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In the age of big data an important question is how to ensure we make the most out of the
resources we generate. In this review, we discuss the major methods used in
Apicomplexan and Kinetoplastid research to produce big datasets and advance our
understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and
Leishmania biology. We debate the benefits and limitations of the current technologies,
and propose future advancements that may be key to improving our use of these
techniques. Finally, we consider the difficulties the field faces when trying to make the
most of the abundance of data that has already been, and will continue to be, generated.
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INTRODUCTION

The global disease burden caused by Apicomplexan and Kinetoplastid infections is devastating
world-wide. Among the Apicomplexans (Figure 1), Plasmodium spp. are responsible for a yearly
estimate of 241 million malaria cases (WHO, 2021a); Toxoplasma gondii infects 30% of the human
population (Milne et al., 2020); and Cryptosporidium parvum causes a yearly estimate of 44.8
million infections in children under 5 (Khalil et al., 2018). Among the Kinetoplastids (Figure 2),
Trypanosoma cruzi affects 6-7 million people, mostly within the Latin American sub-continent
where Chagas disease is most prevalent (WHO, 2021c); and Leishmania spp. cause an estimate of
700,000 to 1 million new leishmaniasis cases annually (WHO, 2021d). Additionally, Trypanosoma
brucei, now responsible for less than a thousand yearly cases of Human African trypanosomiasis
(WHO, 2021b) due to highly efficient vector control, and monitoring and surveillance programs,
remains a current public health threat, as well as being a relevant model organism; These parasites
continue to pose a major global threat, urging scientists to create and utilize novel molecular,
cellular, pharmaceutical, bioinformatic, and imaging-based toolkits, to further our understanding of
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FIGURE 1 | Apicomplexan parasites. Most apicomplexan parasites have complex life cycles with several developmental stages that occur in different hosts and in different
organs or tissues within the host. While advances have been made to culture many stages of these organisms in vitro, some are restricted to short-term culture. For others,
only a limited number of stages can be sustained. Equally, not all stages are amenable to genetic modification. In this figure we summarize main features of Toxoplasma
gondii, Cryptosporidium parvum, and Plasmodium spp. Toxoplasma gondii. (i) After ingesting bradyzoite cysts from an intermediate host, the sexual developmental cycle
of T. gondii occurs in the gut of felines culminating in the shedding of large numbers of (ii) un-sporulated oocysts in their faeces. Within a few days, oocysts sporulate in the
environment and become infective. (iii) Intermediate hosts can become infected by consuming contaminated soil, water or plants. Once consumed, oocysts transform into
(iv) tachyzoites in the host’s gut. Dissemination of a tachyzoite infection and repeated rounds of cell infection, replication and egress (lytic cycle) leads to a systemic infection.
Immune pressure triggers some tachyzoites to form tissue cysts that contain (v) bradyzoites. In humans, tissue cysts most commonly found in skeletal muscle, the heart, the
eyes and the brain. T. gondii tachyzoites are able to cross the placenta from mother to fetus. Reactivation of an encysted infection can occur upon immune suppression
and ingestion of bradyzoite cysts by another intermediate host can transmit the infection (v to iii). Among these T. gondii stages, tachyzoites and bradyzoites can be cultured
in vitro in large amounts. Tachyzoites are amenable to genetic modification. Cryptosporidium parvum. (i) Sporulated oocysts are excreted by infected hosts through
faeces and transmission to humans usually occurs via contaminated water. Following ingestion, the parasite undergoes excystation, whereby (ii) sporozoites are released,
and invade the epithelial cells of the ileum. Here, C. parvum undergo (iii) 3 cycles of asexual expansion, followed by (iv) sexual commitment to either micro- or macro-
gametes. Fertilization occurs and results in the generation of a (v) zygote, which continues onto a sporulated oocyst. Some oocysts continue to reinfect the host while others
are excreted. Cryptosporidium does not complete its lifecycle in vitro without the use of complex organoid systems. Even so, generating large amounts is limited. The
sporozoite is the only stage used for transfections; to generate transgenic oocysts, transfected sporozoites must immediately infect an animal model or organoid.
Plasmodium spp. Female Anopheles mosquitoes are responsible for transmitting Plasmodium spp. Mosquitoes are the definitive host, where Plasmodium undergoes
sexual replication. This occurs in the mosquito’s midgut, where micro/macro-gametes generate zygotes which become motile (i) (ookinetes) and invade the midgut wall.
Here they develop into (ii) oocysts. As oocysts mature, they rupture, releasing (iii) sporozoites which migrate to various locations in the mosquito, including its salivary glands.
Following an infectious bite, sporozoites migrate from the dermis to the blood vasculature in humans. This allows them to reach the host liver, where they invade
hepatocytes, and undergo a single round of (iv) asexual replication (by schizogony) resulting in the release of (v) merosomes filled with merozoites. Merosomes rupture in the
blood circulation and release thousands of merozoites, which then infect red blood cells (iRBCs) and give rise to the erythrocytic stage of infection. Within RBCs, parasites
develop into (vi) rings, trophozoites and schizonts. Mature schizonts rupture, releasing merozoites which invade other RBCs exponentially increasing the parasite mass.
Some of these parasites will develop into sexual stages (called (vii) gametocytes). Mature asexual stages cause iRBC sequestration in organs including the brain, lungs,
placenta, pancreas and adipose tissues, while sexual stages display preferential tropism to the bone marrow and other hematopoietic organs. Among these Plasmodium
spp. stages, ookinetes, liver, asexual RBC, and sexual RBC stages can all be cultured in vitro in large amounts. Merosomes, rings, and schizonts are amenable to genetic
modification. Note Large arrows in diagram refer to the completion of the cycle. Figure created with BioRender.com.
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FIGURE 2 | Kinetoplastid parasites. Kinetoplastid parasites have complex life cycles with various stages occurring in insect vector and mammalian hosts, and in
different organs or tissues within their hosts. While advances have been made to culture several stages of these organisms in vitro, many are restricted to short-term
culture. For others, only a limited number of stages can be sustained. Equally, not all stages are amenable to genetic modification. In this figure we summarize main
features of Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp. Trypanosoma cruzi. Triatomine insect vectors of the genera Triatoma, Rhodnius and
Panstrongylus become infected by feeding on infected blood (from humans or other animals). Ingested trypomastigote metacyclics transform into (i) epimastigotes in
the insect’s midgut. These multiply and differentiate into (ii) metacyclic trypomastigotes in the hindgut. Infected vectors release trypomastigotes through their faeces
on the host skin. Parasites enter the skin via wounds or mucosal membranes (such as through the eyes). Inside the host, (iii) trypomastigotes invade cells of a
plethora of tissues, and transform into (iv) amastigotes which multiply and differentiate again into trypomastigotes, which are released from lysed cells. Some of these
travel in the (v) bloodstream, and can be ingested by triatomine vectors upon a bite for blood feeding. The most commonly affected organ is the heart, but others,
including the liver, spleen, and adipose tissues are invaded too, some of them becoming important parasite reservoirs. Among these T. cruzi stages, epimastigotes,
trypomastigotes and amastigotes can be cultured in vitro in large amounts, and the whole life cycle can be modeled in vitro. Epimastigotes, trypomastigotes and
amastigotes are amenable to genetic modification. Trypanosoma brucei. Tsetse flies (from the genus Glossina) become infected by feeding on infected blood (from
humans and other animals). Within the fly’s midgut, T. brucei stumpy forms transform into (i) procyclic trypomastigotes (PCF). These multiply, egress from the midgut,
and transform into (ii) epimastigotes, which can reach the fly’s salivary glands and continue to multiply. (iii) Metacyclic trypomastigotes are injected into the host skin
during a bloodmeal. Inside the host, they transform into bloodstream form (BSF) trypomastigotes that can be (iv) slender or (v) stumpy forms, the latter of which
rapidly transforms into procyclic forms in the tsetse midgut upon a blood meal. While slender BSFs multiply and thrive in the bloodstream, T. brucei is an extracellular
parasite capable of invading multiple organs including the brain, spleen, adipose tissue, pancreas, lungs and lymphatic vasculature. These (iv) tissue-specific forms
are relatively poorly understood. Among these Trypanosoma brucei stages, procyclics and BSFs can be cultured in vitro in large amounts, and the same stages are
amenable to genetic modification. Leishmania spp. Phlebotomine sandflies become infected by ingesting infected cells during a bloodmeal. Within the sandfly, (i)
amastigote forms of Leishmania spp. transform into (ii) promastigotes, which develop in the vector’s gut, and migrate to the proboscis. Infected sandflies transmit (iii)
promastigotes during a bloodmeal. After entry into the skin, promastigotes are ingested by phagocytic cells (eg. macrophages and neutrophils). Within these cells,
promastigotes transform into (iv) amastigotes, which multiply and (v) infect other cells. Depending on parasite and host factors, cutaneous or visceral leishmaniasis
can result. For the former, the skin and soft tissues like the nose and mouth can be affected. For the latter, affected organs commonly include the spleen, liver and
bone marrow. Among these Leishmania spp. stages, promastigotes, axenic amastigotes and intracellular amastigotes can be cultured in vitro in large amounts.
Promastigoes and amastigotes are amenable to genetic modification. Note Large arrows refer to the completion of the cycle. Figure created with BioRender.com.
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parasite biology, and develop new interventions to combat the
diseases associated with these organisms.

Together, ‘omics’ technologies have shed light on vital aspects
of parasite biology. Current high-throughput bulk ‘omics’
technologies have allowed us to characterise parasite genomes,
transcriptomes, and proteomes at specific timepoints, to take a
snapshot of the parasite population. Conversely, single cell
technologies, including microscopy and single cell ‘omics’,
allow us to probe variation within the population and describe
asynchronous or rare events. Genomics and advances in genetic
manipulation now allow high-throughput phenotypic screens to
investigate gene function. Equally, while imaging has historically
been a powerful tool for parasitology, increasing the throughput
of microscopy methods holds great potential in the context of
integrative ‘systems biology’. Another important aspect is the
vast amount of data generated, and the capacity to analyse and
effectively use this data. In parasitology, we have made significant
strides in creating data sharing platforms (eg. VEuPathDB
(Aurrecoechea et al., 2010; Amos et al., 2022). But as the
complexity of these data increases, so do the challenges of data
processing, integration, analysis, visualisation, interpretation and
equitable sharing.

Here, we review seminal findings achieved in Apicomplexan
and Kinetoplastid research by genomics, transcriptomics,
proteomics, high-throughput functional screens, and imaging
studies. We discuss the challenges, advances, and future
directions of these technologies in the context of a key goal:
how can we gain the most from the abundance of data that has
already been, and will continue to be, generated?
GENOMICS

The early 2000’s were the advent of genome sequencing for
Apicomplexan and Kinetoplastid research, as the genome
sequences of P. falciparum (Gardner et al., 2002), T. gondii
(Kissinger et al., 2003), T. brucei (Berriman et al., 2005), T.
cruzi (El-Sayed et al., 2005), L. major (Ivens et al., 2005), C.
parvum and C. hominis (Bankier et al., 2003; Abrahamsen et al.,
2004; Puiu et al., 2004; Xu et al., 2004) were published. These laid
the foundations for the high-throughput developments made
since. Within less than two decades, the field has moved from
Sanger and clone-by-clone sequencing to varied whole-genome
shotgun sequencing technologies (Figure 3).

Sanger Sequencing
For a long time, genome sequencing relied on the Sanger method
(also called first-generation sequencing), which involves the
random incorporation of chain-terminating fluorescently
labelled dideoxynucleotide triphosphates (ddNTPs) during
DNA replication and capillary electrophoresis to detect
sequencing products (Gomes and Korf, 2018; Hu et al., 2021).
Sanger sequencing is still widely used due to its cost-effectiveness
ratio for gene-specific analysis or a small subset of genes, but it is
impractical for analysing larger regions and has a low
discovery power.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Next Generation Sequencing
In the mid-1990s, sequencing by synthesis technology (SBS)
was invented and provided the basis for next-generation
sequencing (NGS) (also second-generation sequencing).
The SBS approach re l ies on the incorporat ion of
single fluorescently labelled dNTPs during DNA chain
amplification. Illumina performs this in a parallel, high-
throughput fashion, through cluster generation of DNA
libraries by bridge amplification PCR (Hu et al., 2021).
Together, all clusters in a flow cell could result in tens of
millions of reads. Data generated by Illumina sequencing is
highly accurate even for repetitive sequence regions and
homopolymers. Compared to Sanger sequencing, NGS is
high-throughput and provides higher sensitivity and
coverage. However, because it generates short reads, it limits
the analysis of structural variants, repetitive elements, and
regions with a high GC content (Xiao and Zhou, 2020).

Third Generation Sequencing
In the late 2000s, third-generation sequencing (3rd Gen Seq, also
known as long-read sequencing) was invented (Figure 3). The
main 3rd Gen Seq platforms are the Single-molecule real-time
(SMRT) sequencing from Pacific Biosciences (PacBio) and the
Oxford Nanopore technology (ONT). SMRT sequencing relies
on the fixation of a single DNA polymerase to zero-mode
waveguides (ZMW) with a single DNA template molecule.
Through the ZMW, the SMRT cell can detect which single
fluorescently-labelled DNA nucleotide is incorporated by the
DNA polymerase and make the corresponding base call (Rhoads
and Au, 2015; Hu et al., 2021). Instead of DNA polymerases,
ONT uses the pore-forming protein a-hemolysin embedded in a
membrane. This protein has the inner diameter of the size of a
single strand of DNA. So, when current is applied to the
membrane, the DNA strand moves through the nanopores,
which alters the electric current and allows base-calling (Clarke
et al., 2009; Brinkerhoff et al., 2021; Hu et al., 2021). 3rd Gen Seq
provides longer reads, allows detection of epigenetic markers,
and can be portable, although error rates are still higher than
NGS. Hybrid sequencing strategies have been implemented to
improve sequence contiguity, error rates and affordability
(Rhoads and Au, 2015).

