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The discovery of natural bioactive compounds from endophytes or medicinal plants
against plant diseases is an attractive option for reducing the use of chemical fungicides.
In this study, three compounds, indole-3-carbaldehyde, indole-3-carboxylic acid (3-ICA),
and jasmonic acid (JA), were isolated from the EtOAc extract of the culture filtrate of the
endophytic fungus Lasiodiplodia pseudotheobromae LPS-1, which was previously
isolated from the medicinal plant, Ilex cornuta. Some experiments were conducted to
further determine the antifungal activity of these compounds on wheat powdery mildew.
The results showed that JA was much more bioactive than indole-3-carbaldehyde and 3-
ICA against Blumeria graminis, and the disease severity caused by B. graminis decreased
significantly with the concentration increase of JA treatment. The assay of the interaction
of 3-ICA and JA indicated that there was a significant synergistic effect between the two
compounds on B. graminis in each of the ratios of 3-ICA to JA (3-ICA:JA) ranging from 1:9
to 9:1. When the compound ratio of 3-ICA to JA was 2:8, the synergistic coefficient was
the highest as 22.95. Meanwhile, a histological investigation indicated that, under the
treatment of JA at 500 mg/ml or 3-ICA:JA (2:8) at 40 mg/ml, the appressorium
development and haustorium formation of B. graminis were significantly inhibited.
Taken together, we concluded that JA plays an important role in the infection process
of B. graminis and that 3-ICA as a synergist of JA enhances the antagonism against wheat
powdery mildew.

Keywords: Lsiodiplodia pseudotheobromae LPS-1, indole-3-carboxylic acid, jasmonic acid, wheat powdery
mildew, Blumeria graminis, synergist
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INTRODUCTION

Powdery mildews (Ascomycota) encompass a category of
widespread fungal pathogens that negatively impact a broad
range of crops (Glawe, 2008). These fungi are obligate
biotrophs, being completely dependent on living tissue for life,
and are often host specific, associating with only one or a few
species. For example, Blumeria graminis forma specialis tritici
(Bgt) is known to be specific to wheat (Triticum aestivum) (Dean
et al., 2012; Manser et al., 2021). Although B. graminis f. sp.
tritici–resistant wheat cultivars have been developed, complete
control of the disease has not been demonstrated and exogenous
fungicide application is still necessary (Yang et al., 2008).
Unfortunately, decades of application of agrochemical
fungicides not only have produced pervasive environmental
pollution but also have increased fungicide tolerance among
fungal pathogen populations (Gong et al., 2013; Yang et al.,
2013). An emerging alternative to the continued overuse of
agrochemical fungicides is the adoption of naturally produced
molecules, particularly those produced by plant endophytic
microbes (Aly et al., 2010; Kharwar et al., 2011).

Endophytic microorganisms, both bacteria and fungi, carry out
some part of their life cycle within living plant tissue and cause no
disease symptoms (Tan and Zou, 2001; Rodriguez et al., 2009).
Although most endophytes are of exogenous environmental
original, some may be transmitted vertically in seeds or other
generative tissue (Siegel et al., 1995; Rodriguez et al., 2009; Wei
et al., 2014). Many endophytes form mutualistic relationships with
their hosts, often considerably enhancing growth, defense, and
adaptation to stress (Tan and Zou, 2001; Schardl et al., 2004;
Rosenblueth and Martı ́nez-Romero, 2006). In addition,
endophytes may synthesize their own biologically active products,
which can be applied as biocontrol agents either directly or
indirectly, to stimulate induced resistance (Staniek et al., 2008; Aly
et al., 2010; Kharwar et al., 2011; Vieira et al., 2014). Specifically, in
some cases, the presence of endophytic microbes can produce
amounts of bioactive secondary metabolites, including hormones,
autocoids, and defense-related substances (Tudzynski, 1997; Pirttilä
et al., 2004; Tanaka et al., 2005).

