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Gómez KA, Pérez AR and Alloatti A

(2022) Immunization With
Lipopolysaccharide-Activated

Dendritic Cells Generates a Specific
CD8+ T Cell Response That Confers
Partial Protection Against Infection

With Trypanosoma cruzi.
Front. Cell. Infect. Microbiol. 12:897133.

doi: 10.3389/fcimb.2022.897133

BRIEF RESEARCH REPORT
published: 07 July 2022

doi: 10.3389/fcimb.2022.897133
Immunization With
Lipopolysaccharide-Activated
Dendritic Cells Generates a Specific
CD8+ T Cell Response That Confers
Partial Protection Against Infection
With Trypanosoma cruzi
Lucı́a Biscari 1, Cintia Daniela Kaufman1, Cecilia Farré1,2, Victoria Huhn1,
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Lipopolysaccharide (LPS) induces the activation of dendritic cells (DCs) throughout the
engagement of toll-like receptor 4. LPS-activated DCs show increased capacity to
process and present pathogen-derived antigens to activate naïve T cells. DCs-based
vaccines have been successfully used to treat some cancer types, and lately transferred to
the field of infectious diseases, in particular against HIV. However, there is no vaccine or
DC therapy for any parasitic disease that is currently available. The immune response
against Trypanosoma cruzi substantially relies on T cells, and both CD4+ and CD8+ T
lymphocytes are required to control parasite growth. Here, we develop a vaccination
strategy based on DCs derived from bone marrow, activated with LPS and loaded with
TsKb20, an immunodominant epitope of the trans-sialidase family of proteins. We
extensively characterized the CD8+ T cell response generated after immunization and
compared three different readouts: a tetramer staining, ELISpot and Activation-Induced
Marker (AIM) assays. To our knowledge, this work shows for the first time a proper set of T
cell markers to evaluate specific CD8+ T cell responses in mice. We also show that our
immunization scheme confers protection against T. cruzi, augmenting survival and
reducing parasite burden in female but not male mice. We conclude that the
immunization with LPS-activated DCs has the potential to prime significant CD8+ T cell
responses in C57BL/6 mice independently of the sex, but this response will only be
effective in female, possibly due to mice sexual dimorphisms in the response generated
against T. cruzi.

Keywords: dendritic cell vaccines, LPS (lipopolysaccharide), Trypanosoma cruzi (T. cruzi), activation-induced
marker assay (AIM), sexual dimorphism
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INTRODUCTION

Lipopolysaccharide (LPS) is the major component of the outer
membrane of Gram-negative bacteria, hence contributing to the
structural stability of the microbes and conferring resistance
against physical and chemical aggressions. LPS is composed of
three domains: an O-antigenic polysaccharide, a core
oligosaccharide and a lipid-A (an amphipathic domain). LPS is
also a potent endotoxin (in particular lipid-A) able to modulate
the immune response of infected hosts in different ways. For
instance, LPS is a well characterized Pathogen-Associated
Molecular Pattern molecule that is recognized by Toll-like
receptor (TLR) 4, present in monocytes, macrophages and
dendritic cells (DCs) -among other immune cell populations-
thus promoting the release of pro-inflammatory cytokines and
other soluble mediators (Akira et al., 2006).

The engagement of TLR4 by recognition of the bacterial LPS
triggers a complex developmental program in DCs, generally
referred to as “maturation” or “activation”, that severely
modifies DC morphology and function (Trombetta et al.,
2003; West et al., 2004; Nair-Gupta et al., 2014; Alloatti et al.,
2015; Samie and Cresswell, 2015; Alloatti et al., 2016).
Activation of DCs promotes their migration towards
secondary lymphoid organs and increases the expression of
costimulatory molecules such as CD40, CD80 and CD86.
Furthermore, stimulation of DCs with LPS augments their
capacity to process and present exogenous antigens loaded
both in class I and class II Major Histocompatibility
Complexes (MHC), although the efficacy of the increase relies
on the duration of the LPS treatment (Alloatti et al., 2016). Even
though LPS is extremely toxic to humans, mice are more
resistant and thereby the endotoxin has been thoroughly used
as immunomodulant at low concentrations.

