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Background and Aims: This study aimed to develop an interpretable random forest
model for predicting severe acute pancreatitis (SAP).

Methods: Clinical and laboratory data of 648 patients with acute pancreatitis were
retrospectively reviewed and randomly assigned to the training set and test set in a 3:1
ratio. Univariate analysis was used to select candidate predictors for the SAP. Random
forest (RF) and logistic regression (LR) models were developed on the training sample. The
prediction models were then applied to the test sample. The performance of the risk
models was measured by calculating the area under the receiver operating characteristic
(ROC) curves (AUC) and area under precision recall curve. We provide visualized
interpretation by using local interpretable model-agnostic explanations (LIME).

Results: The LR model was developed to predict SAP as the following function: -1.10-
0.13×albumin (g/L) + 0.016 × serum creatinine (mmol/L) + 0.14 × glucose (mmol/L) + 1.63 ×
pleural effusion (0/1)(No/Yes). The coefficients of this formula were utilized to build a
nomogram. The RF model consists of 16 variables identified by univariate analysis. It was
developed and validated by a tenfold cross-validation on the training sample. Variables
importance analysis suggested that blood urea nitrogen, serum creatinine, albumin, high-
density lipoprotein cholesterol, low-density lipoprotein cholesterol, calcium, and glucose
were the most important seven predictors of SAP. The AUCs of RF model in tenfold cross-
validation of the training set and the test set was 0.89 and 0.96, respectively. Both the area
under precision recall curve and the diagnostic accuracy of the RF model were higher than
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that of both the LR model and the BISAP score. LIME plots were used to explain
individualized prediction of the RF model.

Conclusions: An interpretable RF model exhibited the highest discriminatory
performance in predicting SAP. Interpretation with LIME plots could be useful for
individualized prediction in a clinical setting. A nomogram consisting of albumin, serum
creatinine, glucose, and pleural effusion was useful for prediction of SAP.
Keywords: random forest, nomogram, acute pancreatitis, predictor, artificial intelligence, LIME plot
HIGHLIGHTS

1. An interpretable random forest model exhibited the highest
discriminatory performance in SAP prediction.

2. Interpretation with LIME plots could be useful for
individualized prediction in a clinical setting.

3. A nomogram comprising albumin, serum creatinine, glucose,
and pleural effusion is a useful predictor of SAP.
INTRODUCTION

Acute pancreatitis (AP) is one of the most common gastrointestinal
problems for hospital admission globally (Hong et al., 2020). While
most patients with AP will recover within a week of a mild course
and are often self-limiting, 20% of patients progress to severe disease
with a historical mortality risk as high as 30% (Trikudanathan et al.,
2019). In the absence of specific treatment in the early phase, initial
management of severe acute pancreatitis (SAP) focuses on
supportive care such as fluid resuscitation, pain control, and
nutritional support, aimed to minimize the impact of systemic
inflammatory response syndrome (Lee and Papachristou, 2019).
Patients with SAP often need to be transferred to the intensive care
unit once organ failure occurs. Therefore, it is important to
recognize predictors for severe disease in the early phase of AP, to
select those patients who would benefit most from enhanced
surveillance or early interventions. Early case identification and
classification of disease severity could improve the clinical outcomes
(Hong et al., 2021).

Many clinical scoring systems have been developed for the
prediction of disease severity, such as the Ranson, chronic health
evaluation (APACHE-II) score, Pancreatitis Outcome Prediction
(POP) Score (Harrison et al., 2007), and Bedside Index Of
Severity In Acute Pancreatitis (BISAP) (Wu et al., 2008).
However, the existing scoring systems have moderate accuracy
in predicting the severity of AP (Mounzer et al., 2012). Recently,
Langmead et al. reported that a 5-cytokine panel consisting of
angiopoietin-2, hepatocyte growth factor, interleukin-8, resistin,
and soluble tumor necrosis factor receptor 1A accurately predicts
persistent organ failure early in the disease process and
significantly outperforms the prognostic accuracy of existing
laboratory tests and clinical scores (Langmead et al., 2021).
However, the test of cytokine is not routinely available,
gy | www.frontiersin.org 2
resulting in limited use in clinical practice. Several laboratory
indexes such as total cholesterol (Hong et al., 2020), low-density
lipoprotein cholesterol (Hong et al., 2018), albumin (Hong et al.,
2017a), and blood urea nitrogen (BUN) (Lin et al., 2017) have
been proposed as single predictors of severity of AP. Recently,
Takeda et al. reported that fluid sequestration is a useful
parameter in the early identification of SAP (Takeda et al.,
2019). Yan et al. described that pleural effusion volume could
be a reliable radiologic biomarker in the prediction of severity
and clinical outcomes of AP (Yan et al., 2021). Gibor et al.
reported that circulating cell-free DNA in patients with acute
biliary pancreatitis is associated with disease markers and
prolonged hospitalization time (Gibor et al., 2020). However,
these single prediction markers are easy to use in practice but
lack high accuracy.

