inflammation. It has

been reported that Bartonella henselae-infected mouse bone

marrow-derived dendritic cells and lung DCs produce

CXCL13, which is essential for iBALT formation (Vermi et al.,

2006). In addition, DCs are necessary to maintain iBALT in

response to viral infection in mouse models (Geurtsvankessel

et al., 2009; Halle et al., 2009). Pulmonary delivery of Mtb Ag-

primed DCs rapidly increases iBALT formation and near-

bactericidal immunity and improves the disease outcome

(Griffiths et al., 2016). These studies indicate that the

relationship between iBALT and DCs in TB control is

important and requires further research. Furthermore, it is

possible to induce and maintain protective immunization with

vaccines by understanding and controlling the iBALT formation

and maintenance mechanisms through DCs.

Interaction between Mtb and its
components with DCs

As described above, DCs play diverse roles in controlling

Mtb infection by interacting with other cellular compartments in

Mtb infection. However, DCs may also be a simultaneous target

of the Mtb host immune-evasion mechanism to generate a

pathogen-favoring environment (Figure 2, Table 1). This

section discusses the defined Mtb molecules and relevant

pathways facilitating pathogenesis.

Interaction of DCs with Mtb cell
wall components
lymphocytes such as CXCR5+ CD4+ T cells, which correlate with Various cell wall components of Mtb strains can modulate
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FIGURE 2
Immune alteration mechanisms of Mtb targeting DCs. (A) DC differentiation
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is affected by Mtb. Mtb-Ags such as Acr-1 or a-glucan, a cell wall
DCIR-deficient control mice exhibited better control of Mtb

infection with increased TNF-a production and inducible NOS

in its lungs compared to wild-type controls, supporting the

immune regulatory mechanism of Mtb cell wall components

via CLRs (Troegeler et al., 2017).

Another Mtb cell wall component, mannose-capped

lipoarabinomannan (ManLAM), regulates DC activation, but

the results are contradictory. Because of its structural

complexity, ManLAM can be recognized by several receptors,

such as MR, DC-SIGN (Pan et al., 2014), Toll-like receptor

(TLR) 2 (Gilleron et al., 2006), DC immunoactivating receptor

(DCAR) (Toyonaga et al., 2016), and mannose-binding protein

(MBP) (Hoppe et al., 1997). Complement receptor (CR)3 and

MR are major binding receptors of macrophages for Mtb

(Schorey et al., 1997; Ernst, 1998), but they played a minor

role in Mtb infection in moDC, rather DC-SIGN is a major

binding receptor for Mtb infection (Tailleux et al., 2003). In the

same study, Mtb binding through DC-SIGN in DCs was

confirmed to occur in a lipoarabinomannan (LAM)-dependent

manner, and it was confirmed by observing the binding of DC-

SIGN+ lung DCs with Mtb in the LNs of patients with TB.

ManLAM from virulent Mtb H37Rv induced the maturation of

DCs and secretion of IL-6, IL-12 and TNF-a in human DCs

(Mazurek et al., 2012), and promotes increased Ag presentation

(Yonekawa et al., 2014). Subsequently, it has been reported that

ManLAM-induced DC activation occurs via Dectin-2

(Yonekawa et al., 2014). Dulphy et al. reported that ManLAM

induces intermediate human DC maturation (Dulphy et al.,

2007). In contrast, ManLAM treatment of human moDCs

inhibited lipopolysaccharide (LPS) mycobacteria-induced DC

maturation, and DC maturation was restored when DC-SIGN

was blocked (Geijtenbeek et al., 2003). ManLAM treatment also

induces human DCs to increase IL-10 secretion, resulting in

reduced IFN-g secreting T cell response (Wu et al., 2011);

furthermore, it inhibits IL-12 and promotes IL-10, IL-1R

antagonist and IL-1R type II secretion and a similar DC

maturation profile was observed in MR-specific Ab-treated

DCs (Chieppa et al., 2003). ManLAM-induced DC maturation

inhibition was reversed by blocking its interaction with the MR

with the ssDNA aptamer ZXL1, resulting in increased T cell

activation (Pan et al., 2014). These discrepancies in the effects of

ManLAM on DCs may be due to the structural differences in

component of Mtb, induce altered differentiation of DCs with reduced function. (B) Mtb, its cell walls components and Mtb-Ags are recognized
by DCs via TLRs and CLRs, which could induce alteration of DC function by down regulating the expression of costimulatory molecules (CD80,
CD83, and CD86) and MHC class II to suppress maturation, and increase the expression of inhibitory molecules such as PD-L1 and IDO. (C) Mtb
inhibits Ag presentation. Esx-1 induces phagosomal damage and together with PE-PGRS47, inhibits phagosome-lysosme fusion. Meanwhile,
ManLAM suppresses autophagosome formation by inhibiting expression of microtubule-associated light chain 3 (LC3) protein. (D) Reduced
expression of CCR7 by Mtb infection affect DC migration to the LNs by lowering response to CCL19 and CCL21. DCs captured in lung tissue
promote the formation of larger or multifocal granulomas. (E) DC migration to lymph nodes causes leakage of Mtb-Ags in a kinesin-2
dependent manner, and induces suboptimal T cell proliferation by the inefficient by Mtb-induced maturation. Cytokine profiles such as
increased IL-10 and decreased IL-12p70 interfere with protective Th1 type polarization. (F) These processes induce a delayed T cell response to
lung tissue infection sites, and suppress TB disease control by forming suboptimal T cell immunity. TLRs, Toll-like receptors; CLRs, C-type lectin
receptors; PD-L1, programmed death-ligand 1; IDO, indoleamine 2,3-dioxygenase; LNs, lymph nodes; CCR, chemokine receptor; CCL,
chemokine ligand.
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ManLAM from various bacterial strains (Kællenius et al., 2016)

or the complexity of the receptor recognized by ManLAM,

indicating that further studies are required.

TABLE 1 Mtb and its components that inhibit DC function.

Factor Mechanism Conse

Mtb infection Decrease in expression of CCR7 - Promote lung gr
dissemination
- Reducing Ag av

Mtb infection Decrease in expression of CD18 - Limited Ag pres
in LNs

Mtb infection Leakage of Ags in Mtb-infected DCs via
kinesin 2-dependent vesicular transport

- Limit Ag presen
LNs

Zmp1 Arrest of phagosome maturation of DCs - Increased Ag85A
DCs infected with
compared to DCs
type BCG
- Increased IFN-g
CD8+-T cells in B
immunized mice.