DCs have been used in the formulation of vaccine strategies in
the last 20 years, with dissimilar success (generally successful in
experimental animal models, moderately successful in humans)
(Palucka and Banchereau, 2013; Wculek et al., 2019; Calmeiro
et al., 2020). This is possibly due to the intrinsic existence of
substantial differences between the subpopulations of DCs in
humans and mice. Although there are some ontogenic and
functional analogies between some of these cell populations,
the evidence indicates that the translation of experimental
models in animals to clinical trials in humans is not linear, and
more studies are still required to understand this complex
scenario. The functional limitations of the ex vivo monocyte
derived DCs (MoDCs) -commonly used in these therapies- could
largely explain the lack of robustness of the results in humans.
Therefore, a great effort has been made to identify
subpopulations of DCs that are better suited for establishing
effective antitumor responses and applying them in therapeutic
approaches. Among the characterized subpopulations of human
DCs, conventional type 1 DCs (cDC1) have emerged as a very
interesting tool to enhance antitumor immunity. This
subpopulation of DCs excels in their ability to prime specific
cytotoxic T cells given their ability to cross-present antigens, a
critical factor for an effective antitumor immune response
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
(Palucka and Banchereau, 2012; Palucka and Banchereau,
2013; Calmeiro et al., 2020). In mice, the most efficient
subpopulations of DCs for antigen presentation are currently
grouped as murine cDC1s (including XCR1+ or CLEC9A+ DCs).
Starting in the cancer field, which eventually led to the approval
by the US FDA of a DC-based therapeutic vaccine against
prostate cancer (Sipuleucel-T) (Kantoff et al., 2010),
applications were transferred rapidly to the field of infectious
diseases with very encouraging clinical results against HIV
(Garcı ́a et al., 2013). Although promissory results were
obtained for some infections, there is no vaccine or DC
therapy for any infectious disease that is currently available or
in the pipeline. Most of the results were obtained by ex vivo
manipulation of DCs and in vitro assays loading them with the
desired antigens. Regarding the use of DCs to treat parasitic
infections, a study shows that a therapeutic vaccine based on
Bone Marrow-derived DCs (BMDCs) activated with CpG can
control Leishmania major infections and confer immunological
memory (Ramıŕez-Pineda et al., 2004; Masic et al., 2012). Other
studies from the group of Dr. Tarleton show that LPS-treated
BMDCs infected with trypomastigotes of Trypanosoma cruzi
(Brazil strain) are able to induce CD8+ T cell responses, although
the protection elicited by such responses was not evaluated
(Padilla et al., 2009a; Kurup and Tarleton, 2014). A third study
also showed that a vaccine based on BMDCs not expressing IL-
10 confers protection against T. cruzi infection when loaded with
trypomastigote lysates (Alba Soto et al., 2010). Although
adoptive transfer of BMDCs have been consistently used to
immunize mice, the cultures of bone marrow cells
differentiated with GM-CSF are heterogenous and generally
comprised of DCs (that are not ontogenically related to cDC1),
macrophages and, to a minor extent, granulocytes (Helft et al.,
2015). However, the subpopulation characterized by the higher
expression of the markers CD11c and CD11b share with tissue
DCs the ability to present endogenous and exogenous antigens to
activate T cells, as well as the capacity to respond to microbial
stimuli (Savina et al., 2009; Amigorena and Savina, 2010; Nair-
Gupta et al., 2014; Samie and Cresswell, 2015). The immune
response against T. cruzi substantially relies on T cells, and both
CD4+ and CD8+ T lymphocytes are important to control parasite
growth (Tarleton et al., 1992; Tarleton et al., 1996; Martin and
Tarleton, 2004; Dotiwala et al., 2016; Acevedo et al., 2018).
Regarding the cytotoxic T lymphocyte (CTL) response, it is
characterized by a strong immunodominance of epitopes
derived from the Trans-sialidase (TS) family of proteins
(Tzelepis et al., 2008; Ferragut et al., 2021).

In this study, we show that BMDCs activated with LPS for
16h and loaded with a well characterized TS-derived T. cruzi
epitope -TsKb20 (Padilla et al., 2009b; Rosenberg et al., 2010)-
that is presented in the context of MHC class I molecules in
C57BL/6 mice, are able to induce a significant specific CD8+ T
cell response that is associated with decreased parasitemia and
increased survival (predominantly in female mice). Furthermore,
we describe the CTL response induced upon immunization by
three different readouts (using a specific tetramer, ELISpot and
the Activation-Induced Marker (AIM) assays) and postulate 2
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activation markers (CD25 and CD69) to study specific CTL
responses in mice.
MATERIALS AND METHODS

Mice and Parasites
Male and female C57BL/6 mice of 10-15 weeks from the
Laboratory of Animal Services of the School of Veterinary
Sciences of the National University of La Plata and male CBi
mice of 19 days from the Center for Research and Production of
Biological Reagents (CIPReB) from the School of Medical
Sciences of the National University of Rosario were kept in the
CIPREB facilities and fed ad libitum, under sanitary barrier in
SPF conditions.