Recently, artificial intelligence methods are also being used in
the clinical setting for disease prediction or aiding in making
decisions. Among several methods, a random forest (RF) is a
group of many decision trees, each of which is characterized by a
tree-like structure (Genuer and Poggi, 2020). It will randomly
choose features and make observations, build a forest of decision
trees, and then average out the results (James et al., 2013). RF
allows considering qualitative and quantitative explanatory
variables together, without preprocessing (Genuer and Poggi,
2020). Random forests are adapted to both supervised
classification problems and regression problems (Genuer and
Poggi, 2020). In addition, RF can handle datasets with many
predictor variables, while also performing very well.
Additionally, it can obtain variable importance ranking when
used for prediction modeling (Speiser et al., 2019). RF, as a
traditional machine learning method, has been shown to
outperform other techniques for sets of features in a variety of
different settings. RF has recently demonstrated high
performance in risk classification and disease prediction (Yu
et al., 2021). Lo et al. developed RF model for forecasting
allergenic pollen in North America (Lo et al., 2021). Lin et al.
reported that using the RF model could predict environmental
risk factors in relation to health outcomes among school children
from Romania (Lin et al., 2021b). Roguet et al. reported that RF
classification with 16S rRNA gene amplicons offers an accurate
solution for identifying host microbial signatures (useful in
detecting human and animal fecal contamination in
environmental samples) (Roguet et al., 2018). Yang et al.
provided an RF prediction model for 3-year risk assessment of
cardiovascular disease (Yang et al., 2020).
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However, to the best of our knowledge, the use of RF model in
predicting disease severity in patients with AP has not been
performed yet. The aim of this study was to develop an RF model
and compare it with a traditional logistic regression (LR) model
for prediction of SAP.
PATIENTS AND METHODS

Inclusion and Exclusion Criteria
We conducted a post-hoc analysis of a previously reported
retrospective cohort study in the First Affiliated Hospital of
Wenzhou Medical University in mainland China (Hong et al.,
2018). Patients with AP admitted to the First Affiliated Hospital
of Wenzhou Medical University within 72 h of symptom onset
(from April 1, 2012 to December 31, 2015) were consecutively
enrolled in the study (Hong et al., 2020). The diagnosis of AP was
based on the presence of two of the following three features:
(1) abdominal pain consistent with AP; (2) serum amylase and/
or lipase more than three times that of the normal; (3) abdominal
imaging findings (Hong et al., 2020). As previously described
(Hong et al., 2020), exclusion criteria included endoscopic or
trauma related pancreatitis, chronic pancreatitis, pancreatic
tumor, history of surgery operation/taking hypolipidemia
drugs, malnutrition, and chronic liver or renal disease.

Data Collection
The clinical and laboratory data on admission were obtained with
data collection forms from electronic medical records. These data
included blood chemica+l analysis, liver, and renal function testing,
glucose, lipids, coagulation testing, serum calcium, C-reaction
protein, and pleural effusion (Hong et al., 2020).

Definition of Severity and Study Endpoint
SAP is defined as a persistent organ failure (>48 h) in patients.
Organ failure for this study was defined according to a
Marshall score ≥2, meaning that at least one organ system
(respiratory, cardiovascular, renal) must be affected (Hong
et al., 2018). The primary study endpoint was the occurrence
of SAP during hospitalization.

Sample Size and Missing Values
The calculation of the sample size of this study was according to
our previous study (Hong et al., 2020). There were missing values
in serum calcium and C-reactive protein data. To handle this
issue, missing values were imputed using Multiple Imputations
by Chained Equations (MICE) when performing LR and RF
analysis (Royston, 2005). The MICE has emerged as one of the
principal statistical approaches for dealing with missing data.
The missing values were replaced by the estimated plausible
values to create a “complete” dataset (Royston, 2005).

Statistical Analysis
Categorical values were described by count and proportions and
compared by the c2 test or Fisher’s exact test. According to the
results of the Shapiro-Wilk test, continuous values were expressed
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
by mean ± SD or median and Inter Quartile Range (IQR) and
compared using Student’s t-test or the Wilcoxon’s non-parametric
test. The discriminative power of the predictor was assessed by
calculating the area under the receiver operating characteristic
(ROC) curves (AUC) (Hong et al., 2019). A variable with an
AUC above 0.7 was considered useful (Hong et al., 2017b).

The data samples (of 648 patients) were randomly split into
training and test sets according to a division of 3:1 (487 vs. 161
patients). The RF model was developed on the training set and
independently validated on the test set by using “randomForest”
(Liaw andWiener, 2002) and “caret” package (Kuhn, 2008).When
we built and tuned the RF model on a training set, we used tenfold
cross-validation as the resampling method to avoid overfitting of
the model in new data (Kuhn, 2008). The training set was divided
into10 equal-sized sub-samples inwhich9 sub-sampleswere for the
training and the remaining ones for testing over all possible
permutations. Analysis was repeated 10 times (folds) (Hong et al.,
2019). The AUC was calculated for each of the 10 analyses, using
only the respective test data (Hong et al., 2019). Then this iteration
process was repeated 10 times. At last, the mean AUCwith 95%CI,
as well as area under precision recall curve was calculated and
compared (Saito and Rehmsmeier, 2015; Hong et al., 2019).