Endophytic microbes gained some notability in 1993 with the
isolation of taxol, a multifunctional alkaloid, from the
endophytic fungus Taxomyces andreanae, although endophytes
have been mentioned in the literature since at least 1904 (Stierle
et al., 1993; Qian et al., 2014). Since then, several other important
compounds have been discovered to be produced by endophytic
microbes, including isocoumarin (Findlay et al., 1995),
camptothecin (Puri et al., 2005), podophyllotoxin (Eyberger
et al., 2006), cochlioquinone A and isocochlioquinone A
(Campos et al., 2008), and others (Schulz et al., 2002; Aly
et al., 2010; Kharwar et al., 2011; Alvin et al., 2014). In
Lasiodiplodia pseudotheobromae F2, isolated from Illigera
rhodantha (Hernandiaceae) flower , s ix su l fureous
diketopiperazines, lasiodiplines A–F, were characterized, and
lasiodipline E was a potent antibacterial compound against the
clinical strains Streptococcus sp., Peptostreptococcus sp.,
Bacteroides vulgates, and Veillonella parvula, respectively (Wei
et al., 2014). In L. pseudotheobromae #1048 AMSTITYEL,
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isolated from stem of Aegle marmelos, two new compounds,
lasdiplactone and lasdiploic acid, were isolated, which showed
high xanthine oxidase inhibitory activity. In addition, the
endophytic fungus #1048 AMSTITYEL showed maximum in
vitro proteolytic and fibrinolytic activity (Meshram and Saxena,
2016; Kumar et al., 2019). In L. pseudotheobromae FKI-4499,
isolated from soil collected in Okinawa Prefecture, Japan,
aldsulfin, an anti-mannheimiosis agent, was identified, which
displayed antibacterial activity against Mannheimia haemolytica
and Pasteurella multocida (Sakai et al., 2021). In L.
pseudotheobromae IBRL OS-64, isolated from the leaf of
Ocimum sanctum, the fungal extract displayed significant
antibacterial and anti-biofilm activities against methicillin-
resistant Staphylococcus aureus (MRSA) and could be a
candidate for antibacterial and antibiofilm drugs (Jalil and
Ibrahim, 2021). In L. pseudotheobromae C1136, isolated from
Tridax procumbens leaves, the active metabolites produced by
the bioherbicidal isolates have bioherbicidal activity against
Amaranthus hybridus L. and Echinochloa crus-galli weeds, and
rhamnolipid, a biosurfactant produced by the bacterial
Pseudomonas aeruginosa C1501, can serve as an adjuvant to
improve the penetrability of bioherbicide active components
from C1136 for controlling weeds (Adetunji and Oloke, 2013;
Adetunji et al., 2017; Adetunji et al., 2018; Adetunji et al., 2020).
However, the endophytic L. pseudotheobromae species have not
been used in controlling agricultural diseases. Although natural
products produced by endophytes are biodegradable, have low
environmental toxicity, and show broad-spectrum bioactivity,
these microorganisms remain an underutilized resource
(Gunatilaka, 2006; Suryanarayanan et al., 2012). Such a class of
safe, effective, and environment-friendly biocontrol agents would
be particularly well suited for modern integrated management
programs, aimed at reducing agrochemical use (Balandrin et al.,
1985; Yang et al., 2008).

In our previous work, we isolated the endophytic fungus L.
pseudotheobromae LPS-1 from the medicinal plant Ilex cornuta and
found that the culture filtrate of the fungal isolate controlled Bgt
infection more effectively than the broad-spectrum fungicide
triadimefon (10 mg/ml) (Xiang et al., 2016). In this study, we
sought to isolate and identify the specific secondary metabolites
produced by L. pseudotheobromae LPS-1 that are antagonistic
toward B. graminis on wheat. Here, we report the isolation and
identification of three such compounds: indole-3-carbaldehyde (A2-
5-6-1), indole-3-carboxylic acid (3-ICA; A2-5-6-2), and jasmonic
acid (JA; A2-5-6-3). We further demonstrated that JA is antagonistic
to appressorium development and haustorium formation during the
B. graminis infection process, and 3-ICA synergistically enhances the
antagonism of JA against B. graminis on wheat.
MATERIALS AND METHODS

Plant Preparation, Fungal Strains, and
Culture Conditions
Seeds of the powdery mildew disease-susceptible wheat variety
“Zheng 98” were planted in 20-cm-diameter plastic pots, at a
July 2022 | Volume 12 | Article 898500
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density of 10 plants per pot, and grew the seedlings out in a
growth chamber for 10 days at 70% relative humidity, 18 ± 1°C,
and under constant light (72 mmol m−2 s−1) conditions.

The B. graminis isolate E21 was obtained from Yilin Zhou of
the Institute of Plant Protection (IPP), Chinese Academy of
Agricultural Sciences (CAAS). Prior to inoculation of wheat
plants, conidia were induced on excised segments of wheat leaf
in a growth chamber for 10 days at 18 ± 1°C and under constant
light (72 mmol m−2 s−1) conditions. L. pseudotheobromae LPS-1
was previously isolated from the medicinal plant, Ilex cornuta, at
the Wuhan Botanical Garden in China. The internal transcribed
spacer (ITS) and translation elongation factor 1a (TEF-1a)
sequences were uploaded to GenBank under accession
numbers KU180477 and KU180478, respectively (Xiang et al.,
2016). LPS-1 was subcultured on potato dextrose agar (PDA)
plates and then incubated at 25 ± 1°C for 3 days.

Collection of LPS-1 Culture Filtrate
To collect the bioactive compounds produced by LPS-1, 300 ml
of pre-sterilized potato dextrose broth (PDB) was poured into a
1-L Erlenmeyer flask and was aseptically inoculated with three 6-
mm LPS-1 mycelial plugs and statically incubated at 25 ± 1°C for
7 days. When incubation was finished, the mycelial material was
removed from the broth by Whatman paper filtration (Z240567,
Sigma Aldrich, USA). The remaining broth was centrifuged for
10 min at 12,000 rpm. A total of 120 L of culture filtrate was
collected for analysis.