To maintain and obtain T. cruzi trypomastigotes (Tulahueń
strain), CBi males were infected intraperitoneally with 250,000
parasites. At the peak of parasitemia, 7 days post-infection, the
animals were exsanguinated by cardiac puncture, and the
parasites were recovered from the whole blood by
centrifugation at 1,500 rpm for 10 min, followed by a
differential centrifugation at 3,000 rpm for 10 min.

All procedures were approved and performed following the
guidelines and recommendations of the animal ethical
committee (IUCAC) of the School of Medical Sciences of the
National University of Rosario (res. 6157/2018).

BMDCs Generation, Activation, Peptide-
Loading and Immunization
BMDCs were obtained from bone marrow cells of C57BL/6 mice
and differentiated for 9 days in complete medium -RPMI 1640
medium (Gibco), 10% heat-inactivated FBS (Natocor), 50 µM b-
mercaptoethanol, 2 mM GlutaMAX, 100 U/mL penicillin, 100
µg/mL streptomycin, 25 mM HEPES buffer, 1 mM sodium
pyruvate and MEM non-essential amino acids (all from
Gibco)- supplemented with 20 ng/mL of recombinant GM-
CSF (Miltenyi Biotec), as described before (Alloatti et al., 2015).

BMDCs were cultured for 16h in the presence of 100 ng/mL
LPS from E. coli 0111:B4 (Sigma-Aldrich, ref. L3024). Finally, the
activated BMDCs were pulsed for 1h with 20 µM of TsKb20
peptide (ANYKFTLV, GenScript). A total of 100,000 of these
cells were injected intravenously (IV) in the retro-orbital space
on C57BL/6 mice, and 15 days later each animal received a boost.
The animals were anesthetized prior to immunization with a
ketamine/xylazine solution at a dose of 100/10 mg/kg
administered intraperitoneally.

T. cruzi Infection
C57BL/6 mice were intraperitoneally infected with 2,000 blood
trypomastigotes 30 days after the first immunization. Blood
parasitemia, weight, health condition, and survival were
periodically monitored. Parasites in blood were determined by
counting 50 fields of a 22x22 coverslip from 5 mL of tail blood as
previously published (Pacini et al., 2022). The endpoint was
established when the animals lost 25% of their weight or
presented an evident deterioration of health condition.
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Animals were euthanized by carbon dioxide inhalation
followed by cervical dislocation.

To evaluate and quantify the health status of the animals, a
clinical score designed by our group was used, which assigns a
certain score according to observable and progressive signs:
piloerection, lack of movement, hunchback, ocular discharge
and diarrhea, as described in (Pacini et al., 2022).

Cell Suspension and Blood
Samples Obtention
Lymph nodes were harvested, mechanically disrupted and
filtered through a 70 µM-pore cell strainer to obtain a single-
cell suspension, under sterile conditions. The lymph nodes were
incubated 3 min with RBC lysis buffer (0.15 M NH4Cl, 1 mM
NaHCO3, 0.1 mM EDTA, pH 7.2) at room temperature. Viable
cells were counted using Trypan blue 0.4% (Gibco) in a
Neubauer chamber. The cell suspensions were used to study
the response of T cells throughout 3 different readouts.
Additionally, whole blood was collected as a source of plasma
by 10 min centrifugation at 5,000 rpm.

Flow Cytometry
All the cells were fixed with 4% formaldehyde before obtaining the
events in the flow cytometer. To analyze the phenotype of
BMDCs, the cells were stained with: anti-CD11c-APC, anti-
CD11b-PE, and anti-CD86-FITC (all from eBioscience). To
analyze cell suspensions obtained from lymph nodes we used
anti-MHCII-APCCy7 (eBioscience), anti-B220-APCCy7
(eBioscience) and LIVE/DEAD™ near-IR fluorescent
(Invitrogen) as exclusion panel (DUMP channel), and Fc
receptor binding inhibitor antibody (Invitrogen) to prevent
nonspecific binding. To determine T cell specificity, cell
suspensions were stained with TsKb20 tetramer (H-2K(b)-PE,
NIH Tetramer Facility), anti-CD3-PerCPCy5.5, anti-CD8-FITC
and anti-CD4-APC (all from eBioscience). To study T cell
memory, cell suspensions were stained with TsKb20 tetramer,
anti-CD3-APC, anti-CD8-PerCPCy5.5, anti-CD62L-PECy7 and
anti-CD44-FITC (all from eBioscience). As per the AIM assay, the
following antibodies were used: anti-CD3-FITC, anti-CD8-APC,
anti-CD4-PerCPCy5.5, anti-CD25-PE and anti-CD69-PECy7 (all
from eBioscience). Events were acquired on BD-FACSAria II flow
cytometer and data analyzed with FlowJo vX.0.7 software.