After training the RF model, a general approach of
interpretability is to identify important variables (features) in
the model (Staniak and Biecek, 2018). The RF algorithm
estimates the importance of a variable by looking at how much
prediction error increases when Out-Of-Bag (OOB) data for that
variable are permuted, while all others are left unchanged (Liaw
and Wiener, 2002; Genuer and Poggi, 2020). The variable
importance is a global explanation of relative importance of
each feature in the RF model (Kuhn, 2008). Variables having
high importance are drivers of the outcome and their values have
a significant impact on the result values.

To overcome the black box problemof the RFmodel output and
improve its interpretability, the local interpretable model-agnostic
explanations (LIME) plot was used to explain the individualized
prediction (Deshmukh and Merchant, 2020). LIME is a novel
explanation technique that explains the predictions of any
classifier in an interpretable and faithful manner, by learning an
interpretable model locally around the prediction (Ribeiro et al.,
2016). The training of the local interpretable model involves giving
weight to the disturbance input, followed by the observation of the
general (black box) model output, which gives a basis for
interpretation of the prediction results (Pan et al., 2020). This
feature is deemed important if perturbations at the local level
produce a change in the general model while the value of the
target feature is determined by the level of change it determines
(Bramhall et al., 2020). Local explanation detects variables’
contribution at the local level. In other words, LIME could
provide easily understood explanations of clinical factors in the
RF models, which contribute to each prediction for the individual
patient (Petch et al., 2022). LIMEwasperformedbyusing the “lime”
package (“Lime: Local InterpretableModel-Agnostic Explanations,
2021”, http://cran.itam.mx/web/packages/lime/index.html), in
which two types of inputs (tabular and text) are supported
(Pedersen and Benesty, 2021).
June 2022 | Volume 12 | Article 893294
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A forward-conditional stepwise LR analysis was also applied
on the training set. The conditional probabilities for stepwise
entry and removal of a factor were 0.05 and 0.06, respectively
(Hong et al., 2020). Based on the results of LR, a nomogram was
developed to predict SAP. Model calibration, reflecting the link
between predicted and observed risk, was evaluated by the
Hosmer-Lomeshow goodness of fit test, as well as plotting the
predicted vs. observed deciles of predicted risk (Hong et al.,
2017b). Odds ratios (OR) were calculated, with 95%CI.

We selected the best cut-off point, where the number of true
positives was the highest possible (sensitivity >90%). This was
done by selecting a threshold value at a point where the longest
increase in the specificity of the slope declines for all models and
scores. The sensitivity, specificity, and accuracy were calculated
and compared (Saito and Rehmsmeier, 2015).

A two-tailed P-value of less than 0.05 was considered
statistically significant. All statistical analysis were performed
in the R and STATA software. A data flow diagram of our study
is shown in Supplementary Figure S1.
RESULTS

Baseline Characteristics
Of all the patients, the hospital mortality was 1.54%. There were
247 (58.8%) men and their median age was 53 (42.0–64.5) years.
The most common etiology of AP was biliary (42.4%). The
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
median time interval between onset and admission was 2 (IQR 1-
2) days. Of these patients 10% developed SAP during
hospitalization. The median length of the hospital stay was 10
(IQR 7-14) days. The baseline characteristics of the patients in
the training and test sets are shown in Table 1.
Univariate Analysis on the Training Sample
As shown in Table 2, 16 variables, namely, systemic
inflammatory response syndrome (SIRS), hematocrit, platelets,
prothrombin time, albumin, aspartate aminotransferase (AST),
glucose, serum creatinine, blood urea nitrogen (BUN), total
cholesterol, high-density lipoprotein cholesterol (HDL), low-
density lipoprotein cholesterol (LDL), triglyceride, serum
calcium, C-reactive protein (CRP), and pleural effusion were
significantly associated with the development of SAP, as inferred
by univariate analysis.
Models Development, Calibration, Tenfold
Cross-Validation on the Training Sample
Variables significantly linked to the development of SAP in the
univariate analysis were assessed by stepwise LR analysis. LR
identified the following four independent variables as predictive
of SAP: albumin (OR 0.88, 95%CI 0.81-0.95, P=0.002), serum
creatinine (OR 1.02, 95%CI 1.01-1.03, P=0.002), glucose (OR 1.15,
95%CI 1.07-1.24, P<0.001), and pleural effusion (OR 5.11, 95%CI
TABLE 1 | Comparison of clinical and laboratory findings among patients, with and without SAP (training sample set).