Compound Extraction and Isolation
The culture filtrate (120 L) was evaporated to extractum under
reduced pressure at 50°C and extracted with petroleum ether and
ethyl acetate (EtOAc) successively. A total of 35.7 g of petroleum
ether extract and 197.2 g of EtOAc extract were obtained. The
bioactivity of the aqueous phase and the above two extracts
against Bgt E21 was tested, and it was found that the EtOAc
extract had the highest biological activity and was thus chosen
for further isolation and purification. The EtOAc extract
(197.2 g) was dissolved in EtOAc, mixed with 100 mesh silica
gel, and loaded onto a silica gel (5 cm × 10 cm, 300–400 mesh)
chromatography column eluted with a gradient of petroleum
ether/EtOAc (v/v: 50:1, 20:1, 10:1, 5:1, and 1:1) based on F254
silica gel thin-layer chromatography (TLC) monitoring. The
same components were combined and concentrated to
extractum under reduced pressure, and 10 fractions were
obtained (A1~A10). The fraction A2, with the highest
bioactivity against Bgt E21, was separated on thin silica gel H
(5 cm × 30 cm) eluted with a gradient of petroleum ether/acetone
first (v/v: 5:1 and 3:1) and then with a gradient of
dichloromethane/methanol (CH2Cl2/MeOH) (v/v: 50:1, 30:1,
20:1, and 10:1) elution based on F254 silica gel TLC
monitoring, obtaining 11 subfractions (A2-1~A2-11). The
subfraction A2-5, with the highest bioactivity against Bgt E21,
was further isolated by Sephadex LH-20 column (5 cm × 100 cm)
eluted with MeOH based on F254 silica gel TLC monitoring,
obtaining 12 subfractions (A2-5-1~A2-5-12). The subfraction
A2-5-6, with the highest bioactivity against Bgt E21, was purified
by high-performance liquid chromatography (HPLC) using a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
C18 column (2 cm × 25 cm; YMC Co., Ltd., Japan), yielding three
compounds: A2-5-6-1 (19.2 mg), A2-5-6-2 (13.3 mg), and A2-5-
6-3 (18.1 mg). A MeOH-H2O mixture was used as the mobile
phase, and the flow rate was 10 ml/min. The UV detector was set
to 220 nm. Purified compounds were identified as indole-3-
carbaldehyde (A2-5-6-1), 3-ICA (A2-5-6-2), and JA (A2-5-6-3)
using mass spectrometry (MS) and 1H and 13C nuclear magnetic
resonance (NMR) (Table 1).

Histological Investigation and Disease
Severity Determination
To test their ability to control powdery mildew disease, the 3-
ICA solution, the JA solution, and the 2:8 combination of 3-ICA:
JA were applied to the wheat plants at the two-leaf stage with an
automatic sprayer (PDE0012, Burkard Scientific Ltd., UK), with
a spray volume of 350 ml/m2 and a pressure of 0.25 MPa. Treated
wheat plants were air dried for 8 h and then inoculated with Bgt
E21 at a density of 2 to 4 × 103 conidia/cm2. Inoculated plants
were incubated in a growth chamber at 18 ± 1°C, with the first
12 h in total darkness and thereafter in constant light (72 mmol
m−2 s−1) conditions. When the incubation period was complete,
plants were divided into two sets, either for histological
examination of the Bgt E21 infection process or for assessment
of powdery mildew disease severity. All experiments were
repeated three times and utilized a randomized design with
12 replications.

For histological examination, leaf segments (3 cm) were
excised from the midsection of primary leaves and
subsequently stained with alcoholic lactophenol trypan blue
(Koch and Slusarenko, 1990). At 8, 24, and 48 h post-
inoculation (hpi) , leaf segments were examined at
magnification of ×10, and both ungerminated conidia and
germinated conidia with primary germ tubes (with either
normal or deformed appressoria) were counted within 10
haphazardly chosen fields. Meanwhile, the number of primary
or mature haustoria per Bgt E21 colony was randomly scored
from 30 colonies. To assess the disease severity of wheat powdery
mildew, the number of Bgt E21 colonies presented on each leaf
was counted at 7 days post-inoculation (dpi). The formula is as
follows: Disease severity (%) = (diseased leaf area)/(total leaf
area) × 100.
Statistics and Assessment of Synergism
Dose-response regression was done by SPSS 22.0. The half
maximal effective concentrations (EC50) of 3-ICA, JA, and
their combinations were calculated according to the method of
Gisi et al. (1985). Briefly, the calculated theoretical EC50 (EC50