PE-PGRS47 Inhibition of autophagosome-lysosome
fusion

- Enhanced MHC
Ag presentation i
PE-PGRS47 defici

ESX-1 Impairment of autophagosome-lysosome
fusion

- Decreased IL-12
and impairment o

EsxH Inhibition of the endosomal sorting complex
required for transport (ESCRT) machinery

- esxH-deficient M
Mtb Ag-specific C
proliferation than

Heat-killed
Mtb prime
boost
vaccination

Induction of myeloid-derived suppressor
cells (MDSCs)

- MDSCs produce
DCs in spleen

Acr-1 Impairment of DCs maturation - Decreased induc
producing CD4+

ManLAMs Promotion of IL-10 secretion, reducing IL-12
by binding to DC-SIGN on DCs

- Decrease in IFN
cultured with Ma
DCs

Glycolipid Di-
O-acyl
trehalose

Decrease in IL-12 and increase in IL-10 and
IDO

- Promoted expan
regulatory T cell

Rv1016c-
overexpressing
BCG (rBCG-
Rv1016c)

Decreased the production of cytokines (IL-2,
IL-12p70, TGF-b, IL-6) and co-stimulatory
molecules (CD80, CD86, MHC class I, MHC
class II)

- Impaired Th1 a

Hip1 Decrease in IL-12, CD40, CD86, MHC class
II molecules via MyD88- and TLR2/9-
dependent pathways

- Impaired Th1 a

GroEL2 Cleavage to monomer by Hip1 to inhibit
DCs maturation
(reduced CD40, CD86, IL-6, IL-12p40)

- Impaired Th1 a

CCR, chemokine receptor; LNs, lymph nodes; NO, nitric oxide; MDSCs, myeloid-derived
Mycobacterial lipid Ags are derived from the cell wall. CD1
molecules have a unique ability to present lipid Ags. The CD1

family can be classified by its recognition of Ags presented by

group 1 CD1 molecules (CD1a, CD1b, and CD1c) or by CD1d.

DCs express CD1 and can interact with CD1-restricted CD8 T

cells, ab T cells, gd T cells, and NK cells (Rosat et al., 1999;

Schaible et al., 2000; Fischer et al., 2004). These lipid Ags include
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mycolic acid (Beckman et al., 1994), glucose monomycolate

(Moody et al., 1997), lipoarabinomannans (Sieling et al., 1995;

Torrelles et al., 2012), phosphatidylinositol mannosides (Ernst

et al., 1998; Cala-De Paepe et al., 2012), glycerol monomycolate

(Layre et al., 2009), and sulfoglycolipids (Gilleron et al., 2004).

Lipid Ag-specific T cells primed through this unconventional Ag

presentation could perform protective functions during Mtb

infection (De Libero and Mori, 2014). Mtb inhibits the

formation of a complex of MHC class II molecules and

peptides in DCs during infection, but unconventional Ag

nce Category Ref.

ma

ity

Migration (Harding et al., 2015)

on to T cells Migration (Bhatt et al., 2004)

to T cells in Ag
presentation

(Srivastava et al., 2016)

entation by
Zmp1mutant
ed with wild

cing CD4+-/
mp1mutant

Ag
presentation

(Master et al., 2008; Johansen et al., 2011)

II-restricted
infected with
tb

Ag
presentation

(Saini et al., 2016)

ssion in DCs
response

Ag
presentation

(Romagnoli et al., 2012)

duced more
cell

type Mtb

Ag
presentation

(Portal-Celhay et al., 2016)

, which killed Differentiation (Ahn et al., 2012)

f IFN-g Differentiation (Amir et al., 2017)

m T cell co-
stimulated

Maturation
and cytokines

(Geijtenbeek et al., 2003; Chieppa et al., 2003;
Andersen and Doherty, 2005; Wu et al., 2011;
Orme, 2013; Balboa et al., 2016; Andersen and
Scriba, 2019)

f FoxP3+ Maturation
and cytokines

(Magallanes-Puebla et al., 2018a)

17 responses Maturation
and cytokines

(Su et al., 2019)

17 responses Maturation
and cytokines

(Su et al., 2019)

17 responses Maturation
and cytokines

(Georgieva et al., 2018)

essor cells; IDO, indoleamine 2,3-dioxygenase.
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presentation through CD1 can induce rapid Ag presentation and

thus a CD1-restricted T cell response (Hava et al., 2008).

However, Mtb can also induce immune evasion by inhibiting

CD1 expression on DCs (Stenger et al., 1998). Recently, mycolic

acid induced both humoral and cellular immunity in tumor

vaccine model, and it could induced anti-tumor immune

responses in tumor vaccination models as well as in

therapeutic models by enhancing Ag-specific cytotoxic T cell

activity, indicating a potential for lipid Ag as an adjuvant

(Kubota et al., 2020).

Interaction of DCs with Mtb protein Ags

Various Mtb-Ags have been explored as TB subunit vaccine

targets, some of which can induce a protective immune response

through DCs (Table 2). However, some Mtb-Ags modulate the

DC immune response. For example, the Rv1016c protein, a

virulence factor required for prolonged survival in macrophages

TABLE 2 Ags of Mtb that induce DC activation.

Factor Mechanism

HSP70 Functioning as alternative CD40L, bind to CD40
C

etion

C

,

g

- Induced the proliferation of GrpE-specific Th1-type Maturation (Kim

D80,
0, and

f
0)
PE_PGRS11
PE_PGRS17

TLR-2-mediated maturation and activation of human DCs

Rv0315 Increase DCs maturation (increased expression of CD80, CD86, MH
class I/II and secretion of IL-6, IL-1b, TNF-a)

PstS1 Promotes DCs phenotypic activation and IL-6, IL-1b and IL-23 secr
in DCs

Rv3812 Increase DCs maturation (increased expression of CD80, CD86, MH
class II and secretion of IL-6, IL-1b, TNF-a)

RpfB TLR-4 mediated maturation of DCs

Rv0577 TLR-2 mediated BMDCs maturation (increased expression of CD80
CD86, MHC class I/II and secretion of TNF-a, IL-1b, IL-6, and IL-
12p70)

Rv2220 Induced maturation of DCs mediated by MAPK and NF-kB signalin
pathway

GrpE Induced TLR-4 mediated maturation of DCs

PPE60 Induced TLR-2 mediated DCs maturation (increased expression of C
CD86, MHC class I/II and secretion of TNF-a, IL-1b, IL-6, IL-12p7
IL-23p19)