Apicomplexans
Comparative genomics studies in Apicomplexan parasites have
been done particularly amongst Plasmodium, Toxoplasma, and
Cryptosporidium genera (Carlton et al., 2002; Coulson et al.,
2004; Carlton et al., 2008; Mazurie et al., 2013; Miotto et al.,
2013). They have helped our understanding of population
structure, evolutionary dynamics, epidemiology, and drug
resistance mechanisms. Apicomplexan genomes are typically
small (~8.5 to 130 Mb) (DeBarry and Kissinger, 2011;
Blazejewski et al., 2015) and quite different from the typical
eukaryotic genome. Their nuclear genomes are compact, shaped
by substantial gene loss, have few transposable elements, and
almost no synteny outside of their genus (DeBarry and
Kissinger, 2011).
June 2022 | Volume 12 | Article 900878
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FIGURE 3 | Timeline of major achievements in parasite genome sequencing. Only the oldest article using each technology for each parasite is cited. WGS
sequencing; 3rd Gen Seq, third generation sequencing or long-read sequencing; ONT, Oxford Nanopore technology; PacBio, Pacific Biosciences; PMID, P

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Kent et al. Big Data in Parasitology
Plasmodium spp.
The genomes of Plasmodium spp. are haploid, both in cell culture
and in the vertebrate host, with approximately 23 Mb in size and
encode for ~5500 genes throughout 14 well-defined chromosomes
(Pegoraro and Weedall, 2021). The biggest challenge for
Plasmodium genome sequencing has been their extremely low
GC content [21-23% compared to 56% in the mouse genome
(Videvall, 2018)], although modern technologies have become less
sensitive to this difference. The genomes of multiple species of
human and non-human malaria parasites are readily available
(Carlton et al., 2002; Hall et al., 2005; Carlton et al., 2008; Ansari
et al., 2016; Auburn et al., 2016; Böhme et al., 2018). Interestingly,
more than 60% of the genes predicted from the P. falciparum
genome do not have homologs in non-Plasmodium organisms and
they encode putative proteins of unknown function (Gardner
et al., 2002; Neafsey et al., 2021). Their subtelomeric regions are
rich in contingency gene families, many of which are large (>200
genes), hypervariable due to high recombination pressure, and
involved in immune evasion (Barry et al., 2003) (the major variant
surface antigens (e.g. var, vir, pir genes) (Singh et al., 2014; Ansari
et al., 2016); the STEVOR genes, which are necessary for
erythrocyte invasion of merozoites (Cheng et al., 1998; Niang
et al., 2014); and the rif gene family, which are putative virulence
factors (Fernandez et al., 1999; Araujo et al., 2018).

Toxoplasma gondii
T. gondii is the only species of the Toxoplasma genus (Tenter
et al., 2000; Dubey, 2010). T. gondii’s genome is 65 Mb, encoding
~8,000 genes throughout 13 chromosomes [previously annotated
chromosomes VIIb and VIII are now a single chromosome
(Lorenzi et al., 2016; Berná et al., 2021)]. The T. gondii genome
contains multiple repetitive and low-complex regions evenly
distributed across chromosomes (Berná et al., 2021).

Classical genetic studies of the population structure of T.
gondii revealed three clonal lineages (types I-III) in North
America and Europe (Darde et al., 1988; Dardé et al., 1992;
Sibley and Boothroyd, 1992). These share a common ancestor
(Su et al., 2003), despite distinct pathogenicity in rodent models
(Shwab et al., 2018). Genomics revealed a fourth clonal lineage
mostly found in wild animals in North America (Khan et al.,
2011). South American T. gondii strains display the highest
genetic diversity of the species with recent genetic bottlenecks
and lack of clonal structure (Sibley and Ajioka, 2008; Lorenzi
et al., 2016). Genome-wide SNP analyses have shown recent
genomic admixture among T. gondii clades, where large
chromosomal haploblocks are inherited. Genomics has been
crucial to elucidate mechanisms of transmission, host range
and pathogenesis, particularly amongst T. gondii strains that
have inherited conserved haplotype groups (Lorenzi et al., 2016).
Genomics has also shed light on T. gondii virulence factors, such
as the ROP proteins, which are major determinants of
pathogenicity in mice (El Hajj et al., 2006). Some of these ROP
genes have undergone local tandem duplication, locus expansion
events and are under strong selection pressure by the host’s
immune response (e.g mouse Immunity Related GTPases)
(Peixoto et al., 2010; Steinfeldt et al., 2010).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Cryptosporidium spp.
There are currently 38 Cryptosporidium species reported that
infect several host species (Feng et al., 2018). Cryptosporidium
spp. genomes are ~9.1Mb in size, distributed across 8
chromosomes, and encoding ~4,000 proteins. Despite their
much smaller size, Cryptosporidium spp. genomes have a gene
density 1.8x higher than Plasmodium spp, a result of intron loss
and reduction, intergenic regions shortening, and decrease of
mean gene length (Keeling, 2004; DeBarry and Kissinger, 2011).
Comparative genomics have shown that the most divergent
regions of C. parvum and C. hominis, the most important
human-infective species (Feng et al., 2018), are located near
the telomeres. They are rich in transporters and surface-
expressed genes, like other Apicomplexan and Kinetoplastid
parasites (Bouzid et al., 2010; Widmer et al., 2012). These
studies have also been key in identifying two new subtelomeric
gene families that encode secreted glycoproteins [i.e. C. parvum
specific proteins (Cops) and the C. hominis specific proteins
(Chos)] (Bouzid et al., 2010), and are thought to play a role in the
host-parasite interaction. Despite their name, advances in
sequencing have shown that Cops is not species-specific, but
rather conserved in C. hominis (Bouzid et al., 2013).

Most of the work done in this field has been based on SNPs
found in the gp60 gene and revealed a very complex genetic
structure (Tichkule et al., 2022). “Omics” analyses in
Cryptosporidium have been delayed compared to remaining
apicomplexans because the parasite is quasi-intracellular (i.e.
intracellular but extra-cytoplasmic) throughout most of its life
cycle; has a very small genome compared to the host cell, which
reduces the power of direct sequencing; and long-term in vitro
culture systems are technically challenging (Baptista et al., 2022).
To date, the genomes of 15 species have been sequenced, 8 of
which are annotated (Baptista et al., 2022).

Kinetoplastids
Trypanosoma spp.
The genome sequencing of T. brucei brucei (Berriman et al., 2005)
was followed by remaining T. brucei subspecies, T. b. gambiense
(Jackson et al., 2010), T. b. rhodesiense (Sistrom et al., 2016), T. b.
evansi (Carnes et al., 2015), and T. b. equiperdum (Hébert et al.,
2017; Davaasuren et al., 2019). These genomes are ~32Mb in size
and comparisons of these datasets have shown high synteny, large
sequence homology and rare segmental duplications. However,
these sequences, together with additional laboratory-adapted
strains (Cross et al., 2014) and population isolates (Sistrom
et al., 2014), have highlighted quite considerable diversity
within the subtelomeres. The subtelomeres harbor multiple
multi-copy gene families, of which the variant surface
glycoproteins (VSG) are the most prominent. Comparative
analyses of the genome sequences of T. brucei, T. congolense
and T. vivax, have shown that each species has distinct
mechanisms of generating antigenic diversity (Jackson et al.,
2012; Silva Pereira et al., 2020) and thus have different
strategies for establishing chronic infections. These genome
sequencing projects have also allowed the determination of the
cell surface phylome, a database of genes encoding cell-surface
June 2022 | Volume 12 | Article 900878

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Kent et al. Big Data in Parasitology
genes and their evolutionary relationships within the main
African trypanosome species (Jackson et al., 2013). Moreover,
whole genome sequencing of clinical isolates from Human
Sleeping Sickness patients has shown that disease relapse results
from ineffective parasite clearance by melarsoprol (Richardson
et al., 2016). On a larger scale, studies of population genomics
have shown the importance of sexual replication in African
trypanosome evolution. It is now clear that, although certain
African trypanosomes, like T. b. gambiense type 1 (Weir et al.,
2016) and at least particular lineages of T. vivax (Duffy et al.,
2009) evolve clonally, others such as T. congolense (Morrison
et al., 2009; Tihon et al., 2017) and T. b. brucei (Peacock et al.,
2011; Peacock et al., 2014), undergo hybridization. Likewise,
genomic analyses of T. cruzi have highlighted how the rapid
evolution of immune evasion-related gene families accounts for
intraspecific variation (Wang et al., 2021). Population genomics
and genetics have also been key to understand the population
structure of Salivaria and Stercoraria trypanosomes (Franzén
et al., 2011; Reis-Cunha et al., 2015; Jackson, 2016; Tihon et al.,
2017; Callejas-Hernández et al., 2018; Silva Pereira and Jackson,
2018; Silva Pereira et al., 2018; Silva Pereira et al., 2020) and the
identification of new trypanosome species and strains (e.g. T.
vivax-like (Rodrigues et al., 2008; Rodrigues et al., 2017;
Rodrigues et al., 2020), T. suis (Hutchinson and Gibson, 2015),
T. suis-like (Rodrigues et al., 2020).

Leishmania spp.
Within the Leishmania field, research has focused on the
Leishmania subgenus (i.e. L. major, L. donovani, L. infantum,
L. mexicana). However, more recently, the subgenus Viannia has
been attracting more attention, due to the growing recognition of
the epidemiological importance of Leishmania (V.) braziliensis.
With the exception of L. amazonensis (20Mb), Leishmania
genomes contain 33Mb. Whilst genomics analyses of the
Leishmania genus have revealed great chromosomal
conservation (Ivens et al., 2005; Peacock et al., 2007; Rogers
et al., 2011), studies of L. braziliensis and other Viannia species
showed larger sequence diversity, differences in gene content,
pseudogene number and chromosome copies, as well as novel
mobile elements (Llanes et al., 2015; Valdivia et al., 2015; Ruy
et al., 2019). The conservation of Leishmania genomes within
different species contrasts with the extreme disparity in disease
phenotype, tissue tropism, and clinical outcome. As in the
trypanosome field, comparative genomics revealed a small
number of highly-dynamic species-specific genes, as well as
conserved gene families like the UDP-glycosyltransferases, that,
despite their ancient origin, have diverged independently (Silva
Pereira and Jackson, 2018). These examples of species-specific
innovations are most frequent amongst the genes necessary for
the coating and/or decoration of the parasite’s cell surface, and
are likely to determine key pathways for parasite survival and
adaptation in different hosts and environments. Recently, the
field has used whole genome amplification of single cells and
single-cell sequencing as means to detect aneuploidy mosaicism
and reveal the specifics of its generation and evolution (Imamura
et al., 2020; Negreira et al., 2022).
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Where Is the Genomics Field Going and
What Remains to be Done?
A clear need in genome research is the improvement of reference
genomes, both in terms of sequence contiguity and information.
Long-read sequencing can help this because it resolves complex
and repetitive regions and structural variants, and provides
scaffolding evidence for already available genome sequences.
Variations of these methods can also add information about
epigenetic modifications, and genome architecture. It also
facil itates sequencing of the minichromosomes and
mitochondrial genomes. Furthermore, there is an urgent need
for accurate and thorough annotation of reference genomes that
support the increasingly sensitive transcriptomics and
proteomics studies. Besides these points, genomics in the post-
genomic era can answer key biological questions. Below we
discuss two major examples.

Parasite Genomics Offer a Magnifying Glass Into the
Evolution of Parasitism
The origin of Apicomplexans and Kinetoplastids is ancient, for
instance, Plasmodium, T. cruzi and T. brucei diverged ~100
million years ago (Escalante et al., 1995; Stevens et al., 1998).
Their genomes reflect that, by showcasing the expansions of
contingency gene families and genome streamlining. This results
from contractions in intergenic regions (Keeling, 2004; Panunzi
and Agüero, 2014), loss of redundancy (Mendonça et al., 2011),
and even some functional reduction (Bushell et al., 2017).
Cryptosporidium spp. is an extreme example of genome
compaction and reduction (Keeling, 2004), but this phenotype
extends to remaining Apicomplexan and Kinetoplastid parasites,
especially when compared to their free-living relatives. Genome
sequencing of overlooked organisms can offer important insights
into the development of pathogenicity and survival strategies,
through the identification of parasite-specific innovations and/or
loss of gene redundancy.