Activation-Induced Marker Assay
To identify TsKb20-specific CD8+ T cells in the cell suspensions
obtained from lymph nodes, 5x105 cells per well were cultured in
a flat-bottom 96-well plate in complete medium. Cells were
incubated for 15h with 50 µM TsKb20 peptide (restimulated),
5 µg/mL Concanavalin A (ConA, positive control, Sigma-
Aldrich) or in medium alone (unstimulated), in a final volume
per well of 200 mL. Following incubation, cells were harvested
and labeled for flow cytometry as indicated.

ELISpot Assay for IFNg
To quantify IFNg-producing TsKb20-specific CD8+ T cells, the
ELISpot Mouse IFN-gamma kit (R&D Systems, Bio-Techne) was
used, following the manufacturer’s recommendations. Briefly,
July 2022 | Volume 12 | Article 897133
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after blocking the membrane, 5x105 cells were plated per well and
restimulated with 50 µM TsKb20 peptide (or left unstimulated)
for 48h. After incubation and cell removal, the wells were
revealed by adding the detection antibody (biotinylated anti-
mouse IFNg), streptavidin-alkaline phosphatase conjugated and
BCIP/NBT substrate. A positive control stimulating the cells with
PMA/ionomycin was assessed. The number of spots was
determined using an automatic ELISpot reader and image
analysis software (CTL-ImmunoSpot® S6 Micro Analyzer,
Cellular Technology Limited).

Anti-TS IgG Detection
Plasma anti-TS IgG from immunized animals were determined by
ELISA. Microplates (Nunc Maxisorp, Sigma-Aldrich) were coated
ON with 0.5 µg recombinant TS (Prochetto et al., 2017) per well.
After blocking with 5% BSA (Sigma-Aldrich), plasma (1/20) was
added and incubated for 2h at 25°C. After incubation, peroxidase-
conjugated goat anti-mouse IgG secondary antibody (Sigma-
Aldrich) was added. Alternatively, isotype switching was analyzed
by incubation with HRP rat anti-mouse IgG1 and IgG2a (1:10000,
BD biosciences). After 1h of incubation and subsequent washing,
3,3’,5,5’-tetramethylbenzidine (TMB, Sigma-Aldrich) was added
and the colorimetric reaction was stopped with sulfuric acid.
Plates were detected at 450 nm in an ELISA reader (Epoch™

absorbance microplate reader, BioTek Instruments).

Statistical Analysis
The comparisons and the statistical significance were evaluated
using the Mann-Whitney and Kruskal-Wallis non-parametric
tests, considering a p-value < 0.05 as significant. As per all the
analyses of the immune response elicited upon immunization,
we grouped male and female mice for statistical purposes, after
confirming that there were no significant differences between
sexes by Two-Way ANOVA (not shown). To study parasitemia
and survival, the sexes were analyzed separately due to the
significant differences in the parasite burden in male and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
female mice. All statistical analyses were performed with
GraphPad Prism 7 software.
RESULTS

Immunization With LPS-Activated BMDCs
Loaded With the TsKb20 Epitope Elicits a
Specific Effector CD8+ T Cell Response
In mice, vaccination with BMDCs has been used to treat different
types of cancer and, to a minor extent, some infectious diseases.
In particular, adoptive transfer of BMDCs was successfully used
to develop protective immunity against Leishmania and T. cruzi
infections. Here, we generated cell cultures differentiated with
GM-CSF from C57BL/6 bone marrow and stimulated them with
LPS for 16h. Even though bone marrow primary cultures are a
heterogeneous mixture of DCs and macrophages, our cultures
show consistent percentages of CD11c and CD11b (higher than
85%), and hence we will refer to them as BMDCs, albeit we are
aware that a small number of macrophages and granulocytes
may be present in the cultures. Activation was corroborated by
expression of CD86 (Figures 1A, B). Subsequently, activated
BMDCs were plated for 1h with 20 mM of TsKb20 peptide (an
immunodominant epitope from the protein TS).