Rv3841 Induced TLR-4 mediated maturation of DCs (increased expression o
CD40, CD80, CD86, MHC class II and secretion of TNF-a, IL-12p7
NO, nitric oxide; BMDCs, bone marrow-derived dendritic cells; MAPK, mitogen-activated prot
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(Gonzãlez-Zamorano et al., 2009), enhanced BCG virulence

when overexpressed, impairing DC activation which in turn

inhibited Th1 and Th17 differentiation (Su et al., 2019). In the

same line, the serine hydrolase Hip1 (Madan-Lala et al., 2014)

and monomeric GroEL2 cleaved by Mtb Hip1 (Georgieva et al.,

2018) suppressed Th1 and Th17 T cell polarization by inhibiting

DC maturation

Some Mtb-Ags evade the host immune system by inhibiting

the processing and presentation of Mtb-Ags interaction with T

cells (Figure 2B). The 6 kDa early secretory antigenic target

(ESAT-6), one of the major Mtb-Ags, inhibits human DC

maturation and IL-12 production but promotes IL-23 and IL-

1b secretion, which in turn promotes a Th17 rather than a Th1

response (Wang et al., 2012). Autophagy is a homeostatic

mechanism that can participate in host defense as a multistep

process involving the enclosing and lysing of intracytoplasmic

cargo, such as Mtb, by merging with lysosomes and favoring

antigen presentation. Autophagosome-lysosome fusion in

human DCs was inhibited by infection with the virulent

Consequence Category Ref.

- Increased IL-12, TNF-a, and NO expression
- Induced DCs maturation

Maturation
and
cytokines

(Lehner
et al.,
2004)

- Induced strong CD4+ T cell response and
proliferation

Maturation
and
cytokines

(Bansal
et al.,
2010)

- Induced Th1 polarization
- Increased secretion of IFN-g from splenic CD4+ T
cell and CD8+ T cell

Maturation
and
cytokines

(Heo
et al.,
2011)

- Induction of IFN-g and IL-17/IL-22 response of T
cell

Maturation
and
cytokines

(Palma
et al.,
2013)

- Increased IL-2 and IFN-g of CD4+ T cell Maturation
and
cytokines

(Vani
et al.,
2013)

- Polarized naïve CD4+ and CD8+ T cells to secrete
IFN-g and IL-2.
- Induced the expansion of memory T cells in the
spleen of Mtb-infected mice

Maturation
and
cytokines

(Kim
et al.,
2013)

- Induced Th1 polarization
- Increased secretion of IFN-g from splenic CD4+ T
cell and CD8+ T cell

Maturation
and
cytokines

(Byun
et al.,
2012)

- Increased the expansion of CD62Llo CD44hi CD4
memory T cells in spleen of Mtb infected mice

Maturation
and
cytokines

(Choi
et al.,
2018a)
effector memory T cells from the spleen of Mtb
infected mice

and
cytokines

et al.,
2018)

- Increased secretion of IFN-g and IL-17 from CD4+

T cell
Maturation
and
cytokines

(Su et al.,
2018)

- Induced the proliferation of Th1 cell
- Increased the expansion of CD62LloCD44hiCD4+

memory T cells in spleen of Mtb infected mice

Maturation
and
cytokines

(Choi
et al.,
2018b)
ein kinase.
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The role of DC metabolism in TB

Metabolites are sensitively regulated by the immune

response, and metabolic profiles have been applied as a

biomarker in various diseases, such as sepsis, leprosy, and
Frontiers in Cellular and Infection Microbiology 12
Although many immunometabolic studies have been based

on TLR agonist stimulation, Mtb can induce an Mtb-specific

metabolic profile because it has components that induce various

immune evasion mechanisms. Both Mtb lysate and LPS

stimulation induced glycolysis in macrophages, but it was

confirmed that Mtb infection significantly affected the

metabolites of infected cells rather than simply increasing
H37Rv strain through ESAT-6 secretion system-1 (ESX-1)

activity (Romagnoli et al., 2012). This study suggests that Mtb

suppressed autophagy, which is required for an efficient Ag

presentation and subsequent T cell activation (Jagannath et al.,

2009; Münz, 2009). The zinc metalloprotease 1 (Zmp1) of Mtb

arrests DC phagosome maturation (Master et al., 2008), which

limits the presentation of MHC class II-restricted Ags (Johansen

et al., 2011). Ag presentation could be affected by Mtb protein

PE-PGRS47, inhibiting the effective autophagosome-lysosome

fusion by suppressing the autophagy pathway (Saini et al., 2016),

and Mtb EsxH, inhibiting the endosomal sorting complex

required for the transport (ESCRT) machinery required for Ag

processing (Mehra et al., 2013; Portal-Celhay et al., 2016). These

studies show that Mtb-Ags can evade the host immune system

by inhibiting the Ag presentation of DCs. The latency-associated

protein alpha-crystallin protein (Acr-1) of Mtb regulates DC

function by regulating its differentiation stages (Siddiqui et al.,

2014) (Figure 2C). Mouse DCs generated in the presence of Acr-

1 displayed decreased expression of CD80, CD86, and MHC

class II and increased expression of PD-L1, Tim-3, IDO, and IL-

10, which promote regulatory T cell generation; however, DC

generation with CFP-10 or ESAT-6 did not affect DC function

and phenotype. These reports show that Mtb induces host

immune evasion by impairing the function of DC, such as

inhib i t ion of the Ag presenta t ion and a l tera t ion

of differentiation.

Moreover, Mtb-infected DCs exhibit a low CCR7 expression

level and migrate less efficiently than non-infected DCs

(Figure 2D). Mtb-specific T cells may capture infected DCs in

granulomatous tissue, which reduces Ag availability in dLNs and

induces the retention of DCs in infected tissue (Harding et al.,

2015), promoting the dissemination and formation of new or

larger multifocal lesions (Harding et al., 2015). Although Mtb-

infected DCs migrate to LNs, they have a poor ability to activate

CD4+ T cells directly. In addition, Mtb-infected DCs export

Mtb-Ags to bystander resident DCs in a kinesin-2 dependent

manner, this is insufficient to compensate for the reduced Ag

presentation by infected DCs (Srivastava et al., 2016)

(Figure 2E). Mtb infection modulates overall DC function such

as maturation, migration and Ag presentation to construct

protective T cell immunity (Figure 2F). Mtb-Ags allow Mtb to

evade host immunity by regulating the various functions of DC,

suggesting that there is a possibility of additional mechanisms by

unknown Ag, while suggesting that these Ags may be potential

diabetes (Amaral et al., 2013; Langley et al., 2013; Langley

et al., 2014; Tam et al., 2017). In the case of TB, differences in

the metabolic profile of plasma or serum between TB patients

and healthy controls have been reported using liquid

chromatography high-resolution mass spectrometry (LC-MS)

(Frediani et al., 2014; Feng et al., 2015). Recently, metabolic

changes in blood have been reported as an index predicting the

onset of TB disease in Sub-Saharan Africa (Weiner et al., 2018).

These reports suggest a strong association between metabolism

and the disease state of TB.