Comparative and Longitudinal Genomics Reveal the
Microevolution of Parasite Lineages
Comparative genomics has been key to understanding the
microevolution of parasite lineages, as a high-throughput
method of population genetics. As the field progresses to
single-cell genomics (Poran et al., 2017; Negreira et al., 2022)
(Figure 3), long-read sequencing, and “post-genomic” tools (e.g.
SNP barcoding panels (Daniels et al., 2008; Preston et al., 2014;
Baniecki et al., 2015)), we will gain greater resolution into the
dynamics of gene gain and loss, chromosomal reassortment,
haplotype diversity and de novo mutations that may affect
parasite fitness. Furthermore, these technologies allow a better
understanding of parasite population history, geographical
distribution, and the complex relationships between parasite
and host co-evolution. They may also bring consensus to
current debates in evolutionary biology, like the origin of P.
vivax (Rougeron et al., 2020; Sharp et al., 2020). Finally, re-
sequencing projects based on longitudinal sampling can offer a
real-time overview of genome evolution dynamics, perhaps
offering precious insights into how parasites respond to
June 2022 | Volume 12 | Article 900878
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environmental pressures, including the everlasting pressure of
host coevolution. Systematic, longitudinal field isolate
sequencing can uncover complex genetic and evolutionary
links that are not detectable at current resolution, whilst
improving our understanding of genetic diversity, namely
within contingency gene families.

Challenges and Accessibility
A large bottleneck in the field of genomics has been the lack of
analytical power to deconvolute complex data in a high-
throughput manner. However, we have gathered a considerable
set of computational tools that have streamlined the analysis of
big data from parasite genomes. One of the most valuable
platforms in parasitology is the VEuPathDB (https://
veupathdb.org/), which integrates big data repositories across
all ‘omics’ and multiple analytical and visualization tools.
VEuPathDB has made an enormous impact on how
parasitologists and vector biologists perform data mining. The
specific impact and importance of VEuPathDB will be discussed
in detail in the last section of this work. Nevertheless, there are
other, more specialized tools include Companion, a web-based
annotation tool (Steinbiss et al., 2016); VAPPER, a variant
antigen profiler for trypanosomes based on diagnostic amino
acid motifs and cluster of orthologs (Silva Pereira et al., 2019a), a
var gene profiler based on DBLa domain sequence diversity
(Barry et al., 2007), and CryptoGenotyper, which detects
Cryptosporidium species from 18S/SSU rRNA sequences in
mixed populations (Yanta et al., 2021). There have also been
efforts to build biological sample repositories, where biological
specimens or genomes from field isolates are archived,
maintained, and made available to other researchers. Examples
of these include the HAT Biobank (Franco et al., 2012), the
TrypanoGEN biobank (Ilboudo et al., 2017), VAPPER (Silva
Pereira et al., 2019a), and the Malaria Genomic Epidemiology
Network (MalariaGEN) (Ahouidi et al., 2021). These are valuable
sources of materials for future genome-wide projects. We take
the view that future research will increasingly add to these tools,
making genomic information readily available to all.
TRANSCRIPTOMICS

Transcriptomics has rapidly expanded over the past four
decades, with each new technology generating a wave of
increasingly large data (Chambers et al., 2019), enabling the
discovery of novel transcripts and splicing variants, UTR
annotation, and the quantification of transcriptome-wide
changes in gene expression in populations and, most recently,
single cells.

Technology/Methods
Key to the advancement of transcriptomics were complementary
DNA (cDNA) libraries. Poly-adenylated mRNA is converted to
cDNA via reverse transcription (RT) and cloned into bacterial
plasmid vectors. Expressed sequence tag (EST) studies sequenced
random library fragments and assembled them into partial
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
transcriptomes (Sim et al., 1979), even without an available
reference genome (Marra et al., 1998). The first use of the term
“transcriptome” came when ambitions moved from identifying
and sequencing transcripts to their quantification with SAGE
(Serial Analysis of Gene Expression) (Velculescu et al., 1997).
SAGE fragmented cDNA libraries and ligated short tags together
before sequencing to improve throughput and qualification
(Velculescu et al., 1995). The assembly of transcriptomes with
these methods (and genomics) led to the use of microarrays,
where a set of short oligomer probes are arrayed onto a solid
surface and fluorescently labelled transcripts are hybridized.
Microarrays require much lower input of mRNA compared to
SAGE and can be used at higher throughput and lower cost,
popularising their use in parasitology (Figure 4), but prior
knowledge of the transcriptome is required.

Later, high-throughput RNA sequencing (RNA-seq) emerged
(Figure 4). RNA is extracted and converted to a library of cDNA
via RT and PCR amplification. During the process, adaptor
sequences are ligated to facilitate sequencing with NGS (see
Genomics). RNA-seq allows the boundaries of transcripts to be
found at single-nucleotide resolution, has a higher throughput,
higher upper detection limit, lower expense, lower requirements
for starting RNA and more accurate quantification (Hrdlickova
et al., 2017). Most recently, single cell transcriptomics (scRNA-
seq) has come to the forefront. As RNA-seq requires RNA to be
extracted from a population of cells, differences between
individual cells are lost. scRNA-seq allows dissection of diverse
and related cell types from a mixed pool. All approaches aim to
add a unique cell barcode to transcripts from each cell during the
RT steps (Hwang et al., 2018; Choi and Kim, 2019).
The barcoded cDNA from multiple cells is then combined for
the remainder of the library preparation. After sequencing, each
read has the cellular barcode information allowing the
transcripts to be grouped by cell of origin. Methods vary in
how they isolate individual cells for the initial barcoding steps
and are thoroughly reviewed elsewhere (Aldridge and
Teichmann, 2020; Adil et al., 2021; Nayak and Hasija, 2021).

Transcriptomics is now frequently applied in parasitology
(Figure 4), often for comparisons of perturbed and non-
perturbed samples. In this section we focus on large studies of
unperturbed parasites and offer perspectives of how
transcriptomes can further benefit the field.

Apicomplexans
Plasmodium spp.
EST and SAGE studies generated first transcriptomes of multiple
Plasmodium spp. and their life cycle stages, uncovering novel
genes and the prevalence of antisense transcription (Patankar
et al., 2001). Microarrays and RNA-seq have since been used
extensively to document the Plasmodium life cycle. Together
these studies revealed the transcriptomic signatures of multiple
aspects of the parasite’s biology, including the replicative stages,
invasive stages and sexual stages. In particular, the
developmental regulation of AP2 domain containing proteins
has been uncovered, relating these key transcription factors to
specific life cycle forms [reviewed in (Painter et al., 2011)].
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FIGURE 4 | Publication of transcriptomic studies in parasitology. The use of transcriptomics has had a rapid increased over time, with early tech
in favour of bulk RNA-seq. Most recently the number of studies using scRNA-seq methods has increased to deconvolve mixed populations. Note
along with at least one species of unicellular parasites included in the VEuPathDB database (Amos et al., 2022).
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The “Malaria Cell Atlas” (Sanger, 2020) consists of individual
parasite transcriptomes assembled into a map of the complete
life cycles of P. berghei and P. falciparum and a partial atlas
containing asexual blood stages of P. knowlesi (Poran et al., 2017;
Reid et al., 2018; Howick et al., 2019; Real et al., 2021). scRNA-
seq-generated cell atlases can be mined for dynamic gene
expression patterns, to identify stage specific marker genes, and
used as a high-quality reference onto which query
transcriptomes can be mapped (Figure 5), as demonstrated in
by mapping isolated P. knowlesi, P. malariae, and P. falciparium
parasites to the P. berghei cell atlas (Howick et al., 2019). Beyond
life cycle assembly, analyzing gene expression patterns using
scRNA-seq has uncovered the transcriptional signature of the
sexual committed schizont subpopulation (Poran et al., 2017;
Brancucci et al., 2018; Ngara et al., 2018); insights into
gametocyte formation without the need of schizont pre-
commitment (Kent et al., 2018; Bancells et al., 2019); genes key
for P. falciparum sporozoite infectivity to humans (Real et al.,
2021); markers for P. vivax and P. faliciparum gametocytes; and
P. vivax specific genes expressed in late schizont species
mirroring the differences in RBC invasion between species (Sà
et al., 2020).

Dual RNA-seq involves high depth sequencing of transcripts
from infected host cells to analyse the host and parasite
expression levels simultaneously. Although its application to
Plasmodium research has enabled expression analysis of the
host during infection, it remains difficult to assess parasite
transcript changes due to the difference in host and parasite
RNA levels in the sample (Lee et al., 2018). Dual scRNA-seq can
now profile the transcriptomes of host cells and infecting
parasites simultaneously, as performed with iRBC containing a
single P. falciparum parasite (Poran et al., 2017). By identifying
the subset of AP2-G expressing, sexually committed schizonts,
the genes regulated by this master transcription factor could also
be defined. Additionally, analysis of var genes expression
challenged the previous dogma that var are mutually exclusive,
as 3/17 individual cells expressed two var genes in parallel (Ngara
et al., 2018).

Toxoplasma gondii
One of the most well studied T. gondii life cycle stages is the
tachyzoite-to-bradyzoite differentiation step. As well as
confirming the expression patterns of many genes identified
with earlier technologies (such as bradyzoite specific secretory
organelle proteins (Cleary et al., 2002)), the increased resolution
of RNA-seq highlighted alternative splicing as a means of
regulating expression, identified novel transcripts via de novo
assembly and detected low expressed transcripts during this
transition (Hassan et al., 2012; Chen et al., 2018; Garfoot et al.,
2019). Oocyst maturation and subsequent reinfection of host
cells by the sporozoites has been profiled using microarrays
(Fritz et al., 2012) and SAGE (Radke et al., 2005), respectively.
These provide the only profiles of transcript changes
during these critical life cycle transitions to reveal stage-specific
genes crucial for oocyst development and environmental
survival. Dual RNA-seq of T. gondii-infected mouse forebrains
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org
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uncovered differences between acute and chronic parasite
metabolisms, with chronic stage parasites downregulating
TCA cycle components but upregulating glycolysis (Pittman
et al., 2014).

Around a third of detected T. gondii mRNA genes show
upregulation in one of two “transcription waves”, peaking in the
G1 phase or the S and M phases of the tachyzoite cell cycle
(Behnke et al., 2010). The latter group of genes largely relates to
apicomplexan-specific processes, mirroring the functional links
between mitosis, generation of daughter parasites, and invasion
organelles. scRNA-seq also revealed two distinct transcription
waves, which were dissected into G1, S, mitosis and cytokinesis-
associated genes (Waldman et al., 2020; Xue et al., 2020). The
greater resolution revealed over 500 additional cell cycle-
regulated genes, and those associated with phase-specific
organelle development (Xue et al., 2020).

scRNA-seq has also highlighted unexpected heterogeneity
during asexual tachyzoites-to-bradyzoites development
(Waldman et al., 2020; Xue et al., 2020), including a
subpopulation expressing a novel AP2 domain-containing gene
and an intermediate transcriptome between tachyzoites and
bradyzoites (Xue et al., 2020). SAG1-related sequence (SRS)
proteins are expressed on the cell surface and are suggested to
constitute an antigenic repertoire. Yet, only a small subset of
parasites expressed SRS transcripts and did so with unexplained
sporadic variation, the biological implications of which are yet to
be uncovered (Xue et al., 2020). Notably, while these findings
correspond to in vitro-derived cultures, comparative studies
between culture-derived bradyzoites and bradyzoites isolated
from mice has shown important differences (Pittman
et al., 2014).

Cryptosporidium spp.
Efforts were first put into profiling the transcriptome with real-
time-PCR targeting 3,302 C. parvum genes during in vitro
infection of epithelial cells, revealing the differential expression
of AP2 domain-containing genes in this Apicomplexan organism
(Mauzy et al., 2012). RNA-seq has since been used to profile the
C. parvum life cycle, revealing transcriptome signatures specific
to the oocysts (specialized to survival and sporozoite delivery)
and the asexual replicative intracellular stages (indicating high
transcription and translation levels) (Lippuner et al., 2018; Matos
et al., 2019; Tandel et al., 2019) and the sexual stages
(highlighting genes involved in meiosis) (Tandel et al., 2019).
Several AP2 domain-containing transcripts varied in expression,
yet none were found to be exclusive to any one stage, suggesting
redundancy (Lippuner et al., 2018). RNA-seq was also employed
to improve the annotations of the C. parvum and C. hominis
reference genomes (Isaza et al., 2015; Baptista et al., 2022).
Analysis has yet to be performed of these data to compare the
transcriptomes of the oocyct stages from each species, to the best
of our knowledge. Exampling the use of older datasets, recently
C. parvum ESTs (Wakaguri et al., 2009; Warrenfeltz and
Kissinger, 2020) were mined to reveal extensive microRNAs
(Ahsan et al., 2021) and RNA-seq to locate lncRNAs (Li
et al., 2020).
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FIGURE 5 | Power of single cell transcriptomics. Cell atlases (central figure) contain the transcriptomes of individual cells, organised according to transcrip
space. The result is a transcriptomic map descriptive of the system in question, which in parasitology can reflect the parasite’s complete life cycle (express
same life cycle form (single points) are positioned close together and, if captured, cells undergoing differentiation between different forms are positioned be
used as highly valuable resources in several ways. 1) Clustering analyses can be used to group similar cells in increasing resolution, often to identify life cyc
reveals novel marker genes, specifically expression in a particular cluster. 2) Pseudotime analysis can be performed to identify dynamic gene expression pa
through the cell atlas map connecting neighbouring cells and differential expression analysis is performed as a function of the trajectory. This reveals transc
exact expression pattern. Genes which peak in transitioning cells can reveal novel regulators. 3) The cell atlas can further be used as a reference to which
example, when only a few transcriptomes are available, or only those containing fewer transcripts per cell, mapping them to a high quality reference can id
Transcriptomes of different genetically perturbed parasites, varied strains and even different species can also be mapped to the reference cell atlas through
comparisons between datasets and across several cell types. Figure created with BioRender.com.
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Kinetoplastids
Transcriptomics and genomics have revealed the unusual
structure of Kinetoplastid genomes whereby one promoter
precedes several genes that are transcribed as a polycistronic
array and nearly all lack an intron-exon structure (Campbell
et al., 2003; Haile and Papadopoulou, 2007). Transcripts are
polyadenylated and a 5’ splice leader (SL) cap is trans-spliced. By
specifically targeting the SL sequencing during library
preparation, RNA-seq variations have been used to enrich
Leishmania transcripts from host material (Haydock et al.,
2015; Cuypers et al., 2017) and efficiently capture the 5’ ends
of T. brucei transcripts (Kolev et al., 2015). This method has
shown most genes have multiple SL and polyadenylation sites,
and that these alternative sites can be used differentially between
life cycle stages (Kolev et al., 2010; Nilsson et al., 2010; Siegel
et al., 2010; Greif et al., 2013; Rastrojo et al., 2013; Jensen et al.,
2014; Fiebig et al., 2015).