Variable Training set (n = 487) Test set (n = 161) P-value

Age, years (IQR) 47 (37,61) 49 (36,64) 0.501
Male sex, N (%) 301 (61.81) 103 (63.98) 0.623
Duration of symptoms (days, IQR) 1.83 ± 0.80 1.78 ± 0.78 0.515
BMI, kg/m2 (IQR) 23.5 (21.1-26.3) 23.9 (21.5-21.5) 0.573
SIRS, N (%) 191 (39.22) 65 (40.37) 0.795
Biliary etiology, N (%) 207 (42.51) 68 (42.24) 0.584
Laboratory findings
Hematocrit (l/l) 0.42 (0.38-0.46) 0.42 (0.38-0.46) 0.693
Platelets (109/L) 199 (161-233) 195 (157-233) 0.472
Prothrombin time, s (IQR) 13.8 (13.1-14.6) 13.7 (13.0-14.5) 0.278
Albumin, g/L (IQR) 36.3 (32.6-39.9) 36.4 (34.0-39.8) 0.191
Total bilirubin, mmol/L (IQR) 20 (14-31) 20 (13-32) 0.916
ALT, U/L (IQR) 43 (19-119) 31 (19-82) 0.055
AST, U/L (IQR) 39 (22-88) 28 (19-71) 0.012
Glucose, mmol/L (IQR) 7.9 (6.3-10.5) 8.4 (6.7-11.3) 0.128
Serum creatinine, mmol/L (IQR) 64 (54-77) 64 (55-76) 0.882
BUN, mmol/L (IQR) 4.8 (3.7-6.1) 4.9 (4.0-6.2) 0.346
Total cholesterol, mmol/L (IQR) 4.79 (3.8-6.2) 4.8 (3.8-6.1) 0.970
HDL, mmol/L (IQR) 1.0 (0.7-1.3) 1.0 (0.8-1.3) 0.461
LDL, mmol/L (IQR) 2.5 (1.9-3.2) 2.2 (1.8-3.0) 0.100
Triglyceride (mg/dL), mmol/L (IQR) 1.3 (0.8-3.4) 1.3 (0.8-3.6) 0.995
Serum calcium, mmol/L (IQR) 2.7 (2.1-2.3) 2.2 (2.1-2.3) 0.051
C-reactive protein, mg/L (IQR) 35.0 (11.7-90.0) 29.4 (8.7-85.3) 0.415
Pleural effusion, N (%) 89 (18.28) 35 (21.74) 0.333
Patients with SAP, N (%) 49 (10.1) 16 (9.9) 0.0092
Length of hospital stay, days (IQR) 10 (7-13) 11 (7-15) 0.964
Hospital mortality, N (%) 9 (1.85) 1 (0.62) 0.274
June 2022 | Volume 12 | Article
Data were mean ± standard deviation, or numbers and percentages, or median (25th–75th percentile), as appropriate. N, number; IQR, interquartile range; BMI, body mass index; SIRS,
systemic inflammatory response syndrome; ALT, alanine aminotransferase; AST, aspartate aminotransferase; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol.
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2.38-10.94, P<0.001). The LR model was developed to predict SAP
as the following function: -1.10-0.13×albumin (g/L) + 0.016×
serum creatinine (mmol/L) +0.14 × glucose(mmol/L) + 1.63 ×
pleural effusion (0/1)(No/Yes). The coefficients of this formula
were utilized to build a nomogram for the prediction of SAP
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
(Figure 1). The Hosmer-Lemeshow goodness-of-fit test was
significant (P=0.87), suggesting that our prediction model fit the
actual data well.

The same 16 variables (SIRS, hematocrit, platelets, prothrombin
time, albumin, AST, glucose, serum creatinine, BUN, cholesterol,
FIGURE 1 | Nomogram predicting the probability of SAP. To obtain the nomogram-predicted probability, patient values on each axis were located and a vertical line
was drawn to the point axis to determine how many points were attributed for each variable value. Points for all variables were summed and accessed on the point
line to find SAP probability.
TABLE 2 | Comparison of clinical and laboratory findings between patients, with and without SAP in the training sample (487 patients).