(th)) = (a + b)/(a/EC50(A) + b/EC50(B)), where A and B represent 3-
ICA and JA, respectively, and a and b are the ratios of the two
compounds in the combinations. To categorize the type of
interaction between 3-ICA and JA, we utilized the following
ratio: R = EC50(th)/EC50(ob), where EC50(ob) is the EC50 value
calculated according to the observed data. An additive response
is indicated by an R-value between 0.5 and 1.5, a synergistic
response is indicated by an R-value of greater than 1.5, and an
antagonistic response is indicated by an R-value of less than 0.5.
July 2022 | Volume 12 | Article 898500
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Treatment means were compared using the Duncan’s multiple
range test, with significance set at the P = 0.05 level.
RESULTS

Isolation of the Indole-3-Carbaldehyde,
Indole-3-Carboxylic Acid, and Jasmonic
Acid From LPS-1
Our previous work found that the culture filtrate of the
endophytic fungus L. pseudotheobromae LPS-1 provided
control of Bgt infection more effectively than the commercially
available fungicide triadimefon (10 mg/ml) (Xiang et al., 2016).
Therefore, to determine which secondary metabolites play a
major role in antagonizing wheat powdery mildew, the
compounds produced by the strain LPS-1 cultured in PDB
broth for 7 days were isolated and identified. Three
compounds (A2-5-6-1, A2-5-6-2, and A2-5-6-3) with relatively
high concentrations were isolated from the ethyl acetate (EtOAc)
extract using silica gel column chromatography as detailed in the
experimental methods and were identified as indole-3-
carbaldehyde (Figure 1A), 3-ICA (Figure 1B), and JA
(Figure 1C). The MS, 1H NMR, and 13C NMR data (Table 1)
were further compared to the literature, to confirm out results.

Compound A2-5-6-1 was obtained as white powder, and the
molecular formula was determined as C9H7NO.

1H NMR (150
MHz, CDCl3): dH 8.09 (s), 8.17 (d, J = 8.1Hz), 7.24 (t, J = 8.0Hz),
7.28 (t, J = 7.8Hz), 7.48 (d, J = 7.8Hz), 11.08 (s). 13C NMR (150
MHz, CDCl3): dC 139.7, 120.2, 125.7, 138.9, 113.2, 122.4, 123.6,
125.0, 187.4 (Table 1). The spectral data were similar to
that reported in the literature (Burton et al., 1986; Qian et al.,
2014), and the compound was identified as indole-3-
carbaldehyde (Figure 1A).

Compound A2-5-6-2 was also obtained as white powder, and
the molecular formula was determined as C9H7NO2.

1H NMR
(150 MHz, CDCl3): dH 7.96 (s), 8.08 (d, J = 8.1Hz), 7.18 (t, J =
8.1Hz), 7.20 (t, J=7.8Hz), 7.44 (d, J = 7.8Hz). 13C NMR (150
MHz, CDCl3): dC 133.4, 120.2, 127.7, 138.8, 112.9, 122.1, 122.4,
123.6, 169.2 (Table 1). The spectral data were similar to that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
reported in the literature (Burton et al., 1986; Qian et al., 2014),
and the compound was identified as 3-ICA (Figure 1B).

Compound A2-5-6-3 was also obtained as white powder, and
the molecular formula was determined as C12H18O3.

1H NMR
(150 MHz, CDCl3): dH 1.92 (1H, m), 2.13 (1H, m), 2.33, 1.52,
2.78, 2.37, 2.38 (2H), 5.26 (1H, m, J = 18.3, 7.6), 5.47 (1H, m, J =
18.1, 7.3), 2.06 (2H, m, J = 7.3), 0.96 (3H, t, J = 7.5), 2.31 (2H).
13C NMR (150 MHz, CDCl3): dC 219.1, 54.0, 37.9, 27.3, 38.9,
25.6, 124.9, 134.4, 20.7, 14.2, 37.9, 178.2 (Table 1). The spectral
data were similar to that reported in the literature (Husain et al.,
1993), and the compound was identified as JA (Figure 1C).

Disease Severity Determination
To further determine the antifungal activity of indole-3-
carbaldehyde, 3-ICA, and JA against wheat powdery mildew,
we tested the bioactivity of indole-3-carbaldehyde (with a
concentration gradient of 2,500, 1,250, 625, 312.5, and 156.25
mg/ml), 3-ICA (with a concentration gradient of 2,500, 1,250,
625, 312.5, and 156.25 mg/ml), and JA (with a concentration
gradient of 500, 250, 125, 62.5, and 31.25 mg/ml) against Bgt E21,
respectively. Interestingly, there was no significant difference
found in either disease severity or inhibition rate between
either the indole-3-carbaldehyde or the 3-ICA treatments and
the untreated control group (Mock). However, JA was much
more bioactive than indole-3-carbaldehyde and 3-ICA against
Bgt E21, and the disease severity decreased significantly, and
inhibition rate increased significantly, with increasing JA
concentration. When JA at 500 mg/ml was applied, the disease
severity was 2.67 ± 0.53% and the inhibition rate was 96.95 ±
0.66% (Table 2), indicating that JA plays an important role in the
infection process of wheat powdery mildew.