Trypanosoma spp.
Transcriptomics studies have revealed clear metabolism
differences between life cycle forms of extracellular African
trypanosomes. T. b. brucei, T. vivax and T. b. gambiense all
show upregulation of glycolysis in BSFs in contrast to the tsetse
stages which upregulate oxidative phosphorylation and the TCA
cycle. Although T. congolense upregulates oxidative
phosphorylation in procyclic and epimastigote stages,
significant changes in glycolysis were not observed (Helm
et al., 2009; Silvester et al., 2018). Analysis of tissue-specific T.
brucei revealed further metabolic changes, as adipose resident
forms further upregulate processes including glycolysis and
purine salvage, and appear to uniquely express genes involved
in fatty acid b-oxidation (Trindade et al., 2016). The intracellular
parasite T. cruzi also exhibits strong metabolism switching
between the mammal and triatomine vector (Minning et al.,
2009). Interestingly, members of gene paralog clusters showed
unexpected expression patterns during the life cycle, including
amastins that were previously thought to be mainly exclusive to
the amastigote stage appearing in insect stages (Minning
et al., 2009).

During Trypanosome life cycles different cellular forms are
often found in heterogeneous populations. scRNA-seq has been
used to dissect mixed T. b. brucei populations and identify novel
marker genes. These include slender and stumpy bloodstream
forms generated in vitro (Briggs et al., 2021) and epimastigotes,
gametes and metacyclics found in the tsetse fly salivary glands
(Vigneron et al., 2020; Hutchinson et al., 2021; Howick et al.,
2022). Additionally, midgut derived procyclic and proventricular
forms have recently been profiled with scRNA-seq (Howick et al.,
2022). If parasites transitioning between broad life cycle forms
are also captured, trajectory analysis can be used to order
individual parasites according to the gradual change in their
transcriptome (Figure 5). Differential expression analysis is then
used to find dynamic transcript changes during differentiation
between life cycle forms. This approach uncovered genes peaking
in expression during the slender to stumpy transition, including
critical regulator ZC3H20 (Briggs et al., 2021), and highlighted
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
upregulation of transcripts associated with translation and the
ribosome during development of both stumpy (Briggs et al.,
2021) and metacyclic forms (Howick et al., 2022). Interestingly,
scRNA-seq profiling of parasites extracted from tsetse salivary
glands highlighted that pre-metacyclics express up to 6 mVSG
before selecting just one for monoallelic expression in mature
metacyclics (Hutchinson et al., 2021; Howick et al., 2022).

RNA-seq (Archer et al., 2011) and scRNA-seq (Briggs et al.,
2021) have profiled phasic expression during the cell cycle of T.
b. brucei pinpointing the peak expression time of several genes
including cdc2-related kinases and cyclins, pairs of which most
likely control transition between cell cycle checkpoints.

Leishmania spp.
Transcriptomics has been applied to multiple Leishmania spp. to
reveal gene expression signatures associated with specific life cycle
stages. Gene ontology (GO) term analysis of these signatures from
RNA-seq found several similarities between species, such as
upregulation of cellular motility and ATP synthesis in
promastigotes compared to amastigotes, and phosphorylation
upregulation in mammalian infective metacyclic and amastigote
forms (Cruz and Freitas-Castro, 2019). Despite these similarities,
only 12-35% of the differentially expressed genes have orthologs
between L. major, L. mexicana and L. braziliensis (Cruz and
Freitas-Castro, 2019), indicating clear differences in the life cycles
of these species yet to be fully explored. RNA-seq revealed further
molecular differences between morphology-defined forms,
including the subtypes of the promastigotes (Inbar et al., 2017;
Coutinho-Abreu et al., 2020). The transition from procyclic
through nectomonad to metacyclic L. major was associated
with downregulation of the cell cycle, consistent with reduced
histone transcripts during L. infantum differentiation from
procyclic to metacyclic. scRNA-seq has also been used to find
transcripts unique to procyclic and metacyclic promastigote L.
tropica in culture, and revealed differences in metacyclic
formation between different strains in log-phase growth
(Louradour et al., 2022).

Dual RNA-seq has also revealed that L. major and L.
amazonesis both alter transcriptomes very early in macrophage
infection, with little change observed in either parasite or host
once parasites are in the intracellular niche, and uncovering
genes involved in survival (Fernandes et al., 2016). Comparison
of L. donovani dual RNA-seq additionally revealed putatively key
virulence genes, including adenylate cyclase which is known to
inhibit innate immune response in T. brucei infection (Shadab
et al., 2019).

Perspectives and Future Directions
Completing the Life Cycles
Cell atlases of the Plasmodium life cycle are a highly valuable
resource providing the transcriptomic signatures of each life
cycle form as well as cells differentiating between forms. scRNA-
seq was critical for gaining this level of resolution, as multiple
transition steps occur asynchronously across the population and
some life cycle forms are rare and only found as a sub-population
which are difficult to isolate without marker genes. scRNAseq
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datasets (current and future) can provide a wealth of information
including: identification of novel marker genes; dynamic gene
expression patterns identifying transcripts peaking in specific cell
types; and variation between cell types to identify developmental
regulators (summarized in Figure 5). High quality cell atlases
can also be used as a reference for other query single cell
transcriptomes, for example, of a genetically altered parasite
line, clinical samples or alternative species or strains. The
lower number of cells needed, and the ability to analyse mixed
populations also means many life cycle forms are now accessible
for the first time. However, challenges still remain, namely, to
obtain highly-viable cells and detect lowly-expressed transcripts.
Hence, bulk RNA-seq is still a valuable tool because it provides
greater depth when populations can be isolated, and remains
significantly more affordable. To overcome these challenges,
integrated analyses of scRNA-seq and bulk RNA-seq has been
explored in other fields (eg. cancer and vascular biology), and is a
possibility that remains to be explored in parasitology.

Here we have focused on parasite-derived data, yet
transcriptomics can clearly be leveraged to understanding host-
pathogen interactions in detail. As well as dual RNA-seq and
scRNA-seq, spatial transcriptomics at near single cell resolution
can now be used to prolife parasite and host cell transcriptomes
within a tissue, and retain the spatial information (Rao et al.,
2021). One such technology, Visium Spatial Gene Expression
from 10x Genomics (https://www.10xgenomics.com/products/
spatial-gene-expression), uses slides tiled with spots of adaptor
oligos for RNA capture, where each spot has a specific barcode
similar to scRNA-seq. When a tissue sample is laid over the slide
it is imaged with microscopy and then the extracted RNA is
barcoded according to its’ position within the tissue. Thus, each
transcriptome can be spatially organised. Although the size of
each barcoded spot (currently 55 µm) is larger than
Kinetoplastids and Apicomplexans, this level of resolution will
likely have a huge impact on our understand of parasitic life
cycles within tissue niches and host responses.

Transcriptomics datasets could answer many key questions in
the field, such as: how flexible is the African Trypanosome life
cycle (Guegan and Figueiredo, 2021; Lisack et al., 2022;
Matthews and Larcombe, 2022); how “persister-like” protozoa
contribute to the life cycle and drug resistance (Barrett et al.,
2019); and how intra- and extra-cellular parasites adapt to
different microenvironments within their hosts (Silva Pereira
et al., 2019b).

Improving Annotation
As discussed above, there is a clear need to invest in higher
quality references with accurate annotations. This is important in
transcriptomics as correct transcript (including UTR sequences)
annotations are needed to generate accurate quantitative data.
Transcriptomics can also aid genome annotation. Applying
methods like SL primer RNA-seq in the Kinetoplastids to a
greater variety of species, strains, and life cycle forms will allow
researchers to select references much closer to the parasites
investigated. Mining available RNA-seq data could also be
highly valuable for defining missed transcripts, variable UTR
boundaries and splicing variants not present in current
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
references. The use of long-read transcriptomics/genomics can
also begin to resolve multigene families which are prevalent
among parasites.

Data Integration and Comparison
Integration of multiple datasets would be highly impactful. For
example, several scRNA-seq studies have analyzed different
stages of the T. brucei life cycle. Despite these all using a
variety of methods, the raw data could be integrated as
bioinformatic methods improve (Argelaguet et al., 2021) to
provide at least a particle life cycle atlas, as demonstrated in
the Malaria field. Population-based transcriptomics constitute a
highly significant bank of data which, with upgraded analysis
methods, could be combined, analysed and compared to gain
significant insight into these pathogens’ biology. Here, we discuss
only unperturbed parasite data, but these comparisons can
clearly be extended to compare experimentally manipulated
parasites. Lastly, “multi-omic” data integration would be
hugely valuable to link transcript levels to protein levels and
genomic features (Subramanian et al., 2020).
QUANTITATIVE PROTEOMICS

While mass spectrometry was being used in the 1990s for protein
identification in parasitology, it was not until the early 2000s,
once the respective genomes were published, that proteome
datasets were derived. Quantitative proteomics remains an
active field, as the advancement of mass analyzers has given
rise to more sensitive mass spectrometers allowing for
identification and quantification of low abundant ions in
complex samples. These studies can generate large quantitative
datasets where one can identify post-translational modifications,
drug targets, life cycle differences, organellar compositions,
among other applications.

Quantitative proteomics can be split into relative quantitation
or absolute quantitation. In the Kinetoplastid and Apicomplexan
fields, relative quantitation proteomics is more commonly used
as seen by the number of publications (Figure 6). Here, we
briefly describe some methods, consider their benefits and
limitations, and discuss specific parasite-related examples and
available datasets.

Relative Quantitation
There are three commonly used methods in the Apicomplexan
and Kinetoplastid fields to identify the relative abundance of
proteins in a sample: Stable Isotope Labeling of Amino Acids in
Cell Culture (SILAC), TandemMass Tag (TMT) or Isobaric Tags
for Relative and Absolute Quantitation (iTRAQ), and Label-Free
Quantitation (LFQ).

SILAC works by introducing a stable isotope variant of an
amino acid, commonly lysine or arginine, that becomes
incorporated during protein synthesis. Once cells take up the
‘heavy’ or ‘light’ isotopes, the cell lysates can be combined and
proceed through to protein digestion, liquid chromatography
and tandem mass spectrometry (LC-MS/MS). Some benefits of
June 2022 | Volume 12 | Article 900878
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SILAC are the high and uniform labeling efficiency, minimizing
sample loss by omitting peptide labeling, and labels are
unaffected by protein purification steps (Ong et al., 2002). This
technique is not ideal for life cycle stages where protein synthesis
is inactive or bulk cell culture is difficult.

TMT and iTRAQ are two examples of isobaric labeling for
mass spectrometry. They work similarly in that the labels used
are of the same mass and are added after protein digestion to tag
the peptides. Similar to SILAC, the individual samples are
combined and run through LC-MS/MS, which allows for
higher throughput in machine time and analysis with less run-
to-run variability. TMT and iTRAQ currently have the ability to
multiplex up to 18 and 8 samples, respectively. However, due to
co-isolation and co-fragmentation there is a quantification
distortion for low-abundant peptides. Additional statistical
analysis or MS3 can be done to minimize this limitation.

LFQ differs from the previous techniques in that there is no label
incorporation or tagging step. This can be beneficial as it allows for
an unlimited number of samples to be compared, given that there is
no limitation due to the number of available tags. However, this is at
the expense of variation, technical variability, and throughput, as
each sample is processed separately. Another benefit of LFQ,
specifically compared with iTRAQ, is that the lower amount of
protein loaded per run results in an average of 243 more identified
proteins (with more than 1 peptide), with 34% increased sequence
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coverage (Patel et al., 2009). This is especially beneficial for
organisms where it is difficult to acquire a large amount of
material, as previously described.