Variable No-SAP (n = 438) SAP (n = 49) P-value

Age, years (IQR) 46 (37-60) 51 (38-66) 0.115
Male sex, N (%) 270 (61.6) 31 (63.3) 0.825
Duration of symptoms (days, IQR) 1.8 ± 0.8 1.9 ± 0.8 0.799
BMI, kg/m2 (IQR) 23.4 (20.9-26.3) 24.4 (22.1-26.6) 0.083
SIRS, N (%) 157 (35.8) 34 (69.4) <0.001
Biliary etiology, N (%) 190 (43.4) 17 (34.7) 0.243
Laboratory findings
Hematocrit (l/l) 0.42 (0.38-0.45) 0.44 (0.41-0.49) 0.007
Platelets (109/L) 202 (167-234) 184 (135-208) 0.005
Prothrombin time, s (IQR) 13.8 (13.1-14.6) 14.6 (13.6-15.3) 0.004
Albumin, g/L (IQR) 37.1 (33.3-39.3) 30.4 (27.5-33.9) <0.001
Total bilirubin, mmol/L (IQR) 20 (14-31) 20 (15-28) 0.631
ALT, U/L (IQR) 43 (18-121) 48 (24-77) 0.868
AST, U/L (IQR) 36 (21-88) 60 (41-85) 0.005
Glucose, mmol/L (IQR) 7.7 (6.2-10.0) 10.2 (8.2-14.4) <0.001
Serum creatinine, mmol/L (IQR) 63 (54-76) 81 (59-154) <0.001
BUN, mmol/L (IQR) 4.6 (3.6-5.9) 7.3 (5.1-11.4) <0.001
Total cholesterol, N 0.001
<160 mmol/L 203 (95.75) 9 (9.45)
160-240 mmol/L 131 (83.97) 25 (16.03)
>240 mmol/L 104 (87.39) 15 (12.61)
HDL, mmol/L (IQR) 1.0 (0.8-1.3) 0.6 (0.4-1.0) <0.001
LDL, mmol/L (IQR) 2.6 (2.0-3.3) 1.6 (1.3-2.4) <0.001
Triglyceride (mg/dL), mmol/L (IQR) 1.3 (0.8-3.3) 2.4 (1.3-7.2) <0.001
Serum calcium, mmol/L (IQR) 2.2 (2.1-2.3) 1.9 (1.6-2.1) <0.001
C-reactive protein, mg/L (IQR) 30.5 (10.4-87.8) 80.0 (28.4-90.0) 0.003
Pleural effusion, N (%) 59 (13.47) 30 (61.22) <0.001
June 2022 | Volume 12 | Article
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HDL, LDL, triglyceride, serum calcium, C-reactive protein, and
pleural effusion) were used for the RFmodel. As shown inFigure 2,
based on variable important analysis of the RF model, serum
creatinine, albumin, blood urea nitrogen, HDL, LDL, calcium,
and glucose were the most important 7 predictors of SAP.
Figure 3 depicts the results of tenfold cross-validation. It
indicated that the RF model achieved a higher mean AUC
(AUC=0.89[95% CI, 0.83-0.95]) than that of the LR model (mean
AUC =0.85[95% CI, 0.78-0.92]) (p=0.026). The area under the
precision recall curve of the RF model (0.58) was also higher than
that of the LRmodel (0.55) (Figure 4). The calibration plots indicate
adequate predictedprobabilities against observedproportionsof SAP
for both RF and LR models (Figure 5).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Validation and Comparison of Prediction
Models on the Test Samples
The ROC curves for the RF model, the LR model, and the BISAP
score for the prediction of SAP are shown in Figure 6. The RF
model achieved the highest AUC (AUC=0.96[95% CI, 0.93-
0.99]), followed by the LR model (AUC =0.92[95% CI, 0.87-
0.97]) and the BISAP score (AUC=0.84[95% CI, 0.73-0.93])
(P=0.03). The area under precision recall curve of the RF
model (0.67) was higher than that of both the LR model (0.57)
and the BISAP score (0.576) (Figure 7).

The RF model achieved a sensitivity of 93.8%, specificity of
82.8%, and a diagnostic accuracy of 83.9%. As a comparison, the
LR model achieved a similar sensitivity of 93.8%, a lower
FIGURE 3 | ROC curves for the RF and LR models, for a tenfold cross-validation on the training set.
FIGURE 2 | Variable importance plot of the RF for SAP.
June 2022 | Volume 12 | Article 893294
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specificity of 79.3%, and 80.8% diagnostic accuracy. Both
diagnostic performance of the RF and LR models was better
than that of the BISAP score (Table 3).

Explanation: Individualized Prediction on
The Test Sample
To clarify the model prediction for individual patients, the LIME
plotwas generated. It shows two typical predictionsmade by theRF
model, in which one was for non-SAP and the other was for SAP
patients (Figure 8). The bar charts represent the influence that
individual covariates have on the overall prediction (Chan et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
2022). The length of the bar indicates the magnitude (absolute
value), while the color indicates the sign (red for negative, blue for
positive) of the estimated coefficient (Biecek and Burzykowski,
2021). In other words, the length of the bar for each feature
indicates the importance (weight) of that feature in making the
prediction. A longer bar, therefore, indicates a feature that
contributesmore towardoragainst theprediction (Linet al., 2021a).

As shown in Figure 8, the first case (case 49) is a non-SAP
patient, who was correctly classified based on the RF model, with
a predicted probability of 0.97 as non-SAP. The second case (case
51) is an SAP patient, who was correctly classified based on the
FIGURE 4 | The precision-recall curves for RF and LR models for tenfold cross-validation on the training set.
FIGURE 5 | Calibration plots for RF and LR models for tenfold cross-validation on the training set.
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RF model, with a predicted probability of 0.82 as SAP. The levels
of creatinine, BUN, glucose, triglyceride, and total cholesterol
were positively correlated with the development of SAP. Patients
with SAP had lower levels of HDL, albumin, and calcium than
that of non-SAP people.
DISCUSSION