Work by others has indicated that 3-ICA can be used as an
antibiotic adjuvant of doxycycline toward a range of Gram-
negative bacteria (Cadelis et al., 2021). Therefore, we wondered
whether 3-ICA may interact with JA as an adjuvant to improve
its bioactivity against wheat powdery mildew. We combined
indole-3-carbaldehyde or 3-ICA with JA, and the compound
ratio of indole-3-carbaldehyde in combination with JA (indole-
3-carbaldehyde:JA) or 3-ICA in combination with JA (3-ICA:JA)
was both 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, and 9:1. Our results
TABLE 1 | 1H (150 MHz, CDCl3) and
13C NMR (150 MHz, CDCl3) spectroscopic data of A2-5-6-1, A2-5-6-2, and A2-5-6-3.

Position A2-5-6-1 A2-5-6-2 A2-5-6-3

dH dC dH dC dH dC

1 – – – – – 219.1
2 8.09 (s) 139.7 7.96 (s) 133.4 1.92 (1H, m) 54.0
3 – 120.2 – 120.2 2.13 (1H, m) 37.9
4 - 125.7 - 138.8 2.33, 1.52 27.3
5 – 138.9 – 127.7 2.78, 2.37 38.9
6 8.17 (d, J=8.1Hz) 122.4 8.08 (d, J=8.1Hz) 122.1 2.38 (2H) 25.6
7 7.24 (t, J=8.0Hz) 123.6 7.18 (t, J=8.1Hz) 122.4 5.26 (1H, m, J=18.3, 7.6) 124.9
8 7.28 (t, J=7.8Hz) 125.0 7.20 (t, J=7.8Hz) 123.6 5.47 (1H, m, J=18.1, 7.3) 134.4
9 7.48 (d, J=7.8Hz) 113.2 7.44 (d, J=7.8Hz) 112.9 2.06 (2H, m, J=7.3) 20.7
10/-CHO/
-COOH

11.08 (s) 187.4 - 169.2 0.96 (3H, t, J=7.5) 14.2

11 – – – – 2.31 (2H) 37.9
12/-COOH - - - - - 178.2
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showed that the R-value (synergistic coefficient: theoretical EC50/
observed EC50) of the combinations of 3-ICA and JA ranged
from 2.1 to 22.95 for wheat powdery mildew. There was a
synergistic effect when the combinations of the two
compounds were at each ratio of 1:9-9:1 on this disease.
Specifically, when 3-ICA and JA were combined in a ratio of
2:8, the EC50 was the lowest, at 9.05 mg/ml, and the synergistic
coefficient was the highest, at 22.95 (Table 3). However, indole-
3-carbaldehyde combined with JA did not produce significant
synergism (Table S1). Meanwhile, we further tested the
antagonism against Bgt E21 using the final concentration of 3-
ICA at 2,500 mg/ml, JA at 500 mg/ml, and 3-ICA:JA (2:8) at 40
mg/ml, respectively. We found that Bgt E21 caused severe
infection on susceptible wheat leaves in both the untreated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
control (Mock) and 3-ICA treatments. However, there were no
visible disease symptoms observed on susceptible wheat leaves
under the treatment of JA or 3-ICA:JA (2:8) (Figure 2). Overall,
it appears that 3-ICA as a synergist of JA enhances the
antagonism against wheat powdery mildew.

Histological Investigation of B. graminis
Infection
To determine the roles of 3-ICA and JA in the Bgt E21 infection
process,we treatedwheat leaveswitheither3-ICAat2,500mg/ml, JAat
500mg/ml,or3-ICA: JA(2:8)at40mg/ml,8hprior to inoculation.The
results showed that, in the untreated control (Mock) and 3-ICA
treatment, wheat leaves were successfully infected and colonized by
Bgt E21. By 8 hpi, appressoria were formed from germinated conidia.
A