Apicomplexans
Plasmodium spp.
Although Plasmodium undergoes a complex life cycle in multiple
hosts, most life stages are accessible enough to obtain sufficient
material for proteomics, as seen with the hundreds of ‘protein
expression’ datasets available on PlasmoDB (Aurrecoechea et al.,
2009). There are 5300 predicted proteins in P. falciparum (Hall et al.,
2005). Using SILAC,Nirmalan et al. (Nirmalan et al., 2004) effectively
used isoleucine as their heavy isotype to quantify protein levels across
the blood stages of P. falciparum. Isoleucine was the amino acid of
choice because it was not made de novo from parasites or scavenged
from the host, but efficiently taken up. Additionally, it is an abundant
amino acid in P. falciparum, which allows for labeling to be present in
most of the tryptic peptides (Nirmalan et al., 2004). Quantitative
proteomics of the liver stages were done using P. berghei infected
HepG2 cells. Over 100,000 merosomes were used per replicate with
LFQ to identify 1188 proteins (with minimum 2 peptides) as the
merosome proteome (Shears et al., 2019). Merosomes play a pivotal
role as a ‘bridge’ between the liver and blood stages in the
Plasmodium life cycle. Comparison with liver and blood
Plasmodium proteomes showed both, significant similarities with
FIGURE 6 | Commonly used quantitative methods to study proteomics in Apicomplexans and Kinetoplastids. A PubMed search was carried out for each genus
with key terms for the proteomic methods. The number of publications by term and by parasite are shown in brackets. Leishmania had the most quantitative
proteomic publications, followed closely by Plasmodium, Trypanosoma, and Toxoplasma. Both Leishmania and Plasmodium showed a larger diversity of methods
with the inclusion of SWATH-MS and SRM, respectively. Cryptosporidium had the least amount of publications in quantitative proteomics and least diversity of
methods. SRM, selected reaction monitoring; SILAC, stable isotope labelling by amino acids in cell culture; SWATH-MS, sequential window acquisition of all
theoretical mass spectra. Figure created with BioRender.com.
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both stages, and a subset of proteins unique to merosomes which
warrants further investigation. In addition to merosomes, sporozoites
at different maturation stages have been isolated from mosquitos to
produce a surface proteome using LFQ in both P. yoelli and P.
falciparum (Lindner et al., 2019). This allowed the identification of
two distinct translational repression programs active during
sporozoite maturation, that temporally regulate protein expression.
This in turn governs major sporozoite life events in both, mosquito
and mammalian hosts.

Additionally there are studies using host blood plasma samples
to study host-pathogen interactions in patients with P. falciparum
and P. vivax. Kumar et al. (2020) identified biomarkers for malaria
severity using TMT labeling with LC-MS/MS. They found an up-
regulation of cell-to cell adhesion-related host proteins in P.
falciparum infections and not in P. vivax. This study generated a
large dataset of infected host blood plasma data that has been
deposited to the ProteomeXchange Consortium via the PRIDE
partner repository.

Toxoplasma gondii
There have been over 20 proteomic studies with available
datasets on ToxoDB (Kissinger et al., 2003). Some examples
include using LFQ to develop a bradyzoite proteomic profile
(Garfoot et al., 2019), SILAC to create the phosphoproteome
(Treeck et al., 2014; Beraki et al., 2019), and using LC-ESI-
HDMS (liquid chromatography, electrospray ionization,
high definition mass spectrometry) for absolute quantification
of the secretome of tachyzoites (Ramıŕez-Flores et al., 2019).
To identify differences across tachyzoites, bradyzoite-
containing cysts, and sporulated oocysts, Wang et al. used
iTRAQ with LC-MS/MS and found 6285 proteins across
the 3 stages, with hundreds being differentially expressed
(Wang et al., 2017).

Most recently, a study using hyperLOPIT, a method that uses
ultracentrifugation to separate subcellular structures prior to TMT
labeling, created a comprehensive proteomic dataset of subcellular
compartments in the extracellular tachyzoite. In this study, Barylyuk
et al. (2020) were able to match 1916 proteins to known
compartments within the tachyzoite. Less than 20% of the
matched proteins had a clear, defined function, stressing the
significance of this dataset in providing compartment
composition for T. gondii as well as all Apicomplexans.

Cryptosporidium spp.
Since standard proteomic methods demand a highly concentrated
protein sample, most of the stage-specific proteomes for
Cryptosporidium are lacking. While there are not as many
datasets available for Cryptosporidium as the other parasites, there
are a few data sets available for the mammalian pathogenC. parvum
on CryptoDB (Puiu et al., 2004) from the early 2000s identifying
proteins in the intact oocyst, excysted oocyst and sporozoites
(Truong and Ferrari, 2006; Snelling et al., 2007; Sanderson et al.,
2008). These are currently the only life cycle stages where it has been
feasible to collect enough material, as they are shed from large
animal models, to perform proteomic analyses. Complementing the
original proteomic data, there has been a quantitative study using
iTRAQwith LC-MS/MS to compare sporozoites, intact oocysts, and
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excysted oocysts finding 302 proteins total (Snelling et al., 2007).
Comparing the same C. parvum stages, Sanderson et al. (Sanderson
et al., 2008) used 3 approaches (MudPIT, gel LC-MS/MS, and 2-
DE) to maximize coverage. In doing so, they identified 1237 unique
proteins that map to 32% of the predicted proteome. C. parvum
IOWA II has 3894 protein coding genes (Puiu et al., 2004).

Recently, using the bovine parasite, C. andersoni, with TMT
labeling, 1786 proteins were identified in the oocysts and
sporozoites, of which 17 were differentially expressed between
excysted and intact oocysts (Li et al., 2021a). C. andersoni oocysts
are able to excyst solely with temperature change, unlike oocysts
of C. parvum which require a combination of multiple stimuli
(temperature, pH, cholates, proteases) (Smith et al., 2005), so
comparisons of differentially expressed proteins between these
species may be limited. Another recent study using label-free
proteomics identified 231 proteins that correspond to
intracellular stages of C. parvum at 36 hours post infection of
HCT8s, an adenocarcinoma cell line (Li et al., 2021b). This study
also identified 121 host proteins that were changed during
infection. However, as C. parvum cannot complete its life cycle
in HCT8s, there is a limitation in the conclusions we can draw
from these host-pathogen expression differences.
Kinetoplastids
Trypanosoma spp.
Reference genomes for T. cruzi and T. b. brucei show 9039 and
9660 protein coding genes, respectively (Jackson et al., 2012). A
non-quantitative proteomic lifecycle of T. cruzi has been carried
out and identified 2784 proteins, 30% of which overlapped across
each life-cycle stage (Atwood et al., 2005). Early proteomic
studies have had difficulty identifying all present proteins in
samples and quantifying the identified proteins. However, later
studies have used quantitative methods to quantify proteins in
different life cycle stages. Using LFQ to study early
metacyclogenesis identified 2720 proteins (with 2 unique
peptides) in stationary phase epimastigotes and exponential
phase epimastigotes (Avila et al., 2018). Ribosomal proteins
were identified as some of the most upregulated proteins in the
exponential phase, while metabolic enzymes were upregulated in
the stationary phase (Avila et al., 2018). Also using LFQ, 114
proteins were identified to be differentially expressed in
metacyclic trypomastigotes when compared to epimastigotes in
vitro (de Godoy et al., 2012).

Various quantitative proteomic methods have also been used
with T. b. brucei. TMT labeling of procyclic T. b. brucei identified
5325 proteins, of which 384 proteins were associated with cell
cycle regulation (Crozier et al., 2018). Additionally using SILAC,
Tinti et al. (Tinti et al., 2019) developed another interactive
platform to compare protein turnover between blood stage forms
and procyclic forms [platform access: https://tbrucei-ibaq-927.
pages.dev/ and https://tbrucei-ibaq-427.pages.dev]. To study
proteomic changes during the differentiation between slender
and stumpy forms, stumpy forms were treated with citrate/cis-
aconitate and samples were collected at 7 time points up to 48
hours post-treatment. LFQ analysis from these samples
quantified 4270 ‘protein groups’, which were defined as groups
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of proteins that are indistinguishable by mass spectrometry from
the identified peptides. Of these 1308 protein groups were found
to be upregulated during differentiation and 157 protein groups
were downregulated (Dejung et al., 2016).

Leishmania spp.
As both the amastigotes and promastigotes of Leishmania can be
cultured in vitro, large amounts of material can be prepared for
proteomic studies. Various datasets identifying proteins in the
promastigote and amastigote forms have already been created
(Brotherton et al., 2010; Nirujogi et al., 2014) and are available on
tritrypdb.org (Aslett et al., 2010). Of the discussed protozoa, only
in Leishmania was SWATH-MS used to identify differentially
expressed proteins. Unlike the previously mentioned techniques,
SWATH-MS is a data independent acquisition method. An
example of this method is its use in identifying protein
changes between 24 and 48 hours after L. donovani
promastigote to amastigote differentiation. Routaray et al.
identified 814 differentially expressed genes in the first 24
hours and 921 differentially expressed proteins at 48 hours
post-differentiation (Routaray et al., 2022).

Another application of quantitative proteomics is thermal
proteome profiling (TPP), which is an unbiased approach using
TMT-labelling with mass spectrometry to identify drug targets.
TPP studies generate quantitative datasets of bound proteins
across a temperature gradient for all the soluble peptides in a
sample. In this study Corpas-Lopez et al. used TPP to validate N-
Myristoyltransferase (NMT) as a pharmacologically relevant
target in Leishmania (Corpas-Lopez et al., 2019).

Future Advancements
As single-cell sequencing and transcriptomics become more
common, the interest in single-cell proteomics rises. However,
even with the increased sensitivity of mass analyzers in recent
years, the ability to accurately quantify peptide ions from a single
cell remains difficult. Recent studies have tested a creative
solution to circumvent this issue by adding a carrier proteome
in addition to isobaric labelling (Cheung et al., 2021; Ye et al.,
2022). However, carrier proteomes can bias which peptide ions
are being identified and there is still a lower quality of MS data in
terms of background signal (Ye et al., 2022). There is still a need
for more sensitive instruments and greater multiplexing capacity
in order to perfect performance of single cell quantitative
proteomic studies. However, the development and utilization
of single-cell proteomics within protozoans will be a way to reach
the life-cycle stages that are not easily bulked up for standard MS,
providing great insight into these yet understudied stages.

ONT has also been recently adapted for quantitative
proteomics (Huang et al., 2019; Lucas et al., 2021). There are
many benefits of using ONT for proteomics including lower cost,
higher throughput potential, less maintenance, and higher
portability compared to mass spectrometers. Together, these
characteristics make proteomic studies more an accessible.
Lower resolution is still a limitation, but one that is being
addressed as the method and technology continue to be
optimized. ONT for proteomics can be an accessible method
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for drug discovery in Apicomplexans and Kinetoplastids as well
as identifying vaccine targets (Aebischer, 2014).

While both of these technologies are providing large
advancements for the proteomics field, there is still work to be
done in optimizing quantitative accuracy, resolution, and
accessibility. These methods are being tested with large cells,
such as HeLA or K562, as well as synthetic peptides (Cheung
et al., 2021), but remain to be implemented in Apicomplexan and
Kinetoplastid research.
FUNCTIONAL SCREENING

Functional screens generally rely on the generation of mutant
parasites en masse followed by specific screening assays to
identify subpopulations that meet pre-defined criteria, before
matching genotype to phenotype. The repertoire of tools for
direct and conditional gene, mRNA and protein regulation
developed and optimised for Apicomplexans (Briquet et al.,
2021) and Kinetoplastids (Lander and Chiurillo, 2019; Horn,
2022) is extensive. Many of these technologies have also been
scaled to enable functional screens (Figure 7).

Genome Mutagenesis
Early screens used whole genome mutagenesis by chemicals, like
N-ethyl-N-nitrosourea (ENU) and Ethyl methanesulfonate
(EMS), or untargeted genome insertional mutagenesis, using
transposons like PiggyBac, to generate mutants across the
genome. Although key discoveries were made using these
techniques (Radke et al., 2000; Morrissette and Sibley, 2002;
Mordue et al., 2007; Farrell et al., 2014), which are a key resource,
they are limited by difficulties in identifying and confirming
specificity of mutations and the possibilities of multiple
insertions. Signature tagged mutagenesis (STM) strategies have
been used with some success to track mutants when combined
with transposons (Mazurkiewicz et al., 2006) or chemical
mutagenesis (Knoll et al., 2001).

There are several gene disruption approaches that target all/
many genes within the genome (Gomes et al., 2015; Sidik et al.,
2018; Baker et al., 2021; Horn, 2022). Additional methods have
been developed to study the mutants within a population by:
quantifying relative fitness of mutants (Gomes et al., 2015; Sidik
et al., 2018), studying their localisation, and classification with
high-content imaging (Li et al., 2022; Smith et al., 2022), and
isolating subpopulations with specific phenotypes (Stanway et al.,
2019; Harding et al., 2020). The generation of mass knockouts
has been achieved using traditional recombination methods
(Gomes et al., 2015; Bushell et al., 2017) and CRISPR Cas9-
mediated mutagenesis (Long et al., 2016; Sidik et al., 2016; Baker
et al., 2021).

While many of these screens have been completed and have
allowed us to parse out essential and non-essential genes in a
variety of conditions, they have significant limitations,
particularly in parasitic infections which have complex life
cycles with only certain stages amenable to transfection and
culture (Figure 8).
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To combat this, several conditional systems have been
developed; conditional gene excision or promoter inactivation
can be achieved with conditional expression of site-specific
recombinases [flp/FRT and Cre/loxP, (Combe et al., 2009;
Andenmatten et al., 2013)] or by splitting the protein into
nonfunctional subunits that regain functionality when fused
together {DiCre, (Andenmatten et al., 2013) and splitCas [Li
et al., 2022]}.

RNA Regulation
As some kinetoplastids, like T. brucei, have functional, inducible
RNA interference (RNAi) machinery, knockdown generation
using short hairpin RNA (shRNA) is a widely used method for
controlling expression. Other kinetoplastids with non-canonical
RNAi mechanisms have been adapted for RNAi knockdowns
(Horn, 2022) and even Apicomplexans, like P. berghei, can be
adapted to express a minimal, non-canonical RNAi pathway
(Hentzschel et al., 2020) enabling the use of RNAi to
knockdown expression.