Albumin is one of themost important proteins in plasma and plays a
role in maintaining osmotic pressure, antioxidants, and scavenging
free radicals (Viasus et al., 2013). Albumin has also long been
considered a negative acute-phase protein, with reduced
production in inflammation, paving the way for inflammatory
cytokines (Charlie-Silva et al., 2019). Serum albumin levels
undoubtedly decrease in inflammatory states, which may result in
shorter half-life and a larger interstitial pool (Barle et al., 2006) aswell
as capillary leak (Soeters et al., 2019), during the inflammatory
process. Excessive oxidative stress is associated with damage to
acinar cells which has been observed in cerulein-induced mouse
models of AP (Shen et al., 2018). In addition, clinical evidence
suggests that oxidative stress is common in the early phase of AP
(Hackert and Werner, 2011). Therefore, it was suggested that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
decreased albumin may reduce the ability to counterwork oxidative
stress-induced acinar damage by binding reactive oxygen species in
AP (Xu et al., 2020; Belinskaia et al., 2021). Xu et al. has reported that
albumin is an independent predictor for SAP and in-hospital
mortality in AP patients (Xu et al., 2020). Our previous study also
indicated that hypoalbuminemia within 24 h of admission is
independently associated with the development of persistent organ
failure andmortality inAP (Hong et al., 2017a).Ocskay et al. (Ocskay
et al., 2021) reported that the incidence of hypoalbuminemia was
35.7% during hospitalization and it was dose-dependent, associated
with severity and mortality in AP. In our current study, the LR
analysis indicated that albumin (p<0.001) is an independent
predictor of SAP (Figure 1). Based on the RF model, albumin is
also an important predictor of SAP, based on variable importance
analysis (Figure2). These results are consistentwithprevious reports.

Creatinine is primarily generated by muscle mass and dietary
intake. It is eliminated from the glomerular filtration membrane
(Stevens et al., 2006; Earley et al., 2012) and serves as the most
widely used functional biomarker of the kidney, which can reflect
renal injury in AP (Earley et al., 2012). Apart from renal injury, it
also has been reported that the level of serum creatinine is
associated with pancreatic necrosis (Muddana et al., 2009;
Papachristou et al., 2010; Lipinski et al., 2013). The possible
TABLE 3 | Diagnostic values of various models of SAP.

Variable Cut-off value Sensitivity Specificity LR+ LR- Accuracy

RF model 0.13 93.8% 82.8% 5.44 0.08 83.9%
LR model 0.08 93.8% 79.3% 4.53 0.08 80.8%
BISAP score 2 68.8% 78.6% 3.22 0.40 77.64%
June 202
2 | Volume 12 | Arti
LR+, Positive likelihood ratio; LR-, negative likelihood ratio.
FIGURE 6 | ROC curves for the RF and LR models and BISAP scores, applied on the test set.
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explanation is that necrotic cells release a large number of toxic
substances and pro-inflammatory factors to cause renal injury,
manifesting the elevation of serum creatinine. Therefore, the rise
of creatinine may be attributed to the renal injury and pancreatic
necrosis along with SAP. Wilkman et al. reported that increased
creatinine levels are independently associated with 90-day
mortality in AP patients (Wilkman et al., 2013). Wan et al.
suggested that serum creatinine levels within 24 h of admission
are effective for predicting persistent organ failure in AP (Wan
et al., 2019). In addition, several scoring systems, which take
creatinine as an index, are widely used in the clinical settings,
including the Acute Physiology and Chronic Health Evaluation
(APACHE) II, Sequential Organ Failure Assessment (SOFA)
score for predicting the severity of pancreatitis, and modified
Marshall scoring system for assessing organ dysfunction
occurrence in SAP (Mederos et al., 2021). Our study indicated
serum creatinine could be a useful predictor in both the RF and
the LR model for predicting SAP (Figures 1, 2).

The lipoprotein profile, especially HDL, is markedly decreased in
inflammation and the accompanying acute-phase (Jahangiri, 2010).
Themechanisms causing low serumHDLandLDL levels in the acute
phase of AP remain largely unknown (Hong et al., 2017b; Hong et al.,
2018). Jahangiri et al. (Jahangiri, 2010) suggested that itwas related toa
decreased rate of lipoprotein synthesis in the liver, general catabolism,
and activation of the inflammatory system in the acute phase of the
disease. Another explanation for the low serum HDL levels is that it
may be due to increased expression of the Toll-like receptors (TLRs),
especially TLR-4 expression (Zhang et al., 2010). It was reported that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
stimulated TLR-4 expression suppresses HDL levels (Liao et al.,
1999).Khan et al. found that serum lipid concentrations suchasHDL
cholesterol and LDL cholesterol were associatedwith patients of SAP
in all etiologies (Khan et al., 2013). However, Bugdaci et al. (2011)
found a significant association between decreased HDL level and
severity of the disease only in alcoholic and hypotriglyceridemic
pancreatitis. In hypertriglyceridemic status, it is demonstrated that
free fatty acids (FFAs) damage acinar cells and cause pancreatitis
attack due to premature activation of trypsinogen, by creating an
acidic environment (Okura et al., 2004; Guo et al., 2019). It has been
reported that HDL takes part in FFA clearance (Asztalos et al., 2007)
so that decreased HDL in hypertriglyceridemic AP casesmay lead to
an increase in FFA, and further damage acinar cells. Therefore, it has
been suggested that an increase in HDL may be helpful for recovery
from thedisease by contributing to antioxidants (Bugdaci et al., 2011)
and anti-inflammatory effect (Murphy andWoollard, 2010). On the
other hand, in comparison, few studies are available about the
pathophysiological mechanism of decreased LDL in SAP. Our
study indicated both HDL and LDL were useful predictors for
SAP (Figure 2).