B

C

FIGURE 1 | Chemical structure and NMR graphs of these compounds isolated from fermentation cultures of L. pseudotheobromae LPS-1. (A) A2-5-6-1, C9H7NO,
indole-3-carbaldehyde. (B) A2-5-6-2, C9H7NO2, indole-3-carboxylic acid. (C) A2-5-6-3, C12H18O3, jasmonic acid.
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Primary haustoria were formed by 24 hpi andmatured by 48 hpi, and
then, secondaryhaustoria andhyphawere formedby 72hpi. The base
of conidiophores emerged by 96 hpi and abundant fresh conidia
reproduced by 120 hpi. However, in both the JA and 3-ICA:JA (2:8)
treatments, the germinated conidia did not form normal appressoria,
and the percentages of deformedappressoriawere significantly higher
(JA, 90.53 ± 0.91%; 3-ICA:JA, 89.68 ± 1.36%) than either the 3-ICA
(5.85 ± 1.14%) or untreated control (6.79 ± 1.62%) treatments.
Furthermore, the deformed appressoria failed to penetrate the host
cells, andnohaustoriawere formed(Figure3;Table4).Meanwhile, at
24 hpi, conidia germinated at a rate of 83.47 ± 1.85% in the JA
treatment, 83.44±1.53% in the3-ICA : JA treatment, 84.24±1.65% in
the 3-ICA treatment, and 86.43 ± 1.69% in the untreated control. In
addition,at24hpi,appressoriawereformedatarateof90.73±0.78%in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
the JA treatment, 90.38 ± 1.85% in the 3-ICA:JA treatment, 91.22 ±
1.58% in the 3-ICA treatment, and 92.83 ± 0.60% in the untreated
control.Overall,wefoundnosignificantdifferenceineither theconidia
germination rate or appressorium formation rate between the 3-ICA,
JA, or 3-ICA : JA treatment and theuntreated control (Table4).These
data suggest that JA plays important roles in appressorium
development and haustorium formation against B. graminis.
DISCUSSION

In this study, the endophytic fungus L. pseudotheobromae LPS-1
isolated from the medicinal plant, Ilex cornuta, can produce
TABLE 2 | The activities of indole-3-carbaldehyde, indole-3-carboxylic acid, and jasmonic acid against wheat powdery mildew in the laboratory.

Compound Disease severity (%) Inhibition rate (%)

Mock 87.19 ± 1.11 /
Indole-3-carbaldehyde (2500 mg/ml) 82.29 ± 0.97 5.72 ± 1.13
Indole-3-carbaldehyde (1250 mg/ml) 85.63 ± 1.25 1.91 ± 0.88
Indole-3-carbaldehyde (625 mg/ml) 86.67 ± 1.39 0.72 ± 0.58
Indole-3-carbaldehyde (312.5 mg/ml) 86.88 ± 0.83 0.46 ± 1.48
Indole-3-carbaldehyde (156.25 mg/ml) 87.08 ± 1.81 0.25 ± 0.91
Indole-3-carboxylic acid (2500 mg/ml) 79.38 ± 0.42 9.06 ± 1.09
Indole-3-carboxylic acid (1250 mg/ml) 82.71 ± 1.33 5.26 ± 0.34
Indole-3-carboxylic acid (625 mg/ml) 85.42 ± 1.11 2.15 ± 0.03
Indole-3-carboxylic acid (312.5 mg/ml) 87.08 ± 0.56 0.23 ± 0.89
Indole-3-carboxylic acid (156.25 mg/ml) 91.25 ± 0.83 -4.54±0.95
Jasmonic acid (500 mg/ml) 2.67 ± 0.53 96.95 ± 0.66
Jasmonic acid (250 mg/ml) 27.56 ± 0.75 68.41 ± 1.31
Jasmonic acid (125 mg/ml) 60.63 ± 0.83 30.55 ± 0.64
Jasmonic acid (62.5 mg/ml) 78.15 ± 1.63 10.48 ± 0.94
Jasmonic acid (31.25 mg/ml) 84.17 ± 0.28 3.57 ± 1.12
July 2022 | Volume
Disease severity (%) = (diseased leaf area)/(total leaf area) × 100. Inhibition rate (%) = (C − T)/C × 100, where C is the disease severity in the untreated control and T is the disease severity in
the examined treatment.
TABLE 3 | The activities of indole-3-carboxylic acid, jasmonic acid, and their combinations on wheat powdery mildew in the laboratory.

Compound* Regression equation Observed EC50 (mg/ml) (95%Cl) Theoretical EC50 (mg/ml) Synergistic coefficient (R)

Indole-3-carboxylic acid y=2.8374x-5.4965 17104.35
(6126.10-3119966.47)

/ /

Jasmonic acid y=3.0195x-1.5743 166.57
(149.31-186.25)

/ /

Combination 1:9 y=1.6596x+3.4535 11.56
(10.09-13.21)

184.88 16.00

Combination 2:8 y=1.7592x+3.552 9.05
(7.84-10.39)

207.71 22.95

Combination 3:7 y=2.1868x+2.9831 10.81
(9.58-12.17)

236.97 21.92

Combination 4:6 y=2.6409x+1.0609 33.22
(29.96-36.96)

275.83 8.30

Combination 5:5 y=2.8643x+0.9787 25.51
(22.94-28.42)

329.93 12.93

Combination 6:4 y=1.808x+2.2082 35.74
(31.27-41.37)

410.44 11.48

Combination 7:3 y=1.3152x+2.815 44.00
(36.35-55.39)

542.91 12.34

Combination 8:2 y=2.7526x-1.0857 162.37
(143.10-185.69)

801.64 4.94

Combination 9:1 y=2.6571x-2.6941 730.80
(650.55-836.45)