5x104 LPS-Activated BMDCs Loaded with TsKb20 (AL-
BMDCs) were injected IV in C57BL/6 mice and a boost was
administered 15 days later. As we have previously reported the
existence of sexual dimorphism in the response of C57BL/6 mice
to the infection with T. cruzi, with females developing less
parasitemia and better survival than male mice (Roggero et al.,
2016), we decided to analyze whether the immune response
elicited by our immunization scheme was different in males and
females. Interestingly, we did not find significant differences
between sexes (Supplementary Figures 1A–C), and thereby we
grouped female and male mice for subsequent analyses.
A B

C

FIGURE 1 | Immunization with BMDCs. (A, B) Gating strategy followed to determine BMDCs phenotype. On the population of myeloid cells determined in the FSC vs.
SSC plots, the double positive CD11c and CD11b population corresponding to BMDCs was analyzed. To assess the activation status of the BMDCs, the percentage
of CD86+ BMDCs was determined. The phenotype of Co-BMDCs (A) and AL-BMDCs (B) is shown. (C) Immunization scheme. BMDCs were activated by incubation
for 16h with 100 ng/mL LPS, and then pulsed for 1h with the peptide TsKb20 (AL-BMDCs) or incubated with peptide in the absence of LPS (Co-BMDCs). C57BL/6
mice were injected IV with 50,000 BMDCs at days 0 and 15. One group of animals was sacrificed at day 30 pi to study the effector CD8+ T response, while another
group of animals was sacrificed at day 60 pi to evaluate the generation of memory T cell response.
July 2022 | Volume 12 | Article 897133
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Thirty days after the first immunization, mice were sacrificed
and the specific endogenous CTL response against TsKb20 was
analyzed in lymph nodes. As a control, we immunized mice with
5x104 BMDCs not treated with LPS that were loaded with peptide
(Co-BMDCs) -we analyzed other controls like BMDCs not
loaded with peptide and treated or not with LPS, no differences
observed (Supplementary Figures 1D–F). In addition, another
pool of mice was immunized and kept for 60 days after the first
immunization to study the establishment of memory T cell
responses (see Figure 1C for the experimental scheme).

The endogenous specific effector CD8+ T cell response
generated upon intravenous injection of AL-BMDCs was
analyzed by three different readouts. Cell suspensions from
isolated lymph nodes were cultured with the TsKb20 epitope
and stained for flow cytometry to analyze the specific
restimulation of CD8+ T cells using the AIM assay. To do that,
we excluded dead cells, B cells and the myeloid compartment
with a DUMP/exclusion panel. Then, we gated on CD3+ cells,
and thus analyzed the co-expression of CD25 and CD69 both in
CD8+ T cells (see the gating strategy in Figure 2A). A positive
control with ConA was used to address T cell functionality (not
shown). Another control assessing the specific stimulation of
TsKb20-CD8+ T cells upon T. cruzi infection is shown
(Figure 2A, upper panel). We could evidence a significant
restimulation of TsKb20-specific CD8+ T cells following
immunization with AL-BMDCs (Figure 2B), whereas no
differences were observed in CD4+ T cells (not shown).

Alternatively, 5x105 cells were plated in an ELISpot plate
already coated with anti-IFNg capture antibody and restimulated
with the TsKb20 peptide. The cells obtained from animals
immunized with AL-BMDCs were significantly restimulated in
the presence of the stimulus, compared with cells from mice
injected with Co-BMDCs (Figures 2C, D). As per the
calculations graphed in Figure 2E, the points shown represent
the IFNg spots produced while plating cell suspensions from
mice immunized with AL-BMDCs restimulated with TsKb20,
minus the spots obtained after plating cells from mice
immunized with AL-BMDCs but not restimulated (the same
applies for Co-BMDCs). T cell functionality was controlled
stimulating the cells with PMA/ionomycin.

We also analyzed the specific effector CD8+ T cell response
using a TsKb20-tetramer conjugated to PE. The flow cytometry
analysis (Figure 2F) revealed that the immunization with AL-
BMDCs induced a significant increase in the endogenous
priming of anti-TsKb20 CD8+ T cells measured with
percentages (Figure 2G).

Finally, we studied whether immunization of C57BL/6 mice
with AL-BMDCs may generate antibodies able to recognize TS.
We did not find differences in the antibody response elicited by
AL-BMDCs and Co-BMDCs by ELISA (Supplementary
Figure 1G). A positive control of plasma from T. cruzi
infected mice was added to the analysis. In addition, we have
analyzed whether our immunization scheme was able to induce
isotype switching towards a Th1 profile during infection
(increased IgG2a/IgG1 ratio), but no differences were found
(Supplementary Figures 1H–J). Hence, immunization with
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
AL-BMDCs only promotes specific CD8+ T cell responses,
whereas we did not evidence statistical differences in the CD4+

T cell- and antibody-responses.