Protein Regulation
Several methods have been used to regulate protein expression
including the shield regulated destabilisation domain (DD), the
trimethoprim regulated DHFR destabilisation domain (DDD)
and the auxin inducible degron (AID) (Briquet et al., 2021). In
these systems the protein of interest is often tagged and the
degradation sequence added allowing localisation and
confirmation of depletion. When combined with high-content
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 17
imaging the localisation of tagged protein before and after
induction of knockdowns can be used as a non-reducing
screening method (see Imaging section). These degradation
methods are limited to proteins accessible to the proteasome
and those that can be tagged without interfering with function.

Apicomplexans
Plasmodium spp.
The development of the PlasmoGem vector community resource
provided a publicly accessible library to disrupt or endogenously
tag genes across the P. berghei genome without having to
generate vectors in house (Pfander et al., 2011; Gomes et al.,
2015; Bushell et al., 2017).

The first screen completed using recombineering vectors
determined the relative growth rate (RGR) for each gene
knockout from pooled transfections. In this screen, 44.9% of
all genes were defined as essential and 18% resulted in slow
growth. Therefore, 63% of all genes were considered important
for asexual growth in vivo (Bushell et al., 2017). Screening of
function at subsequent stages of the life cycle is impossible once a
gene confers a severe fitness defect (Figure 8). However,
screening of non-essential genes, including slow-growers, has
been completed using recombineering vectors during gametocyte
development (Russell et al., 2021 (preprint)) and in the mosquito
and liver stages (Stanway et al., 2019).

Although not yet adapted for high-throughput assays, several
conditional systems have been developed in P. berghei and P.
yoelii that may permit functional screening at all life cycle stages
FIGURE 7 | Publications using functional screens in Apicomplexans and Kinetoplastids. The number of functional screens completed in various Apicomplexans and
Kinetoplastids is summarised. PubMed searches were carried out for each genus and screening method (y-axis) manual curation confirmed whether the method was
used for screening rather than follow-up studies. In Plasmodium spp. random insertional mutagenesis (pf) and KO screens (pb) have been used extensively. In T.
gondii chemical mutagenesis and, more recently, mutagenesis using CrispR libraries dominate. Functional screens in Trypanasoma spp. have been exclusively and
extensively completed using RNAi. Few screens have been completed in Leishmania spp. and these are recent. Due to the lack of high throughput technologies in
Cryptosporidium spp. no screens have been carried out on the parasites, only host screens. A summary of currently available technologies and their adaptation to
high throughput, required for screening, is also shown. Figure created with BioRender.com.
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regardless of essentiality. The AID-system for protein
degradation (Philip and Waters, 2015; Liu et al., 2021) could
be integrated into the endogenous tagging pipeline of the
recombineering platform (Pfander et al., 2011) to enable
simultaneous localisation and control of protein levels by
addition of IAA. While knockdown of AID tagged proteins has
been achieved in the peritoneum of mice (Brown and Sibley,
2018), more biologically relevant knockdowns have yet to be
demonstrated, possibly due to the high dose of IAA required to
induce a knockdown and its toxicity for rodents in in vivo studies
(Yesbolatova et al., 2020). The AID2 system uses ph-IAA to
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induce the knockdown and has been shown to function in mice
with little toxicity (Saito and Kanemaki, 2021).

Although it was shown that the canonical RNAi machinery is
not functional in Plasmodium spp. (Baum et al., 2009), recent
work has supplemented the P. berghei genome with minimal
RNAi machinery to allow control of expression at the mRNA
level both constitutively and by using a stage specific promoter
for temporal control of RNAi (Hentzschel et al., 2020).

Large scale functional genomic screens in P. falciparum have
been hampered by difficulties with parasite genetic manipulation.
However, transposon-mediated screens determined 50% of the
FIGURE 8 | Future directions for functional screens. Most functional screens in Apicomplexa rely on non-conditional gene depletion methods to phenotype mutants.
Top left panel After the gene(s) of interest has been disrupted only those that are dispensable for growth during the transfected stage can be phenotyped. With life
cycle progression (through stages 2 - N) more mutants within the pool will be lost as they become critical for survival. This means even without reducing the
population with selective pressure (eg. drug) the number of mutants within the pool that can be characterised is not complete across the life cycle. Top right panel
In conditional regulation systems the means of downregulation are integrated (eg. the auxin tag for the AID system) following transfection. Of note it is likely a few
candidates will not tolerate the tag and will be lost from the population. As downregulation can be induced across the life cycle, all mutants within the population can
be characterised and none are lost due to prior stage essentiality. Bottom panel After generation of mutants, many functional screens rely on reductive assays to
select mutants with a specific phenotype (eg. drug resistance). This is followed by further candidate prioritisation before in-house phenotyping of a small number of
mutants, often re-derived as conditionally regulatable knockdowns to allow characterisation throughout the life cycle. If pools of mutants are instead characterised by
high-throughput imaging, they can be classified based on tagged protein localisation or, mutant phenotype. Classification of mutants allows for in house phenotyping
and open access data sharing distributes follow up studies throughout the field and improves equitability. Figure created with BioRender.com.
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genome is essential for in vitro growth of P. falciparum (Zhang
et al., 2018), identified roles for post-translational modifications
during blood stream growth (Balu et al., 2005; Balu et al., 2009;
Balu et al., 2010), identified key responses to heat shock (Bronner
et al., 2016), and uncovered novel insights into drug mechanisms
of action (Pradhan et al., 2015). Although only tested in low
throughput, CRISPR-Cas9 mediated genome editing has been
adapted to P. falciparum and proof of integration has been
successfully demonstrated for site-directed mutagenesis
(Ghorbal et al., 2014; Nishi et al., 2021), epitope tagging
(Kuang et al., 2017; Nishi et al., 2021), and gene replacements
(Ghorbal et al., 2014). The major limitation for this as a high
throughput technology comes from the length of homology arms
required to ensure homologous repair (Aravind et al., 2003;
Bryant et al., 2019).

As 50% of the P. falciparum genome has been identified as
important for in vitro culture, conditional systems of regulation
will be essential to elucidate the role of many genes during the
blood stage and to uncover their roles at other life cycle stages.
Several conditional technologies, including; DiCre, at the
genome level; glmS and tetR, at the mRNA level; and DD-
system, knocksideways (KS) (Birnbaum et al., 2017; Kudyba
et al., 2021) and AID system (Kreidenweiss et al., 2013) at the
protein level, have been shown to function in P. falciparum and
may be able to expand the tools available for high-throughput
functional analysis.

Toxoplasma gondii
Early genetic screens in T. gondii utilised chemical mutagenesis
where pools of mutagenised parasites were cultured under
different conditions to identify subpopulations that contained a
specific phenotype, or the ability to survive in a set condition.
While phenotype-specific screens have been informative,
identifying protein mediators of egress (Black et al., 2000;
Garrison et al., 2012; McCoy et al., 2017), signaling (Coleman
and Gubbels, 2012), and structure (Morrissette et al., 2004), they
are time-consuming requiring both sequencing and post-screen
assays to identify the cause of the phenotype. Signature tagged
mutagenesis (STM), which barcodes the population of mutants,
has enabled more ready identification post phenotyping (Knoll
et al., 2001; Mazurkiewicz et al., 2006).

The first CRISPR screen carried out in T. gondii targeted all
predicted genes and quantified the in vitro fitness score for
tachyzoites (Sidik et al., 2016). Since this primary genome-wide
screen, subsequent screens have used the same library to identify
genes important for other biological functions including growth
in naive and interferon-g (IFNg) stimulated murine bone-
marrow-derived macrophages (BMDMs) (Wang et al., 2020);
resistance to dihydroartemisinin (Harding et al., 2020); and
tolerance of oxidative stress (Chen et al., 2021). The library has
also been adapted to target genes in a type II strain, which
efficiently forms bradyzoites in vitro and in vivo. In this strain,
fitness scores were calculated for in vitro growth and this was
compared to the mutant’s ability to survive for 5 days in vivo
(Young et al., 2019).

To enable the discovery of the role of genes that show a fitness
deficiency or essentiality (at the tachyzoite stage) conditional
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systems have begun to be employed in functional screens,
thereby allowing assays that probe function at other stages to
be employed. A split Cas9 (sCas9) genome editing method,
combined with a high-content imaging approach, was recently
used to functionally group mutants based on actin dynamics and
apicoplast segregation (Li et al., 2022). Another conditionally-
regulated imaging-based screen used CRISPR-Cas9-mediated
genome editing to introduce mNeonGreen and a minimal
auxin-inducible degron (mAID) to an array of proteins (Smith
et al., 2022. In these studies, using imaging to classify mutants led
to the identification of several interesting phenotypes and genes
of interest rather than continually reducing the mutants of
interest to a suitable set of candidates as reductive assays have
previously done.

Cryptosporidium spp.
Due to the lack of a robust in vitromodel system, dependency on
murine models for parasite passage, and lack of multiple
selectable markers, Cryptosporidium is lagging behind the other
apicomplexans and kinetoplastids in terms of high-throughput
functional screens. However, there have been recent
advancements such as the development of an accessible rodent
model (Griffiths et al., 1998), air-liquid interface organoid culture
system (Wilke et al., 2019), genetic tools (Vinayak et al., 2015)
and validation of conditional gene regulation (Tandel et al.,
2019) and protein degradation systems (Choudhary et al.,
2020) that can advance the field. These could be used in
conjunction with chemically mutagenised host cell lines to
show different susceptibility to Cryptosporidium infection (Yu
et al., 2017).
Kinetoplastids
Trypanosoma spp.
The seminal RNAi screen in T. brucei procyclic stages was
carried out in 2002 (Morris et al., 2002) to identify clones that
were unable to bind the lectin concanavalin A (conA) including
hexokinase 1. This study targeted the tsetse fly midgut stage,
which was screened for in vitro fitness (Alsford et al., 2011),
altered mitochondrial membrane potential (Verner et al., 2010)
and tubercidin resistance mechanisms (Drew et al., 2003). This
method paved the way for future screens improving on the
laborious method for identification of mutants with the desired
phenotype. To overcome slow mutant identification, RNA
interference targeting sequencing (RITseq) is now used to
quantify mutants within the population allowing fitness
scoring (Alsford et al., 2011).

Improvements to the transfection protocols used on the
cultured bloodstage form of T. brucei (Burkard et al., 2007)
and the introduction of double stranded breaks (Glover and
Horn, 2009) to further enhance efficiency has also enabled
screens to be performed on this, more disease relevant, stage.
To date, more than 60 screens have been performed on
trypanosomes [reviewed in (Horn, 2022)] ranging from
looking broadly at fitness (Alsford et al., 2011), to identifying
mechanisms of drug resistance (Baker et al., 2011; Schumann
Burkard et al., 2011) and biological processes like DNA repair
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(Burkard et al., 2007) and cell cycle progression (Schumann
Burkard et al., 2013).

While high throughput screening for function using RNAi is
established in multiple African Trypanosoma spp., T. cruzi lacks
the machinery to use this system (DaRocha et al., 2004). Genetic
tools for this organism are also lacking, with downregulation of
genes being inefficient and plagued with issues of additional
integrations due to gene amplifications (Burle-Caldas et al.,
2015). While recent developments have generated T. cruzi
reporter parasites that will enable imaging based screening
(Costa et al., 2018) and have shown some success with
CRISPR/Cas9 mediated gene editing targeting flagellar proteins
(Lander et al., 2015), there have also been reports of Cas9 toxicity
with continued expression (Peng et al., 2014). Although,
transient Cas9 expression or targeting Cas9 itself alongside the
gene(s) of interest could eliminate this issue (Peng et al., 2014;
Lander et al., 2015). New techniques for the generation of repair
constructs en masse (Xu et al., 2009) coupled with advances in
axenic amastigote culture methods (Akutsu et al., 2019) could
provide the opportunity to carry out high throughput screens in
T. cruzi, an organism that has been so intractable to
previous editing.

Leishmania spp.
Until 2015, double homologous recombination of laboriously
generated vectors was the only way to screen for function in
Leishmania parasites. However, supplementation of the genome
with endogenous (L. major, L. mexicana (Beneke et al., 2017) and
L. braziliensis (Espada et al., 2021)) or episomal (L. mexicana, L.
major (Beneke et al., 2017), L. tarentolae (Turra et al., 2021), L.
donovani (Martel et al., 2017) and L. braziliensis (Adaui et al.,
2020) polymerase expression enabled the use of Cas9 mediated
genome editing. Targeting a library of kinases in L. mexicana
promastigotes, and using BarSeq to track mutants, showed that
79% of the kinome is dispensable for promastigote growth in
culture, while 21% were refractory to gene knockout (Baker et al.,
2021). Additionally, the requirement of these kinases was also
evaluated in vivo and in the sandfly vector and the kinases were
fluorescently tagged though this data has yet to be made publicly
available (Baker et al., 2021). Recent developments to generate
guide RNAs and homologous repair constructs in high
throughput (Beneke and Gluenz, 2019), adapt barSeq
technology (Beneke and Gluenz, 2020), and target both copies
of a gene in a single transfection will all enable future high
throughput screens in Leishmania spp.

In L. tarentolae, attempts have also been made to combine
high-efficiency CRISPR-Cas9 mediated genome editing with the
glmS conditional mRNA depletion system. However, only
episomally expressed genes have been successfully knocked
down (Turra et al., 2021). While this combination was
unsuccessful, a conditional regulation system would prove
valuable for studying the entire Leishmania spp. life cycle.