Immune response to disease state affects metabolic changes

in various cells. In an early study, it was shown that changes in

macrophage metabolism reflect macrophage activation (Hard,

1970), and since then, there have been reports that various

immune responses affect metabolism in specific cells, such as

DCs (Kominsky et al., 2010; Kelly and O’neill, 2015). To

generate ATP under normoxic conditions, DCs can use

oxidative phosphorylation (OXPHOS), but under hypoxia

glycolytic metabolism is induced to generate ATP

independently of OXPHOS. In addition to hypoxic conditions,

stimulation of TLRs, such as LPS, simultaneously induces DC

activation and aerobic glycolysis through metabolic

reprogramming, which plays an important role in DC

activation (Krawczyk et al., 2010; Everts et al., 2014). In

addition, DC metabolism could be regulated by inflammatory

conditions, such as TLR stimulation, as well as by the metabolic

environment. Lawless et al. reported that, while human moDCs

induced maturation via glycolysis in a restricted glucose

environment, DC maturation was rather decreased in a high-

glucose environment and decreased immunogenicity for T cell

activation (Lawless et al., 2017). cDCs cannot produce nitric

oxide (NO), whereas moDCs differentiated with GM-CSF can

produce NO. Since NO is a strong inhibitor of the electron

transport system which is critical for OXPHOS (Bailey et al.,

2019), metabolic reprogramming of cDCs can be induced by NO

from moDCs or macrophages (Everts et al., 2012). These reports

suggest that the different functions of DCs depending on tissue

localization during TB could be affected by the metabolic

environments. For example, Mtb-infected DCs migrate to LNs,

but direct interaction with T cells occurs by LN resident cDCs

with Ags transferred from Mtb-infected DCs (Srivastava and

Ernst, 2014). Since a significant proportion of DCs migrating to

LNs are moDCs capable of producing NO (Norris and Ernst,

2018), the metabolism of LN resident cDCs may be affected by
targets for TB control. Therefore, it is important to discover and

identify Mtb-Ags that modulate DC function.

NO produced by Mtb-infected moDCs, resulting in effective

cDC maturation for T cell activation.
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glycolysis, which showed a marked difference compared to LPS

stimulation (Vrieling et al., 2020). These reports suggest that

metabolic changes by Mtb infection or Mtb components should

be studied not only in macrophages but also in various cells,

including DCs. However, few studies have been conducted on

the metabolic profile of DCs related to Mtb infection or its

components. Guak et al. reported that glycolytic metabolism is

essential for CCR7 oligomerization and DC migration (Guak

et al., 2018). However, moDCs recruited to the infection site after

Mtb infection exhibit a low CCR7 expression level, and

migration to LNs does not occur effectively compared to that

of non-infected moDCs (Harding et al., 2015). In addition, it has

been reported that DC tolerance is induced by drugs promoting

OXPHOS, such as vitamin D and dexamethasone (Ferreira et al.,

2009; Ferreira et al., 2012; Basit and De Vries, 2019). These

reports indicate the need to study the metabolic profile in the

context of the mechanisms of inhibition of DC maturation by

Mtb infection or specific components. In particular, study of the

metabolic reprogramming of DCs with various CLR ligands or

Ags involved in the immune evasion mechanism of Mtb

discussed above may enable a deeper understanding of the

function of DCs in TB. Given the importance and functional

diversity of DCs reviewed in this paper, the Mtb-induced

metabolic profile of DCs could be an important topic to be

studied for TB control.

DCs in genetic susceptibility to TB in
animal models and humans

There is a spectrum of susceptibility among patients with TB

(Vilaplana et al., 2010). There may be various causes, but in

terms of the host, the genetic diversity of individuals may be a

cause of susceptibility to Mtb (Vannberg et al., 2008; Davila

et al., 2008; Leu et al., 2017; Zheng et al., 2017; Cai et al., 2019).

The inbred mouse model has a closed genetic background for

each strain. Each strain of inbred mouse showed different

survivability to Mtb infection; thus, it could be a rational model

to study susceptibility to Mtb infection (Chackerian and Behar,

2003). Previous studies showed the correlation of susceptibility to

Mtb infection with DCs in inbred mouse models (Medina and

North, 1998; Chackerian and Behar, 2003; Yan et al., 2006).

Relatively Mtb-resistant C57BL/6 and BALB/c mice significantly

increased CD103+cDC1 in the lungs after 4 weeks of Mtb infection,

whereas highly susceptible DBA/2 mice showed fewer CD103+

cDC1 recruited into the lungs (Leepiyasakulchai et al., 2012). The

correlation of CD103+cDC1 recruitment with susceptibility was

observed in LNs at 3 and 9 weeks after infection, and a higher

number of IFN-g+ cells was maintained at a higher level in resistant

C57BL/6 compared to DBA/2 mice (Leepiyasakulchai et al., 2012).

This correlation between susceptibility and DCs was even observed

between relatively resistant C57BL/6 and relatively susceptible
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BALB/c (Sërgio et al., 2015). In addition, C57BL/6 mice showed

approximately four times higher CCL19 gene expression in the

lungs compared to BALB/c mice, showing differences in

susceptibility according to the migration of DCs to LNs (Sërgio

et al., 2015). The regulatory T cell population was not maintained in

susceptible DBA/2 mice, whereas it was in resistant C57BL/6 mice

(Cardona et al., 2015). Among the susceptible C3H strains, more

susceptible C3HeB/FeJ mice showed lower regulatory T cell

induction than C3H/HeN mice (Cardona et al., 2015). This

phenomenon could be due to the role of CD103+cDC1 in

suppressing excessive inflammation. These results imply that the

number of cells and differences in the DC function can

affect susceptibility.

Blischak et al. identified differentially expressed 645 genes

between the DCs derived from PBMCs isolated from susceptible

individuals (recovered from active TB) and resistant individuals

(tested positive for latent TB). In addition, the identified genes were

enriched for nearby SNPs with low p-values in TB susceptibility

GWAS, indicating an association between genetic polymorphism

and TB susceptibility (Blischak et al., 2017). Urazova et al. analyzed

the association between the secretion of the proinflammatory

cytokines IL-12р70, IL-18, and IL-27 by myeloid DCs and the

presence of polymorphisms in their corresponding genes in 334

TB-patient samples and found that reduced IL-18 and IL-27

secretion and the polymorphisms leading to the altered secretion

of IL-12p70 were associated withMtb dissemination (Urazova et al.,

2019). TB susceptibility associated with DCmigration has also been

reported in human studies. A study of 7.6 million genetic variants in

5530 patients with pulmonary TB and 5607 healthy controls

recruited in Russia confirmed an association between TB

susceptibility and variants of ASAP1 gene that encodes the DC

migration regulator (Curtis et al., 2015; Waltl, 2015; Chen et al.,

2019). However, there was no correlation between ASAP1 and TB

susceptibility in a Chinese population (Hu et al., 2016). In addition,

the association of the CD209 promoter single-nucleotide

polymorphism (SNP)-336A/G with susceptibility to dengue, HIV-

1, and TB in a study in sub-Saharan Africa has been reported

(Vannberg et al., 2008). The latest meta-analysis confirmed that

SNP-871A/G is associated with susceptibility to TB in all

populations, and SNP-336A/G is a risk factor only for patients

with TB in the Asian population (Yi et al., 2015). These reports

show that DCs are an important population associated with TB

susceptibility but show inconsistent results depending on the

population, suggesting that further studies are required.