Injection of AL-BMDCs Promotes the
Establishment of Specific Memory CD8+

T Cells
We next evaluated whether our simple immunization strategy
was able to induce specific memory CD8+ T cells, 60 days after
the first immunization. To do so, we proposed a panel based on
the TsKb20 tetramer and the markers CD44 and CD62L
(Figure 3A). We divided CD8+ T cells in 3 subpopulations
according to the expression of the memory markers: naïve (TN,
CD44-CD62L+), central memory (TCM, CD44

+CD62L+) and
effector memory (TEM, CD44+CD62L-). We did not find
statistical differences in total memory CTL populations
(Figures 3B, C), even though a clear trend can be observed in
TEM cells. However, the analysis of specific memory CD8+ T cells
with the TsKb20 tetramer shows a significant induction of TEM

after immunization with AL-BMDCs that is not evident with Co-
BMDCs (Figure 3D), whereas the TsKb20-specific TCM did not
show significant differences.

CD8+ T Cell Responses Induced Upon
Vaccination With AL-BMDCs Confer
Partial Protection Against
T. cruzi Infection
We subsequently studied whether the aforementioned
vaccination scheme was able to confer protection against the
infection promoted by trypomastigotes of T. cruzi strain
Tulahueń. To do so, we immunized male and female C57BL/6
mice as described, and 30 days after the first injection, we
intraperitoneally infected the mice with 2,000 blood
trypomastigotes (Figure 4A). We measured parasitemia from
days 7 to 35 post infection and analyzed mice survival.

Remarkably, even though we stimulated equivalent CTL
responses in male and female mice with our immunization
strategy, vaccinations in male mice generated only a modest -not
significant- decrease in parasitemia (Figure 4B) whereas AL-
BMDCs induced a significant reduction in the parasite burden
in female mice (Figure 4C).

The levels of parasitemia (5 to 8 times higher in males) were
associated with decreased survival (Figures 4D, E) and male mice,
independently of the treatment received, died earlier and survived
less than females. Besides, females immunized with AL-BMDCs
peaked a very low parasitemia and survived 100%, whereas some
of the females immunized with Co-BMDCs developed higher
parasite burden and died after 30 days of infection.
DISCUSSION

In this work, we showed that the sole use of the TLR ligand LPS
as immunomodulant is enough to confer BMDCs the capacity to
elicit endogenous CD8+ T cell responses after intravenous
July 2022 | Volume 12 | Article 897133
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adoptive transfer. Whereas other groups have showed that the
immunization with BMDCs loaded with parasite antigens has
the potential to elicit T cell responses and prevent the infections
caused by T. cruzi and L. major (Ramıŕez-Pineda et al., 2004;
Alba Soto et al., 2010), these studies were performed loading the
cells with whole parasite lysates.

Interestingly, the work of Alba Soto et al. shows that in order
to confer resistance to T. cruzi infection, BMDCs must be
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
depleted of IL-10. However, the use of complex antigen
sources like parasite lysates will not only provide antigen to the
cells, but also other signals (PAMPs, DAMPs, cytokines) that will
likely imprint a different profile and functionality to BMDCs
cultures. Here, we used a very simple and reproducible strategy,
in which BMDCs activated with one PAMP (LPS) and loaded
with one epitope (TsKb20) induce a significant specific CTL
response in mice.
A B

D E

F G

C

FIGURE 2 | Analysis of the specific CD8+ T cell response in immunized mice. (A) Gating strategy used in AIM assay to determine CD69+ CD25+ CD8+ T cells in
lymph nodes from mice infected with T. cruzi (top), immunized with AL-BMDCs (middle) and immunized with Co-BMDCs (bottom). Gating on FSC-H vs. FSC-A plot
was used to select singlets (not shown). In the SSC vs. FSC plots, the lymphocyte population was selected, and T cells (CD3+) were determined, excluding dead
cells, B lymphocytes, and myeloid cells using a DUMP channel. CD4+ and CD8+ T cells were then differentiated. In the latter, the activation percentage was
determined by analyzing the CD69+ and CD25+ population. (B) In vitro restimulation of (CD69+ and CD25+) CD8+ T cells in the AIM assay for mice immunized with
AL-BMDCs or Co-BMDCs, represented as mean + SEM plus dot plots with the value for each mouse (n = 8 per group, Mann-Whitney test, p-value= 0.0159).
(C) Representative dot blots of IFNg ELISpot assay for cells derived from lymph nodes. Three representative blots for each condition are shown: lymph node cells
from mice immunized with (D) AL-BMDCs and restimulated with TsKb20 peptide (first row), AL-BMDCs without restimulation (second row), Co-BMDCs restimulated
with TsKb20 (third row), Co-BMDCs without restimulation (fourth row) and Co-BMDCs restimulated with PMA/iono (fifth row). (E) Number of spots per well (obtained
from the difference between restimulated and unstimulated cells) in mice immunized with AL-BMDCs and Co-BMDCs. The mean number of spots ± SEM is
represented (n = 8 per group, Mann-Whitney test, p-value= 0.0033). (F) Gating strategy used for the determination of TsKb20+ CD8+ T cells from lymph nodes,
doublets were previously excluded (not shown). The TsKb20+ population was determined on CD8+ T cells. (G) Comparison of the percentage of TsKb20+ cells in
CD8+ T cells between mice immunized with AL-BMDCs and Co-BMDCs, represented as mean + SEM (n = 8 per group, Mann-Whitney test, p-value= 0.0245).
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A