What’s Next for Functional Screening?
Due to the complexity of parasite life cycles and the multistage
requirement for many proteins, the use of conditional
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 20
techniques to determine the function of genes and proteins
seems imperative, and many conditional technologies are
being developed for low- and high-throughput analysis
(Figure 7). As some life stages cannot yet be cultured in
vitro, characterisation of all life cycle stages requires
screening systems to be functional in vivo (Figure 8). The
development of AID2 makes this system an appropriate choice
as previous work has shown efficient protein degradation in
vitro and in vivo (Saito and Kanemaki, 2021). Until now, most
functional screens have used reducing assays, characterised
growth rate in specific conditions, or identifed a few candidates
involved in a specific process or that confer resistance to a
drug. These methods take an enormous number of mutants
and filter them until the number of candidates is manageable
for subsequent phenotyping analysis. The latter often relies on
conditional regulation strategies to characterise function
(Figure 8). Less reducing screening methods, such as
coupling tagging and conditional mutant generation with
high-content fluorescent imaging Li et al., 2022; Smith et al.,
2022, or ultrastructure expansion microscopy (U-ExM) (Dos
Santos Pacheco and Soldati-Favre, 2021) would allow testing a
greater number of candidates and increase the descriptive
detail of each, thus making the best use of screening outputs
(see Imaging and Figure 8). Using unrestricted screens to
classify mutants based on observations from high-content
imaging would reduce the waste and/or duplication
associated with reducing screening methods. Publication of
these initial screens would also enable the sharing of
preliminary phenotypes and allow a broader cohort of
scientists , with different expertise, to follow-up on
phenotypes of interest increasing equitable resource sharing.

When considering the classification of mutants following a
functional screen, it is also worth noting that all techniques have
limitations and interpretation of the data generated must be done
cautiously. Descriptions of genes as essential must be treated with an
awareness that this is only true for the life cycle stage being assayed
and the growth conditions used. Furthermore, when transfecting
pools of mutants, the loss of a mutant from the population may be
more indicative of a severe growth defect and overgrowth, rather
than an inability of the parasites to survive without this gene which
may be uncovered with future phenotyping. Besides being a method
of judicious gene selection, functional screens provide a wealth of
data that should be utilised to its fullest.
IMAGING

Microscopy has been pivotal for, and specifically for
Apicomplexan and Kinetoplastid parasitology research
(Figure 9A), including in the identification of most parasites.
The microscopy toolkit in parasitology currently includes
electron-microscopy, optical microscopy, force nanoscopy, and
bioluminescence imaging among others (Figure 10). In this
section, we will discuss i) the current role of imaging in the
functional characterization of candidates arising from large
screens using ‘omics’ technologies; ii) imaging methods
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currently used in parasitology as low-throughput and how they
are being adapted to high-throughput; and iii) the advances in
image analysis by the implementation of artificial intelligence.

The Current Role of Imaging as a High
Throughput Technology in Parasitology
The two main platforms used for high-throughput analysis in
parasitology are bioluminescence imaging and high-content
fluorescence imaging (Figure 9). Genetic modification of
Plasmodium spp., Toxoplasma spp., Cryptosporidium spp.,
Leishmania spp., T. cruzi, and T. brucei to generate fluorescent/
bioluminescent reporter lines (Figure 9A) has been key for high-
throughput screens, both in the context of ‘omics’ and drug
discovery (Figure 9B). Reporter lines have been vital to gain
insight into phenomena such as parasite invasion, development,
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transmission, virulence and host-pathogen interactions,
among others.

High Content Imaging
High content imaging maximizes data capture, and can be adapted
to multiple imaging systems, samples, cameras, and fluorophores.
When coupled with robotics, high-content imaging allows
monitoring of specimens over extended amounts of time, as well
as imaging of a large number of samples with relatively little need
for user input (Adams and Sjaastad, 2009). Although high-content
imaging began as a method best-applicable to microplates, two
relatively recent technologies, Opera Phenix™ - a high content
screening device compatible with spheroid visualization and 3D
printing, and ImageStream (George et al., 2004) have expanded this
important toolkit. ImageStream combines the strengths of standard
A B

FIGURE 9 | Microscopy usage in parasitology. (A) Timeline of key developments allowing high-throughput bioluminescent and fluorescent studies. The left side of the
timeline shows the first transgenic bioluminescent lines created for each parasite (Plasmodium spp., Toxoplasma gondii, Cryptosporidium spp., Trypanosoma spp., and
Leishmania spp.), as well as the first luminescence-based high-throughput screen (BLS) performed for each parasite. The right side shows the first generation of fluorescent
reporter lines for each parasite, and the first use of high-throughput fluorescence imaging, including the use of high content imaging (HCI), ImageStream, and proximity-
dependent labelling (PDL). (B) Top section shows studies using bioluminescent reporter parasite lines, specifying the percentage used in high-throughput screens (HTS) for
Apicomplexans (Plasmodium spp., Toxoplasma gondii and Cryptosporidium spp., Kinetoplastids (Leishmania spp., and Trypanosoma spp.). Bottom section shows the
proportion of ‘omics’ and high-throughput screens using no imaging, low/medium throughput imaging (LT/MT), or high throughput imaging (HT). A PubMed search was
performed for each genus, for all ‘omics’ methods, and each was explored to determine usage and throughput of microscopy. Figure created with BioRender.com.
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optical microscopy (at single cell level), and the sample sizes/
statistical significance afforded by standard flow cytometry.
Notably, high-content imaging can be used in parallel with assays
such as RNA fluorescence in situ hybridization (RNA-FISH), and
proximity labeling techniques [reviewed in (Kimmel et al., 2021)]
such as BioID (Roux et al., 2012; Kim et al., 2016), APEX (Rhee
et al., 2013; Lam et al., 2015) and TurboID (Branon et al., 2018).
Adaptations in this respect include proximity ligation imaging
cytometry (PLIC) (Avin et al., 2017) and Flow-FISH (Luiza-
Batista et al., 2021). Proximity labeling techniques have been
particularly useful for the study of the interactome and network
mapping (protein-centric, RNA-, and DNA-centric interactomes)
(Roux et al., 2018; Trinkle-Mulcahy, 2019).

Bioluminescence Imaging
Bioluminescence imaging relies on the production of light by
enzyme-catalysed reactions. In nature, bioluminescence is an
evolutionary adaptation involving the natural production of
light. Many bioluminescent substrates have been isolated, and
the biochemical properties of their light defined (De Niz et al.,
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2016; Syed and Anderson, 2021). Multiple luciferase-expressing
parasites have been generated (Figure 9B). Upon exogenous
addition of relevant substrates (eg. luciferin, coelenterazine,
furimazine), luminescence occurs, thus being detectable and
measurable by ultra-sensit ive cameras . Altogether ,
bioluminescence is a high-throughput method that has a
simple output, facilitating quantitative analysis. While
bioluminescence has been a vital tool for parasitology
(Siciliano and Alano, 2015; Avci et al., 2017; Novobilský and
Höglund, 2020), especially in the context of drug screening,
important limitations of this technique include a) that it lacks the
resolution to give insight into sub-cellular phenomena, which is
often a main interest for candidate validation in ‘omics’ studies,
and b) that the half-life of some luciferases does not allow for
specific event captures. Nevertheless, a major advantage of
bioluminescence beyond the context of high-throughput
screening, is its applicability to in vivo screening (eg. rodent
models) in a non-invasive manner, allowing for longitudinal
studies to be performed. This, however, is beyond the scope of
this review.
FIGURE 10 | Microscopy current contributions and future directions. Multiple imaging modalities, including electron microscopy, fluorescence microscopy,
bioluminescence, and force nanoscopy, have been extensively used in Apicomplexan and Kinetoplastid research. Efforts on technology development have led to the
generation of hybrid imaging platforms (eg. combining electron and fluorescence microscopy in CLEM); the integration of cell culture, microfluidics, and bioengineering
advances (eg. organoids and organs-on-chip, consistent with animal replacement and reduction) with imaging methods; the integration of 3D printing and robotics for the
generation of versatile imaging platforms, including high-content imaging; and the integration of artificial intelligence for image analysis. Many of these improvements are
consistent with a philosophy of open science, and have facilitated data-sharing and the creation of low-cost complex imaging equipment. Most of these have already
been incorporated into parasitology research, but not in high-throughput modalities. Efforts towards increasing the throughput of conventionally low-throughput
techniques are shown on the left column, and include autonomous imaging (whereby user input is not required, reducing human resource demands), miniaturization and
parallelization, multiplexing, and faster acquisition methods. Equally, a bottleneck for microscopy-based research is image analysis. Incorporation of artificial intelligence
and machine learning, and integration with open databases and open code are promising fields for parasitology. Together, these various elements will likely play a major
role on the integration of imaging into ‘omics’ studies to understand parasite biology. Figure created with BioRender.com.
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Apicomplexans
Plasmodium spp.
Microscopy has allowed the investigation of Plasmodium
invasion, development, deformability, pathogenesis, and
genetic- and drug-screening (Gomes et al., 2015; Schwach
et al., 2015; Brancucci et al., 2018; Duez et al., 2018; Kent et al.,
2018; Tong et al., 2018; Stanway et al., 2019; Chia et al., 2021). A
recent example of an ‘omics’ study directly incorporating high-
throughput imaging to analyse Plasmodium liver stage
development (Stanway et al., 2019) was based on a resource of
individually barcoded gene knock out vectors (Pfander et al.,
2011; Gomes et al., 2015; Bushell et al., 2017).

ImageStream has been used in high-throughput studies
investigating anti-malarial drug effects against the Plasmodium
digestive vacuole (Lee et al., 2014; Lee et al., 2016; Chia et al.,
2017; Haridas et al., 2017), as well as to investigate the
transcriptional signature and changes in parasite metabolism of
Plasmodium falciparum sexually committed parasites (Brancucci
et al., 2018). Furthermore, ImageStream and flow-FISH have
been coupled to study gene expression in blood and liver stages
of human malaria species (Luiza-Batista et al., 2021). Biotin-
based proximity-labeling techniques have been successfully
implemented to study various stages of Plasmodium (Kehrer
et al., 2016; Khosh-Naucke et al., 2018; Schnider et al., 2018;
Kimmel et al., 2021; Wichers et al., 2021) to investigate protein
networks. The success of this implementation, and the potential
for its coupling with large screen imaging methods (eg.
ImageStream) holds great promise for the study of protein
interactomes. Beyond fluorescence, several Plasmodium species
have been engineered to express bioluminescent reporters across
one or more of the parasite’s developmental life cycle stages.
Main applications include the study of liver and blood stage
development; Plasmodium strain-specific differences; stage-
specificity of promoters and other regulatory elements;
gametocyte development; functional studies of parasite
proteins; parasite attenuation by genetic manipulation; anti-
malarial activity of drugs (including extensive investigation of
the Medicines for Malaria Venture (MMV) Malaria Box) (Khan
et al., 2012; Cevenini et al., 2014; Vos et al., 2015; Ullah et al.,
2017; Malebo et al., 2020); and investigating vaccine efficacy
(Othman et al., 2017; Moita et al., 2021).

Toxoplasma gondii
Multiple Toxoplasma gondii fluorescent reporter lines have been
invaluable for the phenotypic characterization of genetically
modified parasites in terms of invasion capacity, growth,
motility, survival/fitness, and host-parasite interactions (Bichet
et al., 2016; Harding et al., 2016; Jacot et al., 2016; Sidik et al.,
2016; Frénal et al., 2017; Guérin et al., 2017; Periz et al., 2017;
Brown et al., 2018; Lentini et al., 2021). Examples of studies that
have incorporated high-content imaging include the
development of CRISPR-mediated tagging to study the T.
gondii kinome (Smith et al., 2022). Another genome-wide
phenotypic screen using splitCas9 in combination with high-
content imaging, used indicator parasites to visualize F-actin
dynamics and apicoplast segregation, and identified two genes
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critical for host cell egress (Li et al., 2022). Biotin-based
proximity-labeling has also been extensively used in T. gondii
research (Bradley et al., 2020; Kimmel et al., 2021). Examples
include in investigation of components of the inner membrane
complex (Chen et al., 2015a), calcium-dependent protein kinases
and their function during parasite egress (Gaji et al., 2015), the
apical annuli- a structure in the parasite cytoskeleton (Engelberg
et al., 2020), and components of the tumour-suppressing Hippo
pathway, mediating processes such as cytokinesis (Delgado et al.,
2021). Bioluminescent T. gondii reporter strains have been
equally useful for high-throughput drug screening (Key et al.,
2020). To our knowledge, bioluminescent technology has not
been widely integrated into ‘omics’ studies as a form of screening.

Cryptosporidium
Cryptosporidium research has incorporated high-content imaging
into high-throughput phenotypic screens in the context of drug
discovery (Sharling et al., 2010; Love and McNamara, 2020; Love
and McNamara, 2021). Luciferase-expressing Cryptosporidium
parasites (Vinayak et al., 2015; Hennessey et al., 2018) have been
used in high throughput screens for parasite inhibitors; and for
high-throughput developmental monitoring and genetic
tractability (Wilke et al., 2019).