Current development of anti-TB
vaccines and DC-based
immunological interventions

Among the various strategies to control TB, an effective TB

vaccine can be the most cost-effective. BCG is currently the only
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licensed vaccine for TB; it is traditionally administered to

neonates but has insufficient protection for pulmonary TB

from adolescence, indicating that the development of

improved vaccines is imperative (Andersen and Doherty,

2005). Various approaches have been attempted to overcome

these obstacles, including subunit, recombinant BCG, and live

TABLE 3 Mechanisms of the targets of DC-based approaches in TB vac

Concept Product Types

DCs targeted
vaccine

Anti-Dec-205-
Ag85B

Conjugated vaccine -

Conjugated vaccine for BCG booster -
-

a-DEC-ESAT Conjugated vaccine -

Conjugated vaccine for BCG booster -
-
C
-

aDC-SIGN :
Ag85B
aDC-SIGN:P25

Conjugated vaccine -
ce

LV-AEG/SVGmu Ag85A-ESAT-6 fusion protein
(Ag85A-E6) expressing Lentivirus
vector

-
-

Vaccine with
DCs inducing
signal

AdGM-CSF-
adjuvanted BCG

Adjuvanted BCG vaccine -
im
-
ch

BCG : GM‐CSF Recombinant BCG vaccine -
-
-

BCG : GM-CSF Recombinant BCG vaccine -
po
-
de
-
ce
-

BCG : Flt3L Recombinant BCG vaccine -
-

pFlt-85 DNA vaccine -
-

DCs transfer
vaccine

LDC-Ag85 Cell-derived vaccines -
gr
-

BMDCs loaded
with Mtb sonicate
Ags

Cell-derived vaccines -

DCs pulsed with
Ag85A peptides

Cell-derived booster vaccines for
MVA85A

-
to

Ag85B-Z-DC BCG booster vaccine -

Booster vaccine for mucosal vaccine
with Ag85B240-254 peptide

-
-

AdAg85/DC (I.V.) Mtb-Ag85A producing DCs -
C
-S
im

AdAg85/DC (I.M.) Mtb-Ag85A producing DCs -

dpi, days post-infection; CTL, Cytotoxic T lymphocytes; BMDCs, bone marrow-derived den
intra-venous; I.M., intra-muscular.
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candidates.

Immunological features Ref.

tion of Ag-specific humoral and cellular responses (Stylianou et al.,
2011)proliferation and IFN-g production

nificant protection against Mtb challenge

sed ESAT-6-specific IFN-g producing CD4+ T cells (Silva-Sanchez
et al., 2015)sed IFN-g+ production by specific T cells in the lungs

ecific early (14 dpi) T cell response (IFN-g production and
ivity)
ed bacterial burden in lung

se in Ag-specific IFN-g+IL-2+TNF-a+ polyfunctional CD4+ T (Velasquez
et al., 2018)

ed strong Th1 response producing IFN-g and IL-2
cantly increased levels of Ag85A-E6 specific IgG

(Shakouri et al.,
2016)

ced the magnitude and longevity of anti-mycobacterial type 1
ty in LNs and spleen
ved immune protection against secondary mycobacterial
e

(Wang et al.,
2002)

ds and activates APC in the lung and LNs
rated priming of Ag-specific CD4+ T cells in the LNs
sed migration of activated CD4+ T cells into lung

(Nambiar et al.,
2010)

sed numbers of dendritic cells in the dLNs at 7 and 14 days
cination
ced expression of costimulatory molecules on migratory
c cells in the dLNs
se in the frequency of anti-mycobacterial IFN-g-secreting T

d increase in protection against disseminated Mtb infection

(Ryan et al.,
2007)
attenuated vaccines. Several vaccine candidates are currently in

clinical trials, addressing the key correlations of cellular or

humoral immune responses with TB protection (Nell et al.,

2014; Penn-Nicholson et al., 2015; Nemes et al., 2018; Van Der

Meeren et al., 2018). Vaccine candidates are designed to

potentiate DC function against Mtb, enhancing adjuvant

sed Ag85B specific IFN-g production
ased bacterial burden in lung

sed infiltration of macrophages and lymphocytes into
mas and parenchymal tissues
sed numbers of CD4+ and CD8+ IFN-g secreting cells

(Gonzãlez-
Juarrero et al.,
2002)

cant increase in IFN-g-producing cells in lungs and LNs (Rubakova
et al., 2007)

nized with DCs pulsed with both CD4+- CD8+-restrict epitopes
showed significant protection, but not with single peptide

(Mcshane et al.,
2002)

te influx of CD4+ T cell into lung (Griffiths et al.,
2016)te formation of B cell follicle formation in lung

ased bacterial burden in lung

d a remarkably higher level of ex vivo IFN-g production by
d CD8 T cells at weeks 2, 6, and 12 post-immunization
ed levels of CD8 and CD4 CTL activity up to 12 weeks post-
zation.

(Malowany
et al., 2006)

r immunization efficacy than AdAg85/DC

cells; LNs, lymph nodes; BCG, Bacille Calmette-Guerin; dLNs, draining lymph nodes; I.V.,
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DCs in TB pathogenesis is needed.
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adjuvant system induced a strong Th1 response to vaccine Ags

(Coler et al., 2010; Orr et al., 2013a; Orr et al., 2013b; Orr et al.,

2014). Subunit vaccines eventually deliver Ags via APC; thus,

efficacy may vary depending on the formulation of the adjuvant

used in the vaccination (Baldwin et al., 2012; Orr et al., 2013b)

Mtb-Ags capable of inducing DC maturation have been

reported as potential TB vaccine targets. Mtb-Ags, such as

RpfE, Rv0577, and MTBK_20640, induce DC maturation

followed by IFN-g producing Th1 and Th17 responses (Byun

et al., 2012; Choi et al., 2015; Kwon et al., 2019). Rv0577 could

induce the maturation of mouse splenic DCs in vitro, and these

DCs could increase IFN-g producing CD4+ and CD8+ T cells

(Byun et al., 2012). MTBK_20640 induces DC maturation and

Th1 response in vitro and vaccination with MTBK_20640

showed Ag-specific CD4+- CD8+- T cell responses with

decreased bacterial burden and lung inflammation against the

virulent Mtb HN878 strain (Kwon et al., 2019). Mtb Ag ESAT-6

fused with HSP90 (HSP90-E6) could mature DCs that induced

Th1 and Th17 cell proliferation in vitro (Choi et al., 2020).