B D EC

FIGURE 3 | Memory CD8+ T cell response in mice immunized with AL-BMDCs or Co-BMDCs. (A) Gating strategy used to analyze central memory CD8+ T cells
(TCM, CD62L

+ and CD44+), effector memory CD8+ T cells (TEM, CD62L
- and CD44+), TsKb20-specific central memory CD8+ T cells (TCMTsKb20) and TsKb20-

specific effector memory CD8+ T cells (TEMTsKb20) in lymph nodes from mice infected with T. cruzi (top), immunized with AL-BMDCs (middle), or immunized with
Co-BMDCs (bottom). Singlets were previously selected (not shown). Comparison of the percentages of (B) TEM; (C) TCM; (D) TEMTsKb20 and (E) TCMTsKb20
between mice immunized with AL-BMDCs and Co-BMDCs. Mean + SEM is plotted in all bar graphs [n = 6 per group, Mann-Whitney test, p-values= 0.1905 (B),
0.5556 (C), 0.0159 (D), 0.7302 (E)].
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D E

C

FIGURE 4 | Parasitemia and survival of mice immunized and infected with T. cruzi. (A) Immunization and infection scheme. Parasitemia represented as parasites per
50 fields of male (B) and female (C) mice immunized with AL-BMDCs or Co-BMDCs and infected with 2000 T. cruzi blood trypomastigotes. Mean + SEM is shown
[for (B) n = 6 for mice immunized with AL-BMDCs and n = 4 for mice immunized with Co-BMDCs, for (C) n = 6 per group, Mann-Whitney test, p-values= 0.0022 10
days post infection (dpi), 0.0065 17 dpi, 0.0043 21 dpi (C)]. Survival plot of male (D) and female (E) mice immunized with AL-BMDCs (red) or Co-BMDCs (blue) and
infected [for (D) n = 6 for mice immunized with AL-BMDCs and n = 4 for mice immunized with Co-BMDCs, for (E) n = 6 per group, log-rank [Mantel-Cox) test, p-
values= 0.4470 (D), 0.1761 (E)].
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We consider that the assays showed in this brief research
report constitute an interesting platform to deliver more complex
formulations for vaccination. BMDCs have the capacity to
efficiently present antigens in both MHC class I and II
molecules upon activation with LPS (Alloatti et al., 2016;
Kotsias et al., 2019), but other compounds may enrich their
potential to immunize not only mice, but humans. BMDCs
treated with alternative TLR ligands such as CpG, R848 or
other adjuvants of bacterial origin (cyclic-di-AMP) or based on
saponin (ISCOMATRIX) can indeed increase cell capacity to
present antigens (Alloatti et al., 2015; Den Brok et al., 2016;
Sedlik et al., 2016).

This technique has the potential to be translated to humans,
and there is a growing interest to use adoptive transfer of
dendritic cells to stimulate specific responses to fight tumors
and infectious diseases. Whereas a clear equivalent of murine
BMDCs was not characterized in humans, these cells share the
capacity to efficiently present antigen and prime naïve T cells
(Savina et al., 2009; Amigorena and Savina, 2010; Nair-Gupta
et al., 2014; Samie and Cresswell, 2015) with cDC1, that may
represent a valuable tool to fight Chagas disease in the future
(Palucka and Banchereau, 2012; Calmeiro et al., 2020).