Pleural effusion occurs in 3–50% patients with AP, based on a
previous study (Basran et al., 1987; Kumar et al., 2019; Peng et al.,
2020). The effusion can be asymptomatic and often hemorrhagic,
usually resolving as pancreatitis subsides (Basran et al., 1987).
Several mechanisms of pleural effusion in pancreatitis have been
proposed, such as the trans-diaphragmatic lymphatic blockage,
the pancreatic pleural fistula caused by the rupture of the
pancreatic duct, and the fluid exudation from the sub-pleural
A B

C

FIGURE 7 | The precision-recall curves for the (A) RF model, (B) LR model, and (C) BISAP score applied on the test set.
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diaphragmatic vessels into the pleural cavity (Kumar et al., 2019).
Pleural effusion is reported to be associated with a severe course
for initial risk assessment severity in AP and a sign of SAP
(Heller et al., 1997; Tenner et al., 2013; Lankisch et al., 2015). Yan
et al. reported that pleural effusion volume quantified on chest
CT was positively associated with the duration of hospitalization
(Yan et al., 2021). As a prognostic factor, pleural effusion has
been incorporated in SAP severity predictive systems such as the
Bedside Index for Severity in Acute Pancreatitis (BISAP) score
(Gao et al., 2015), the Panc 3 score (Brown et al., 2007), and the
Extra Pancreatic Inflammation on CT (EPIC) score (De Waele
et al., 2007). Following the above outcomes, the present study
suggested that pleural effusion (OR 5.11, 95%CI 2.38-10.94) was
an independent risk factor for SAP (Figure 1).

The mechanism of BUN elevation in AP is thought to be
based on the loss of intravascular volume, caused by interstitial
extravasations owing to the systemic inflammatory response
syndrome and an AP promoted direct renal injury mechanism.
It has been reported that BUN, as a single predictor, had
moderate accuracy in predicting persistent organ failure in AP
(Mounzer et al., 2012). Koutroumpakis et al. reported that the
rise in BUN at 24 h was the most accurate in predicting persistent
organ failure and pancreatic necrosis (Koutroumpakis et al.,
2015). Li et al. suggested that BUN was an independent risk
factor to predict in-hospital mortality (Li et al., 2020). Valverde-
Lopez et al. indicated that BUN was the best predictor of SAP
after 48 h (Valverde-Lopez et al., 2017). BUN is also included in
many scoring systems for AP, such as BISAP, JSS, and Glasgow
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
score (Mounzer et al., 2012). Consistent with these reports, our
study shows that BUN is the most important predictor of the RF
model based on variable important analysis (Figure 2).

Decreased levels of serum calcium are commonly seen in critical
illness, and hypocalcemia is significantly more frequent in patients
with SAP (Peng et al., 2017). The mechanisms of hypocalcemia in
SAP may be multi-factorial, such as abnormalities of parathyroid
hormone secretion and action as well as vitamin D deficiency,
binding of calcium in areas of fat necrosis, likely to contribute to the
medication side effects (Weir et al., 1975; Steele et al., 2013). Serum
calcium levels are closely related to the severity of the disease and its
complications in AP. It has been incorporated in several clinical
scoring systems as such as Pancreatitis Outcome Prediction (POP)
Score, and Simple Prognostic Score (Harrison et al., 2007;
Gonzálvez-Gasch et al., 2009). Mentula et al. suggested that serum
calcium was the best single marker in predicting organ failure in AP
after 24 h of symptom onset (Mentula et al., 2005). He et al.
indicated that serum calcium was one of the independent predictors
of the severity of AP in elderly patients (He et al., 2021). Serum
calcium was also considered a significant factor in predicting early
death in SAP (Shinzeki et al., 2008). As expected, our study
indicated that calcium could be a useful predictor of SAP in the
RF model (Figure 2).