Whole-cell vaccines such as VPM1002 (Grode et al., 2013),

MTBVAC (Tameris et al., 2019), RUTI (Vilaplana et al., 2010;

Nell et al., 2014), DAR-901 (Lahey et al., 2010; Von Reyn et al.,

2010), and MIP (Gupta et al., 2012; Mayosi et al., 2014) could

induce an effective cellular immune response. BCG has advantages

as a TB vaccine in terms of safety and universality; thus, studies on
the usage of BCG for improved efficacy, such as BCG
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Owing to the above-mentioned DC characteristics,

fundamental studies to produce effective TB vaccines based on

the frequencies and functions of various types of DCs have been

suggested (Table 3). After Mtb infection, DCs migrate to the

dLNs and initiate primary protective Th1 responses. DCs are the

only cells capable of priming naïve T cells (Bhatt et al., 2004).

Thus, the limited number of DCs can affect the formation of

protective immunity against Mtb infection. In this context,

studies have been conducted to improve vaccine efficacy by

increasing the number of DCs using growth factors such as GM-

CSF or FMS-like tyrosine kinase 3 ligand (Flt3L). DNA vaccines

encoding Mtb-Ags fused with GM-CSF or Flt3L showed

improved protection against Mtb infection. For example, the

Flt3L-Mtb32 DNA vaccine showed better protection against Mtb

challenge in both the spleen and lungs than the BCG vaccine

(Ahn et al., 2012). In another example, immunization using a

DNA vaccine encoding mouse Mtb Ag85B with Flt3L elicited

better protection than the DNA vaccine encoding Mtb Ag85B

alone (Triccas et al., 2007). In addition, to increase the efficacy of

BCG, an adenoviral GM-CSF transgene-based adjuvant

formulation was used with BCG vaccination (Wang et al.,

2002), resulting in markedly enhanced BCG immunogenicity

and additional protection against Mtb infection with more

APCs. Immunization of mice with BCG-encoded GM-CSF

(Ryan et al., 2007; Nambiar et al., 2010) or Flt3L (Triccas
enhancing Ag uptake by DCs or exploiting immunogenic Ags

from Mtb (Table 3).

Adjuvanted subunit vaccines provide effective protection by

selecting proper Ags and adjuvants. The characteristics of

adjuvants can affect the DC immune response causing effective

T cell responses; therefore, various adjuvants have been

developed and used in clinical trials. H4:IC31 (Bekker et al.,

2020), H56:IC31 (Jenum et al., 2021), M72/AS01E (Tait et al.,

2019), and ID93/GLA-SE (Coler et al., 2018) induced Ag-specific

CD4+ T cells producing TNF-a, IFN-g, and IL-2 simultaneously;

several showed high levels of Ag-specific IgG (Coler et al., 2018;

Tait et al., 2019). Immunization of Ag85B-ESAT-6 fusion

protein with IC31 adjuvant can promote CD4+ T cell priming

by inducing MHC class II activation and upregulation of

costimulatory molecules on DCs (Kamath et al., 2008). AS01

is a liposome-based adjuvant of the M72/AS01E vaccine that

contains two immunostimulants, monophosphoryl lipid A

(MPL) and QS-21 (Garéon and Van Mechelen, 2011). AS01

induces DC activation, through the activation of NF-ĸB

signaling by MPL (Casella and Mitchell, 2008) and Ag cross

presentation by QS 21 (Ragupathi et al., 2011), resulting in

enhanced adaptive immunity (Didierlaurent et al., 2014). GLA-

SE, a synthetic TLR4 agonist formulated in a stable nano-

emulsion of squalene oil, and mouse and human DCs

stimulated with GLA produce IL-12 in a MyD88-and TRIF-

are being conducted (Hoft et al., 2008; Orme, 2013; Kaufmann

et al., 2014; Sander et al., 2015; Grøschel et al., 2017; Nemes et al.,

2018). VPM1002 is a recombinant BCG that secrete listeriolysin

(Hly) that increases Listeria monocytogenes phagosome escape

(Grode et al., 2013) and promotes Hly activity by deleting ureC

that inhibits phagosome lysosome fusion (Netea et al., 2006; Singh

et al., 2010). This vaccine induces profound apoptosis in mouse

and human APCs, allowing DCs to efficiently present Ags through

the uptake of apoptotic vesicles (Grode et al., 2005). MTBVAC is a

live, rationally attenuated Mtb with a deletion mutation in the

virulence genes phoP and fadD26. Mutation of these genes impairs

the synthesis of phthiocerol dimycocerosates (DIM) and

trehalose-derived lipids, such as diacyl- (DAT) and polyacyl-

trehaloses (PATs), which have DC immunomodulatory effects

(Camacho et al., 1999; Cox et al., 1999; Gonzalo Asensio et al.,

2006; Walters et al., 2006; Frigui et al., 2008; Gonzalo-Asensio

et al., 2008). VPM1002 andMTBVAC induce not only higher Th1

activity but also Th17 activity in CD4 T cells than BCG

(Nieuwenhuizen et al., 2017; Gupta et al., 2019; Dijkman et al.,

2021), which may be due to the increase in the Ag-presenting

ability of DCs through the mechanism described above or escape

from the immunomodulatory effect. These reports suggest

attempts to enhance vaccine efficacy by limiting the factors that

inhibit DC function or enhancing the factors that aid in

immunization, suggesting that further research on the role of
et al., 2007) increased DCs in the lungs and mLNs, increasing
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the development of TB vaccines.

Mtb avoids detection through DCs. One of the significant

and other cells. Promising new vaccine candidates showing
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BCG-reactive IFN-g-secreting T cells with significant protection

compared to immunization with BCG. These reports suggested

that increasing DCs could be an important target for developing

improved TB vaccines.

In addition to effective vaccine target Ags, the effective

delivery of the Ags to DCs is an important aspect of an

effective vaccine strategy. Dec-205 is an endocytic receptor

(Inaba et al., 1995; Jiang et al., 1995; Mahnke et al., 2000)

associated with Ag processing and presentation (Wang et al.,

2000; Dudziak et al., 2007), and Mtb recognition (Von Garnier

and Nicod, 2009). Furthermore, lung DCs in pulmonary TB

express Dec-205 (Garcïa-Romo et al., 2004), indicating that Dec-

205 could be a prominent target to deliver mycobacterial Ags.