Furthermore, these results constitute, to our knowledge, the
first report of two activation markers -CD25 and CD69- that can
be used to analyze specific CTL responses in mice by AIM. This
rapidly growing methodology have been used in humans to
analyze not only effector but memory T cell responses (Grifoni
et al., 2020; Rydyznski Moderbacher et al., 2020; Dan et al.,
2021), and constitutes one of the key approaches to measure the
antigen-specific T cells primed during SARS-CoV2 infection.
However, it was only employed in mice to measure CD4+ T cell
responses from T follicular helper cells and a different pool of
markers were used (CD154 or CD25/OX40) (Jiang et al., 2019).
Here, we were able to quantify the percentages of activated
specific CD8+ T cells upon our immunization scheme.
Additionally, we performed the same analysis with the widely
used technique ELISpot, obtaining equivalent results.
Interestingly, we demonstrated that the sole induction of a
CTL response against TsKb20 is enough to partially protect
infected mice, highlighting the role of these particular T cells
during infection with T. cruzi in accordance with previous
studies (Tarleton et al., 1996; Martin and Tarleton, 2004; de
Alencar et al., 2007; Kurup and Tarleton, 2014; Dotiwala et al.,
2016). Hence, we developed a very simple immunization assay
that allowed us to test the immunogenicity of -and protection
elicited by- the TsKb20 epitope by loading LPS-activated
BMDCs with the peptide, and we could also quantify the
specific response generated after the immunization. We are
currently working to expand the analysis to other MHC class I
and MHC class II restricted peptides.

Moreover, we collected further evidence regarding sexual
dimorphism in C57BL/6 mice during T. cruzi infection. A
previous study by our group has shown that males develop a
higher parasitemia and show diminished survival when exposed
to parasite infection, mainly explained by sexual differences in
the regulation of the hypothalamus-pituitary-adrenal axis and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
the central nervous system (Roggero et al., 2016), as well as
differential levels of anti-T. cruzi IgG and IgM (personal
communication from Dr. Roggero). Hormonal circuitry, and in
particular male hormones, have been implicated in the
disruption of thymic homeostasis (Pérez et al., 2018). In this
line, another study shows that treatment with Benznidazole
present different outcomes depending on mice sex (Guedes-
Da-Silva et al., 2015).

Intriguingly, although the immunization strategy with LPS-
activated BMDCs described in this work induces an equivalent
and significant CTL response in both sexes, the infection
outcome was very different, being females more resistant to
the infection than males. We can hypothesize than in female
mice, the priming of CD8+ T cells triggered by adoptive transfer
of LPS-activated BMDCs loaded with TsKb20 can supplement
or be supplemented by other -possibly stronger or more
efficient- immune effector mechanisms leading to survival,
whereas in male mice may not be sufficient to confer
protective immunity.
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Supplementary Figure 1 | Additional controls. Analysis of CD8+ T cell responses
discriminated by mouse sex for the following readouts: (A) AIM assay, (B) tetramer
assay and (C) ELISpot. Mean ± SEM is shown for female (F) andmale (M)mice (n = 3 to
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5), Two-Way ANOVA test was used, all p values > 0.5. (D)Gating strategy used in AIM
assay to determine CD69+ CD25+ CD8+ T cells in lymph nodes from mice immunized
with BMDCs loaded with TsKb20 but not activated with LPS (top), immunized with
BMDCs not loaded not activated (middle) and immunized with BMDCs activated with
LPS but not loaded with TsKb20 (bottom). Gating on FSC-H vs. FSC-A plot was used
to select singlets (not shown). In the SSC vs. FSCplots, the lymphocyte population was
selected, and T cells (CD3+) were determined, excluding dead cells, B lymphocytes,
and myeloid cells using a DUMP channel. CD4+ and CD8+ T cells were then
differentiated. In the latter, the activation percentage was determined by analyzing the
CD69+ and CD25+ population. (E) In vitro restimulation of (CD69+ and CD25+) CD8+ T
cells in the AIM assay for mice immunized with the controls stated above, as mean +
SEM plus dot plots with the value for each mouse (n = 8 per group, Kruskal-Wallis test,
all p-values > 0.99). (F) Comparison of the percentage of TsKb20+ cells in CD8+ T cells
between mice immunized with the aforementioned controls, represented as mean +
SEM and each value in dots (n = 8 per group, Mann-Whitney test, all p-values > 0.99).
(G) Total plasma IgG (measured OD at 450 nmwith correction at 545 nm) amongmice
immunized with AL-BMDCs, Co-BMDCs and infected with T. cruzi by ELISA assay.
MeanOD ± SEM is shown (n = 8 per group,Mann-Whitney test, p-value= 0.1049). TS-
specific IgG2a titers (H) and IgG1 (I) measured OD at 450 nm with correction at 545
nm, for mice immunized with AL-BMDCs and Co-BMDCs subsequently infected with
2000 trypomastigotes IP. Mean OD ± SEM is shown (n = 9 per group, Mann-Whitney
test, p-values = 0.9048 (H) and 0.1333 (I)). (J) IgG2a/IgG1 ratio. Mean OD ± SEM is
shown (n = 9 per group, Mann-Whitney test, p-value = 0,0653).
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Pacini, M. F., González, F. B., Dinatale, B., Bulfoni Balbi, C., Villar, S. R., Farré, C.,
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