1531.50 2.10
*The ratio of combination is indole-3-carboxylic acid to jasmonic acid.
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three agriculturally relevant bioactive compounds: indole-3-
carbaldehyde, 3-ICA, and JA. Among them, both indole-3-
carbaldehyde and 3-ICA are commonly present in
microorganisms and plants and present antimicrobial and
antitumor activities (Yue et al., 2000; Anderton et al., 2004;
Kavitha et al., 2010; Mujahid et al., 2011; Qian et al., 2014; Liu
et al., 2017; Zhou et al., 2019; Duong et al., 2021). Some studies
have showed that indole-3-carbaldehyde, isolated from
Pseudomonas sp. ST4, Streptomyces sp. CT37, Aeromicrobium
ponti LGMB491, Janthinobacterium lividum, Clitocybe nuda
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
LA82, Angelica sinensis callus, and Marinomonas sp., has
inhibitory effects on the growth of Sporisorium scitamineum,
Ustilago maydis, Candida albicans ATCC 10231, Staphylococcus
aureus, and Batrachochytrium dendrobatidis JEL215, on
zoospore germination of Phytophthora capsici PCM81, on
neuroinflammation, and on the biofilm formation of Vibrio
cholerae O1, respectively (Brucker et al., 2008; Chen et al.,
2012; Rajalaxmi et al., 2016; Gos et al., 2017; Zhou et al., 2017;
Liu et al., 2020; Fang et al., 2020). However, other reports about
indole-3-carbaldehyde did not indicate its antimicrobial activity
against pathogens. In this study, we also demonstrated that
indole-3-carbaldehyde has no antifungal activity against Bgt
E21 (Table 2). This indicates that indole-3-carbaldehyde may
exhibit different extents of antimicrobial activity against different
pathogens. Therefore, whether indole-3-carbaldehyde, isolated
from L. pseudotheobromae LPS-1, has antimicrobial activity
against other plant pathogens will be investigated in the future.
For 3-ICA, in plants, it is regarded as an inactive auxin (IAA;
indole-3-acetic acid) analog, and IAA is also implicated in plant
defense (Bari and Jones, 2009; Borgati and Boaventura, 2011;
Petti et al., 2012). Some studies indicate that 3-ICA, a plant cell
wall–bound metabolite that could mediate accelerating callose
accumulation in response to pathogens, may perform important
functions as a mediator of induced resistance in plant basal
defense against biotic stress. However, its function may be
regulatory or signaling because it has no direct antifungal effect
on pathogens (Forcat et al., 2010; Gamir et al., 2012; Iven et al.,
2012; Gamir et al., 2014a; Gamir et al., 2014b; Frerigmann et al.,
2016; Gamir et al., 2018; Pastor-Fernández et al., 2019).
FIGURE 3 | The development of B graminis on wheat leaves at different time courses in 3-ICA, JA, and their combination treatment. Mock, untreated control; 3-ICA,
indole-3-carboxylic acid at 2,500 mg/ml; JA, jasmonic acid at 500 mg/ml; 3-ICA:JA, the 2:8 combination of indole-3-carboxylic acid and jasmonic acid at 40 mg/ml.
Sampling time was 8, 24, 48, 72, 96, and 120 hpi, respectively. SGT, sticky germ tube; AP, appressorium; PH, primary haustorium; MH, mature haustorium; Hy,
hypha; BC, base of conidiophores; SC, spore chain. The deformed appressoria failed to penetrate the host cells. Scale bar = 20 mm.
FIGURE 2 | The activity of 3-ICA, JA, and their combinations against wheat
powdery mildew at 2,500, 500, and 40 mg/ml, respectively. Mock, untreated
control; 3-ICA, indole-3-carboxylic acid; JA, jasmonic acid; 3-ICA:JA, the 2:8
combination of indole-3-carboxylic acid and jasmonic acid.
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Similarly, in this study, we also found that there was no
significant difference in disease severity and pathogenicity of
Bgt E21 on susceptible wheat leaves between 3-ICA treatment
and the untreated group (Mock) (Figure 2; Table 2), which
preliminarily indicated that 3-ICA had no inhibitory effect on the
infection process of wheat powdery mildew. Contrarily, JA was
much more bioactive than indole-3-carbaldehyde and 3-ICA
against Bgt E21, and the disease severity of Bgt E21 decreased
significantly with the concentration increase of JA treatment
(Table 2). In plants, the plant hormone JA and its derivatives are
involved in regulating a diverse set of processes including cellular
development, defense, and resistance to both abiotic and biotic
stress (Ruan et al., 2019; Gomi, 2021). For instance, when applied
to plants, the JA-derivative lasiojasmonate A (LasA), isolated
from Lasiodiplodia mediterranea, a pathogen of grapes, induces
many JA-regulated response in planta at both the genetic and
physical level (Chini et al., 2018). The synthetic JA-Ile-
macrolactone 5b acts to stimulate induced resistance against
pests and pathogens in tea (Lin et al., 2020). In apple trees, JA has
been shown to be more effective at stimulating induced resistance
to Tetranychus urticae than the fungicide acibenzolar-S-methyl
(BTH: benzothiadiazole) (Warabieda et al., 2020). Exogenous
treatment with JA can enhance chilling tolerance of peach fruit
and reduce the severity of internal flesh browning (Zhao et al.,
2021). Some studies have also shown that JA signaling can
induce the transcription of several defense-related transcription
factors (TFs), such as MYC, MYB, NAC, ERF, and WRKY
(Lorenzo et al., 2003; Delessert et al., 2005; Skibbe et al., 2008;
Fernández-Calvo et al., 2011; Gao et al., 2011; Qi et al., 2011), and
can also induce the MAP kinase cascade (Li et al., 2017), calcium
channel activation (Kenton et al., 1999), and other processes that,
along with other plant hormones like abscisic acid, salicylic acid,
and ethylene, regulate plant growth, development, and stress
response (Santner and Estelle, 2009; Ruan et al., 2019). JA is also
present in other fungi in addition to L. pseudotheobromae LPS-1,
such as Acremonium sp. D212, Botryodiplodia theobromae, L.
theobromae strain 2334, and L. iranensis (Husain et al., 1993; Eng
et al., 2016; Han et al., 2020; Shen et al., 2022). However, in this
study, we do not know the molecular mechanism of 3-ICA and
JA antagonizing B. graminis at present. Therefore, whether 3-
ICA and JA served as signal molecules to induce the resistance of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
wheat against the infection of B. graminis will be further
elucidated in the future.