ESAT-6 conjugated with Abs targeting Dec-205+ DCs (a-DEC-
ESAT) showed an ESAT-6-specific IFN-g producing CD4+ T cell

and reduced bacterial burden in a mouse model (Silva-Sanchez

et al., 2015). Ag85B conjugated with Abs targeting Dec-205+

DCs (anti-Dec-205-Ag85B) induced Ag-specific cellular and

humoral immune response, but no significant protection

against Mtb infection (Stylianou et al., 2011). Similarly,

vaccination with anti-DC-SIGN antibodies conjugated to

Ag85B or peptide 25 of Ag85B targeting DC-SIGN+ DCs

induces strong Ag-specific CD4+ T-cell response, but no

protection against Mtb infection was observed (Velasquez

et al., 2018). Although vaccine efficacy was not presented

against Mtb infection, the DC-targeted vaccine using the

lentivector LV-AEG/SVGmu encoding fusion protein Ag85A-

ESAT-6 showed significant Th1 response and Ag-specific IgG.

(Shakouri et al., 2016). Immunization via subcutaneous injection

of BMDCs loaded with Mtb sonicate Ags showed increased

survival and decreased bacterial burden against Mtb infection

(Rubakova et al., 2007). Similarly, mouse intravenous

immunization of DCs treated with Ag85A peptide showed a

similar level of efficacy against Mtb infection as that of BCG

(Mcshane et al., 2002). This protective effect of DC transfer can

be accelerated by booster vaccination through the transfer of

Ag85B-primed DCs following BCG vaccination (Griffiths et al.,

2016). In addition, a genetically modified DC-based vaccine

expressing Ag85A had increased vaccine efficacy compared with

that of the DC vaccine administered following Ag85A treatment

(Malowany et al., 2006). The number of DCs and their ability to

form Th1/Th17 immunity are important factors in TB

pathogenesis and defense against TB using vaccines.

The advantage of mRNA and adenovirus vector vaccine

platform is that self-replicating viral vector vaccines or mRNA-

based vaccines do not integrate into the intracellular nucleus,

which is safe and can be effective even in small amounts, and

compared to existing vaccine platforms, they can be produced

quickly even in a small facility; therefore, it was possible to

significantly reduce the time required to develop a vaccine for a

disease, such as the COVID-19 pandemic (Corbett et al., 2020;

Laczkõ et al., 2020; Mulligan et al., 2020; Mendonéa et al., 2021;

Jacob-Dolan and Barouch, 2022). These advantages may enable
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efficient screening for the discovery of effective targets for TB

vaccines. Xue et al. reported that the mRNA vaccine expressing

Mtb-Ag MPT83 showed modest but significant protection

against Mtb infection in a mouse model (Xue et al., 2004). But

there is still no mRNA-based TB vaccine candidate in TB vaccine

pipeline. Adenoviral vector TB vaccine has relatively more trials

compared to mRNA-based TB vaccine, and vaccine candidates

such as Ad5Ag85A and ChAdOx1.85A are currently in phase 1

clinical trials (Sable et al., 2019). Adenoviral vector- or mRNA-

based vaccines can be generated by DC-targeting Abs fused with

Mtb-Ag; hence, Mtb-Ag conjugated with DC-targeting Abs is

capable of targeting DCs. In addition, it is possible to increase

vaccine efficiency by promoting DC differentiation using growth

factors-based vectors that promote DC differentiation. Ex vivo

delivery of DCs could be a way to improve the stability of

mRNA-based vaccines. For example, mRNA was transfected

into DCs differentiated from the blood of a patient by

electroporation, and then applied to a patient and used as a

cancer vaccine (Gu et al., 2020; Wang et al., 2021). This method
TB vaccine. After transducing DC with a vector containing Mtb-

Ag, adoptive transfer to a subject can increase the vaccine

efficacy of the mRNA vaccine, since it enables continuous

Mtb-Ag production in vivo. Rapid discovery of TB vaccine

targets with the advantages of these new platforms will enable

the combination of strategies with various targets and speed up
Discussion

Currently, TB remains a globally uncontrollable disease,

although Mtb was discovered as the causative agent of TB by

Robert Koch in 1882. Several studies have been conducted, and

valuable attempts have been made in various contexts, such as

the independent and interdependent properties and functions of

DC subsets in TB pathogenesis, their interactions with other

immune cells, and immune evasion mechanisms through which
findings has been that DCs can induce immunity against TB

while simultaneously being controlled by Mtb, suggesting that

DCs are an important target for regulating the environment

favored by the host or pathogen. Despite these advances, there

are many conflicting opinions regarding the functions of the

various DC subsets in Mtb infection, Mtb host-protective

response-evasion mechanisms, and the crosstalk between DCs
encouraging results are already in the pipeline, and ongoing

studies have provided evidence to suggest that disease outcomes

can be improved by understanding biological and cellular DC

features for developing vaccine strategies.

Furthermore, the features of DCs reviewed herein indicate that

they could be a good target to potentiate host defense against TB
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(Figure 3). DC-targeted vaccines that can enable efficient protective

immunity formation and an increase in the absolute number of

DCs through the production of GM-CSF or Flt3L can also promote

protective immunity (Figure 3A). The selective removal of Mtb

components hindering DC function could help develop more

effective TB control strategies (Figure 3B). For example, ZXL1

inhibits ManLAM-induced immunosuppression of Mtb-infected

DCs by inhibiting the binding of Mtb ManLAM to MR (Pan et al.,

2014). In addition, ZXL1 injection reduced the bacterial burden in

mice and rhesus macaque models (Pan et al., 2014). Further, the

effective delivery of Ags to DCs can be another strategy to control

TB. As reviewed above, by conjugating Mtb-Ags to an Ab, such as

Dec-205, that targets a DC-specific molecule, efficient DC antigen

delivery, and immune response can be induced (Figure 3C). In

addition to promoting DC differentiation, there is a method for the

adoptive transfer of DCs induced by maturation with Mtb-Ags

(Griffiths et al., 2016) to form protective immunity by increasing

DCs in the host (Figure 3D). It is possible to induce effective DC

maturation for Mtb protective immunity using carefully selected

Mtb-Ags rather than DCs with reduced function due to Mtb

infection that could be used as a prime or booster vaccine or

adjunctive immunotherapy to increase the effectiveness of

antibiotic regimens.