Clinical evidence shows hyperglycemia is the common early
feature ofAPandabnormal glucosemetabolism ispresent inalmost
40%ofAPpatients (Banks et al., 2013; Chen et al., 2021). According
to the traditional view, the mechanism is that the damage of
organisms caused by AP activate the neuroendocrine system and
FIGURE 8 | LIME plot for the individualized likelihood of two typical predictions. This shows the main contributing features behind the model prediction. The length
of the color bar represents the amount of contribution. The first case (case 49) is a non-SAP patient who was correctly classified, with a prediction probability of 0.97
as non-SAP based on the RF model. The first case (case 49) had a creatinine value of 86 mmol/L, BUN=7.1 mmol/L, no pleural effusion, LDL=1.82 mmol/L,
albumin=36.5 mg/dl, total cholesterol=3.24 mmol/L, HDL=0.79 mmol/L, glucose=8.4 mmol/L, prothrombin time=15.2 s, hematocrit=0.465, platelets=206×10^9/L,
AST=76 U/L, calcium=2.43 mmol/L, triglyceride=0.96 mmol/L, no SIRS, and CRP=5 mg/L. The second case (case 51) is an SAP patient who was correctly
classified, with a prediction probability of 0.82 (SAP based on RF model). The second case (case 51) had a creatinine value of 260 mmol/L, BUN=16.6 mmol/L,
glucose =23.2 mmol/L, HDL=0.47 mmol/L, no pleural effusion, albumin =26.5 mg/dl, calcium=0.83 mmol/L, triglyceride=25.6 mmol/L, LDL=1.87 mmol/L,
hematocrit=0.39, prothrombin time=15.7 s, AST=155 U/L, SIRS, platelets=243×10^9/L, CRP =76.1 mg/L, and total cholesterol=10.54 mmol/L.
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lead to the secretion of many stress hormones (Binker and Cosen-
Binker, 2014; Sun et al., 2019; Lu et al., 2021). Meanwhile, it is also
related to the damage of the endocrine pancreas caused by SAP
attacks.Theassociationbetweenhyperglycemiaandadverse clinical
outcomes in critically ill patients has been demonstrated in several
observational studies, which suggest that high levels of glucose
during the progression of AP can promote the release of
inflammatory cytokines. These, in turn, influence disease
progression (Sun et al., 2019; Chen et al., 2021). Sun et al. has
suggested that the level of glucose in serum is positively correlated
with the APACHE II scores, TNF-a, and CRP in AP (Sun et al.,
2019). However, transient stress hyperglycemia in critically ill
patients is considered harmless in some studies, indicating that
the body has normal immune regulation ability (Lu et al., 2021), the
subsequent derangement of glucose homeostasis could cause
damage to the body (Pendharkar et al., 2016). Blood glucose-
related indicators are associated with in-hospital mortality in
critically ill patients with AP (Lu et al., 2021). Our LR model also
shows that glucose is a useful predictor of SAP (Figure 1).

Machine learning has been extensively used for the prediction of
severity or complication of AP (Zhou et al., 2022). Thapa et al. has
reported that an XGBoost model could predict which patients
would require treatment for SAP (Thapa et al., 2022). Early
prediction of SAP using machine learning has also been
attempted (Thapa et al., 2022). Jin et al. reported that the
multilayer perception-artificial neural network (MPL-ANN)
model based on routine blood and serum biochemical indexes
could reliably predict disease severity in patients with AP (Jin et al.,
2021). Choi et al. combined clinical (i.e., APACHE-II and BISAP
scores) and radiologic (i.e., Balthazar grade andEPIC score) scoring
systemsbyclassification tree analysis for predictingSAP(Choi et al.,
2018). Xu et al. reported that adaptive boosting algorithm
(AdaBoost) could predict development of multiple organ failure,
complicated by moderately severe or severe AP (Xu et al., 2021).
However, the above models were limited due to lack of
individualized prediction on the test sample. Implementation on
such data remains challenging because of the low interpretability of
results of machine learning (Yu et al., 2021). Our study indicated
that, compared to the LRmodel and BISAP score, RF exhibited the
highest discriminatory performance for the prediction of SAP on
both training and test samples (Figures 3, 4, 6, 7). Using the RF
model, we could illustrate key features and establish a prediction
model, with high accuracy in patients with SAP. The LIME plot
could provide a visual illustration of the individualized
interpretation of the importance of different features, which
might help clinical doctors to understand results of the RF model
(Figure 8). The LR model (nomogram) achieved a sensitivity of
93.8%, acceptable specificity of 79.3%, and diagnostic accuracy of
80.8% (Table 3). Though the diagnostic performance of the LR
model (nomogram) is inferior to the RF model, it is simple and
intuitive to calculate the prediction probability of a result, which
makes it valuable in predicting SAP (Figure 1).

To the best of our knowledge, this is the first study to develop an
interpretable RF model for SAP prediction. The strength of this
study is a large sample size, which enables a strong statistical power.
Both patients in ICU and the general ward were enrolled in this
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
study, thus reducing selection bias. However, our study has some
limitations, even if it has been internally validated by tenfold cross-
validation technique and test set, testing the performance of our RF
model in an external/other independent data set is necessary. In
addition, even if effective, RF models are sophisticated and difficult
to understand, and thus, comparable to a ‘black box’. We have,
therefore, demonstrated that by utilizing Lime plots, the results
could bemore easily interpreted (Al’Aref et al., 2020).At last, wedid
not evaluate the RF model and single predictors for other clinical
outcomes such as patient survival and organ failure occurrence,
intensive care unit (ICU) admission, and SAP recurrent rate. It
wouldbe interesting to carry out a large-sampleprospective study to
determine whether our model and other variables such as serum
creatinine, albumin, BUN, HDL, LDL, calcium, and glucose play a
significant role in predicting these clinical outcomes.

In conclusion, an interpretable RF model exhibited the highest
discriminatoryperformance topredictSAP. InterpretationwithLIME
plots could be useful for individualized prediction in the clinical
setting. A nomogram consisting of albumin, serum creatinine,
glucose, and pleural effusion is also useful for the prediction of SAP.
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