Work by others has indicated that 3-ICA can be effectively
employed as an antibiotic adjuvant of doxycycline against a
range of Gram-negative bacteria (Cadelis et al., 2021). However,
3-ICA as a synergist of JA against plant pathogens has not been
reported. Therefore, we wondered whether 3-ICA may interact
with JA as an adjuvant to improve its bioactivity against fungal
infection. We found that, in this study, there was indeed a
synergistic effect between 3-ICA and JA against Bgt E21 on
wheat in each of the ratios of 3-ICA to JA (3-ICA:JA) ranging
from 1:9 to 9:1. When the compound ratio of 3-ICA to JA was
2:8, the synergistic coefficient was the highest as 22.95 (Table 3).
Therefore, we chose the compound ratio of 3-ICA to JA as 2:8 for
the following study. Similar to the treatment of JA at 500 mg/ml,
there was no symptom on susceptible wheat leaves, and the
appressorium and haustorium formation of Bgt E21 was
significantly inhibited under the treatment of 3-ICA:JA (2:8) at
40 mg/ml (Figures 2, 3; Table 4). This indicated that treatment
with 3-ICA:JA (2:8) at 40 mg/ml was just as affective at
controlling Bgt E21 infection as treatment with JA alone at 500
mg/ml, a 12.5× greater concentration of JA. It appears that 3-ICA
significantly enhances the antagonistic efficiency of JA against
wheat powdery mildew. In addition, to avoid the possibility of
pathogenic resistance, antibiotic adjuvants should preferably lack
their own antibiotic activity (Bernal et al., 2013), and we found
that 3-ICA alone showed no direct activity against Bgt E21. Thus,
3-ICA can be employed as a synergist of JA to enhance the
antagonism against B. graminis, and we suggest that the
combination of JA and 3-ICA is potentially suitable for
modern integrated disease management programs, aimed at
reducing agrochemical use. These data further evince the
untapped capacity of endophytic microorganisms to contribute
useful compounds to agriculture and beyond.
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TABLE 4 | Histological investigation of the infection process of B. graminis after treatment with 3-ICA, JA, and their combinations.

Treatment Conidium
germination (%)

Appressorium
formation (%)

The rate of deformed
appressoria (%)

Primary haustorium
formation (%)

Mature haustorium
formation (%)

Mock 86.43 ± 1.69a 92.83 ± 0.60a 6.79 ± 1.62b 92.07 ± 0.94 99.06 ± 0.03
3-ICA
(2500 mg/ml)

84.24 ± 1.65a 91.22 ± 1.58a 5.85 ± 1.14b 90.16 ± 1.06 98.76 ± 0.42

JA
(500 mg/ml)

83.47 ± 1.85a 90.73 ± 0.78a 90.53 ± 0.91a / /

3-ICA:
JA (2:8)
(40 mg/ml)

83.44 ± 1.53a 90.38 ± 1.85a 89.68 ± 1.36a / /
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3-ICA, indole-3-carboxylic acid at 2500 mg/ml; JA, jasmonic acid at 500 mg/ml; 3-ICA:JA (2:8), the 2:8 combination of indole-3-carboxylic acid and jasmonic acid at 40 mg/ml; /, no
haustorium formation.
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