Besides there are strategies to inhibit Mtb-induced

immunosuppressive factors in the host. One of the most

E

A

FIGURE 3

DC-based approaches to overcome TB disease. (A) Injection of Flt3L,
could increase the absolute number of DCs. (B) In Mtb infection, vario
DC maturation. For example, an aptamer such as ZXL-1 can inhibit the
SIGN and Dec-205, mainly expressed on DCs, can be major targets of
(D) Adoptive transfer of DCs maturated with an Mtb-Ags increases the
prime or booster vaccination, or as adjunctive therapy for antibiotic th
interact with T cells through improved migration, which can help to c
induce tertiary lymphoid structures formation such as iBALT, and can
nodes; Flt3L, FMS-like tyrosine kinase 3 ligand; GM-CSF, granulocyte-
DC-SIGN, DC-specific intercellular adhesion molecule-3 grabbing non
associated lymphoid tissue.
common features of the Mtb immune-evasion mechanism via

DCs is the increased secretion of IL-10 to induce tolerogenic DC

generation in vitro (Mcbride et al., 2002; Torres-Aguilar et al.,

2010). IL-10 secretion in Mtb-infected DCs is correlated with the

virulence of Mtb strains, and the maturation phenotype was

recovered by blocking IL-10 signaling, enhancing T cell response

with reduced bacterial burden in mouse models (Beamer et al.,

2008; Kim et al., 2017). Furthermore, IDO inhibition using 1-

methyl-tryptophan increased Mtb killing, increased lymphoid

follicles and pulmonary lymphocyte proliferation, and improved

disease outcome (Gautam et al., 2018). These methods can

increase the migration of DCs to LNs and enable effective

interaction with T cells (Figure 3E). In addition, there is a

correlation between iBALT formation and protection in Mtb

infection, and DCs play an important role in the formation and

maintenance of this structure. Therefore, these DC targeted

strategies could promote the formation of iBALTs, which plays

a protective role against Mtb infection (Figure 3F).

Comprehensive regulation and application of the DCs

properties in Mtb infection can be used to develop vaccines or

treatment strategies for TB control.

GM-CSF can play a pathogenic role in autoimmune diseases

such as multiple sclerosis and rheumatoid arthritis (Lotfi et al.,

2019). Flt3L also has the potential to play a pathogenic role in

autoimmune thyroid disease or rheumatoid arthritis (Dehlin

F

SF or immunization with a vaccine that produces Flt3L, GM-CSF
Rs that modulate the function of DCs could be blocked to promote
ing of ManLAM and mannose receptor. (C) Molecules such as DC-
targeted vaccines, which can be used to enable effective Ag delivery.
lute number of DCs for interaction with T cells and can be used as a
to increase treatment efficiency. (E) Efficiently maturated DCs can
re optimal T cell immunity. (F) Efficient immunization with DCs can
e effective protection against subsequent infection. LNs, lymph
phage colony-stimulating factor; CLRs, C-type lectin receptors;
rin; TLS, tertiary lymphoid structure; iBALT, inducible bronchus–
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et al., 2008; Wilson et al., 2021). Currently, vaccines using GM-

CSF or Flt3L as adjuvants have been demonstrated to be safe and

effective in cancer vaccine clinical studies, but in study with

gynecological cancer patients, some patients receiving FLt3L or

FLT3L plus GM-CSF as an adjuvant showed autoimmune side

effects, such as rash and Sica syndrome (Disis et al., 2002).

Therefore, for safety, these potential risks must be considered

when developing vaccines encoding endogenous molecules such

as Flt3L or GM-CSF. Vaccination via DC adoptive transfer

showed protective efficacy against Mtb infection close to that

of BCG and significant protection when used as a booster

vaccine for BCG vaccine. Although these reports indicate that

DCs can be effective targets for TB vaccines, their use as a

practical vaccine has limitations. For direct DC adoptive

transfer, isolation of CD14+ monocytes through apheresis is

required, and infrastructure for DC differentiation and cytokines

for cell culture are required (Yu et al., 2022). In addition,

intranasal Ag85A-primed DC transfer induced excessive

inflammation in lung tissue although it could induce IFN-g
producing T cells (Gonzãlez-Juarrero et al., 2002). Considering

that TB mainly affects people in resource-constrained settings,

primed DC transfer would be difficult to implement. In such

contexts, DC-like biomimetic nanoparticles used in

immunotherapy for breast cancer (Li et al., 2021) could be the

potential alternatives in patients who have difficulty using

autologous DCs. DMSNs3@HA is a DC-like nanoparticle

modified with hyaluronic acid to target CD44 overexpressed

on cancer cells, and conjugated with anti-CD3, anti-CD28 to

interact with T cell, and anti-PD-1 to block the PD-1/PD-L1

pathway. DMSNs3@HA synergistically activates T cells and

improves their immune response to significantly inhibit the

progression of breast cancer (Li et al., 2021). This DC-like

nanoparticle can be an alternative to adoptive transfer of DCs

for TB vaccination through conjugation with Abs loaded with

proper Ags. Since it enables targeting specific cell populations,

effective TB control can be achieved by regulating the cell-to-cell

interactions described above through immunological

interventions, such as cell-specific drug delivery or the

induction of specific types of apoptosis. Therefore, DC-

targeted tactics such as nanoparticles or Abs (e.g., anti-DC-

SIGN Ab or anti-Dec-205 Ab) can be used in anti-TB vaccines

or immunotherapies.

Despite their importance, there are relatively few reports on

the immune responses to antibiotic treatment. Effective

therapeutic vaccines can shorten treatment and disease

severity and increase protective immunity (Larsen et al., 2018;

Chuang et al., 2020). DCs could be an alternative therapy to

increase protective immunity during antibiotic therapy.

Elucidating the principles of an effective immune response

could help develop a more effective anti-TB vaccine and

increase the effectiveness of TB treatment. Exploiting immune

interventions using or targeting DC properties regulated by

interactions with other cellular compartments, Mtb, or its Ags
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in a disease stage-specific manner could be a novel way to

improve TB control effectively.

The complexity of immune response to different disease

stages and local immune environments makes it difficult to

identify the ideal immune response that is equivalent to that

induced by a vaccine or immune therapy to control TB. For

example, the Th17 response, which plays a protective role in the

early stage of infection, may induce excessive neutrophilic

inflammation, leading to tissue damage in the chronic stage.

Anti-PD-1 Ab treatment suppresses excessive inflammation but

can induce progression to active TB in patients with latent TB

(Tezera et al., 2020). TNF-a is a proinflammatory cytokine

activating immune cells to inhibit Mtb growth. The inhibition

of PD-1 signaling increases the production of TNF-a, which
leads to accelerated bacterial growth (Kauffman et al., 2021). We

reviewed the dual role of DCs in protection and pathogenicity

during Mtb infection, and found that understanding and

regulating the duality of DCs could be a starting point for

achieving the ideal immune response to control TB.
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