Kinetoplastids
Trypanosoma spp.
In the context of Chagas disease, high-content imaging has been
used to study host-cell infection rates and drug screening
(Alonso-Padilla and Rodrıǵuez, 2014; Alonso-Padilla et al.,
2015; Sykes and Avery, 2015; Franco et al., 2019; Fesser et al.,
2020; Portella et al., 2021; Svensen et al., 2021). For T. brucei,
high-content imaging has been used for the measurement of
transcriptional activity (Hiraiwa et al., 2018). Proximity-
dependent biotinylation approaches have been extremely useful
for studying the protein interactome of T. brucei in various
contexts. These include the identification of bilobe components
(Morriswood et al., 2013); changes resulting from the ectopic
expression of developmentally-regulated RNA-binding proteins
(De Pablos et al., 2017); mapping the interactome of the T. brucei
cytokinetic machinery (Hilton et al., 2018); identification of key
proteins required for microtubule quartet anchorage to basal
bodies (Dong et al., 2020); novel cytoskeleton-associated proteins
essential for morphogenesis and cytokinesis (Schock et al., 2021);
and flagellum tip-specific proteins (Vélez-Ramıŕez et al., 2021).
Still within the umbrella of fluorescence, TrypTag has been an
invaluable tool for the parasitology community. Large-scale
endogenous tagging of T. brucei proteins was performed, and
thousands of images generated and made publicly available
(Dean et al., 2017). TrypTag aims to document the localization
of every protein encoded in the T. brucei genome, generated with
the aim of validating proteomics analyses, and is an example of
the importance and potential of ‘imaging in systems biology’.
Bioluminescence use in Kinetoplastid research has been
extensive, both as an in vivo tool for studying parasite tropism
and virulence, and as an in vitro high-throughput screening tool.
Bioluminescent reporter lines of T. cruzi and multiple African
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trypanosome species have been used to monitor parasite viability
in the context of drug and vaccine screening (Hutchens and
Luker, 2007; Lewis and Kelly, 2016; Ritchie et al., 2020), but to
our knowledge, not within the context of ‘omics’ screens.

Leishmania spp.
For Leishmania, high-content imaging has been used to study
anti-leishmanial compounds and their effects on parasites and
hosts, comparative anti-parasitic activity against cutaneous and
visceral leishmaniasis, or parasite development and infection
capacity (Lakshmi et al., 2014; Dagley et al., 2015; Tegazzini
et al., 2016; Lamotte et al., 2019; Alcântara et al., 2020; Rosazza
et al., 2020; Tirado et al., 2020; Fehling et al., 2021). A recent
example of successful integration of imaging in the context of
systems biology, was the use of CRISPR-Cas9 genome editing to
generate Leishmania mutants with altered flagellar function
and motility. Dark field microscopy was used to track
Leishmania swimming, and measure directionality and speed.
Bar-seq technology was then used to test fitness mutants within
the sandfly vector (Beneke et al., 2019). Another example is the
integration of large-scale imaging to investigate morphometric
parameters of Leishmania during its life cycle, or other cellular
landmarks as a reference/basis for post-genomic analyses
targeting the parasite’s cell biology (Wheeler et al., 2012;
Halliday et al., 2019). These studies set precedence to the
current value and future potential of the integration of
imag ing for h igh- throughput phenotypic sc reens .
Bioluminescent reporter lines of Leishmania spp. have been
used to monitor parasite viability in the context of drug and
vaccine screening (Caridha et al., 2017; Álvarez-Velilla et al.,
2019; Mendes Costa et al., 2019; Agostino et al., 2020; Cohen
and Azas, 2021), but to our knowledge, not within the context
of ‘omics’ screens.

Bottlenecks for High-Throughput in
Optical and Electron Microscopy and
Open Avenues for Future Implementations
The parasitology field has incorporated into its toolbox multiple
‘vanguard ’ imaging technologies in opt ica l , force ,
bioluminescence, and electron microscopy [reviewed in (De
Niz et al., 2017)] (Figure 10). This includes improved
resolution, imaging speed, and hybrid platforms that combine
the strengths of more than one technology. So, why have many of
these novel imaging methods not been used as high-throughput
tools? Three main factors currently prevent several microscopy
techniques from becoming high-throughput, and these factors
are interrelated. High-throughput imaging relies on fast
acquisition, relatively simple outputs, and/or high-throughput
data processing. Fast acquisition comes at the expense of spatial
and temporal resolution. Due to length restrictions, we focus the
discussion below on optical and electron microscopy.

Fluorescence nanoscopy, or super-resolution microscopy, has
been revolutionary for cell biology-related fields, including
parasitology, and continues to extend its reach into structural
biology (de Souza, 2018). Stimulated emission depletion (STED)
(Willig et al., 2006), stochastic optical reconstruction microscopy
(STORM) (Rust et al., 2006), and structured illumination
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 24
microscopy (SIM) (Vangindertael et al., 2018) have all been used
in the context of Kinetoplastid and Apicomplexan research.
Expansion microscopy (ExM) (Chen et al., 2015b) and
ultrastructure expansion microscopy (U-ExM) (Gambarotto et al.,
2021) have also been incorporated with great success (Amodeo
et al., 2021; Bertiaux et al., 2021; Dos Santos Pacheco and Soldati-
Favre, 2021; Gorilak et al., 2021; Kalichava and Ochsenreiter, 2021;
Liffner and Absalon, 2021; Tomasina et al., 2021). Despite their
value, important bottlenecks for using super-resolution in a high-
throughput manner are the time required for image acquisition,
and the volume of data produced for quantitation. Several
adaptations have been designed to address these bottlenecks at
the level of microscopy design and image acquisition and
processing (Figure 10). The former include parallelized STED
microscopy, (Bingen et al., 2011; Chmyrov et al., 2013); image
scanning microscopy (Schulz et al., 2013); multifocal flat
illumination for field-independent imaging (mfFIFI) (Mahecic
et al., 2020); and analogue image processing, which increases data
acquisition rates up to 100-fold over conventional SIM rates (York
et al., 2013). Moreover, novel technologies also continue to advance
in optics, imaging, and visualization, which hold important
potential for parasitology, and can be incorporated into systems
biology approaches at various scales. An example of this is vLUME,
which uses virtual reality to enable visualization of single molecule
localization (Spark et al., 2020). In addition to advances of the
techniques themselves, tools from other fields such as cell biology
and bioengineering, have successfully incorporated imaging to their
workflow. Microfluidics, organs-on-chip, organoids, and/or tissue
bioengineering combined with imaging (Figure 10), are important
additions to the parasitology toolkit (Mellin and Boddey, 2020;
Bernabeu et al., 2021; Sutrave and Richter, 2021). Coupled with
advances in image analysis, organoids and spheroids could certainly
become valuable tools for ‘omics’ high-throughput validation, and
‘systems biology’ in parasitology (Figure 10).

Electron microscopy has also been at the centre of parasitology
for decades. Progress in electron microscopy methods over the last
couple of decades has been invaluable for cell biology, introducing
standalone and hybrid techniques such as focused ion beam
scanning electron microscopy (FIB-SEM) (Heymann et al.,
2006), scanning transmission electron microscopy (STEM) (von
Ardenne, 1938; Kisielowski et al., 2008), cryogenic electron
microscopy (cryo-TEM and cryo-EM) (Nakane et al., 2020; Yip
et al., 2020), and correlative light and electron microscopy (CLEM)
(de Boer et al., 2015). Electron microscopy is extremely labour
intensive in terms of sample preparation, image acquisition, and
image processing. While still unavailable in parasitology, several
platforms have been generated to increase the throughput of
electron microscopy (Eberle and Zeidler, 2018; Kornfeld and
Denk, 2018; Bykov et al., 2019; Yin et al., 2020). Additional to
high-throughput, some of these technologies are considered
revolutionary for biology. Cryo-EM is an example, whereby
several technical breakthroughs in both, software and hardware,
have turned this tool into key for structural biology (Callaway,
2020). The value of this tool has been explored in the context of the
Plasmodium falciparum proteome, already demonstrating its
promising potential within the parasitology field (Beck and Ho,
2021; Chi-Min et al., 2021; Anton et al., 2022).
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Bottleneck for High-Throughput: Progress
and Development of Automated
Image Analysis
It is important to consider the vast volume of data that the
aforementioned methods generate and the importance of image
analysis automation. Automated image analysis has been steadily
incorporated into cell biology [reviewed in (von Chamier et al.,
2019)] and clinical diagnosis in field settings. Beyond diagnosis,
the field of parasitology has successfully generated multiple
automated image analysis tools. This includes tools developed
specifically for Apicomplexan (Kudella et al., 2016; Perez-Guaita
et al., 2016; Touquet et al., 2018; Fisch et al., 2019; Bauman et al.,
2020; Fisch et al., 2020; Hung et al., 2020; Dey et al., 2021; Shaw
et al., 2021; Yoon et al., 2021) and Kinetoplastid research
(Wheeler et al., 2012; Moon et al., 2014; Yazdanparast et al.,
2014; Gomes-Alves et al., 2018; Moraes et al., 2019; Wheeler,
2020) and applied to a range of questions, from micrograph
analysis, subcellular landmark investigation and parasite motility,
to insect vector behavior. Many of these parameters are common
outputs from ‘omics’ and large screen studies. HRMAn (Host
Response to Microbe Analysis) is a high-throughput, high-
content, single-cell image analysis platform which incorporates
machine learning and deep convolutional neural networks (Fisch
et al., 2019). Classification of features based on datasets has been
used to distinguish phenotypic patterns of host-protein
recruitment; detection and quantification of T. gondii-
containing vacuoles; and analysis of host cell responses to T.
gondii infection. More recent updates (HRMAn 2.0) offer the
possibility to investigate 3D information, and applications to
other pathogens beyond T. gondii (Fisch et al., 2021).

Despite the increased availability of image analysis tools, two
‘hurdles’ stand in the way of their widespread use among the
parasitology community. The first is tool availability. Open source
software has been pivotal for research, with ImageJ (Schneider et al.,
2012), CellProfiler (Carpenter et al., 2006), Ilastik (Berg et al., 2019),
OMERO (Allan et al., 2012; Li et al., 2016), ICY (Chaumont et al.,
2011) being some examples of the most used tools for image
analysis. A step, which remains to be more widely implemented
in the parasitology imaging field is the existence of open repositories
for code and image databases of both parasites and hosts, equivalent
to VEuPathDB (Amos et al., 2022) resources, and under the lines of
TrypTag (Dean et al., 2017). The second hurdle is tool accessibility:
if the tools are available, can everyone in the parasitology
community use them? We envisage that a step to achieve this is
the development of user-friendly environments that allow users
with little or no coding experience to use these resources. Recent
successful examples include LOBSTER (Tosi et al., 2020),
BIAFLOWS (Rubens et al., 2020), OpSeF (Rasse et al., 2020), and
ZeroCostDL4Mic (von Chamier et al., 2021). Moreover, specialists
are needed to bridge the two disciplines (artificial intelligence in
imaging, and biology). A successful example in biology of such a
training initiative is NEUBIAS (Martins et al., 2021).

Altogether, we envisage that advances in microscopy will
allow its extensive integration into ‘omics’-based studies and
functional screens, as a valuable tool to further our knowledge on
parasite biology.
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FURTHER INSIGHTS

Big Data in Context: How Big Is ‘Big Data’
in Parasitology, and What Can We Learn
From Other Fields?
While we have addressed ‘big data’ in parasitology, it is worth asking
how does such data compare to other research fields; what can we
learn from other fields; and how will the growing scale of the data in
parasitology be stored and handled computationally. Amongst the
most striking example of big data generation is the European
Council for Nuclear Research (CERN), with one of the most
highly demanding computing environments in research, handling
over 330 petabytes – and envisaging over the next decade, to require
data storage capacities in the order of exabytes (1018 bytes). Its
computing demands fostered the creation of vital resources such as
the world wide web, which was initiatlly conceived to facilitate data
sharing amongst scientists worldwide. At the heart of CERN’s
infrastructure are now the worldwide large hadron collider (LHC)
computing grid, which gives physicists worldwide near-real-time
access to LHC data (Geddes, 2012; Britton and Lloyd, 2014); the
CERN Openlab, a public-private partnership through which CERN
collaborates with information and communication technology
(ICT) leading companies (such as Oracle, Micron, Intel, Siemens,
Google, and IBM, among others); the data preservation in high
energy physics (DPHEP) collaboration; and the CERN Internet
eXchange Point (CIXP) among others. Other examples of large-
scale research-focused collaborations include the 1,000 and 100,000
genomes projects. The 1000 genomes project aims at cataloguing
common human genetic variation (Abecasis et al., 2010). For this
project, several tools were developed and deployed to allow for
widespread data access. This included the creation of a Data
Coordination Centre (DCC), set up by the European
Bioinformatics Institute (EBI) and the National Centre for
Biotechnology (NCBI) to manage the data, and facilitate
community access (Clarke et al., 2012). The 100,000 genomes
project is an initiative to sequence genomes from thousands of
patients affected by rare diseases, or cancer, and provide insights
into the role of genomics in health/disease, and pave the way toward
personalized medicine (Turnbull et al., 2018). What these major
projects with ‘big’ data have in common is that they catalysed the
generation of extraordinary tools at the level of hardware and
software to ensure real-time open access by the scientific
community as well as relevant data storage, maintenance and
preservation capacities. Equally, these projects are based on
international private and public partnerships from various sectors
(including healthcare, governmental organizations, and information
technology/computing developers). While generating such tools for
parasitology alone might be a complex task, with these examples we
aim to highlight the avenues that remain to be explored as well as
the tools that already exist and could be capitalized on for our field
and our understanding of both parasite and host.

VEuPathDB and Its Role in Parasitology
A revolutionary resource in the parasitology field is VEuPathDB.
This integrated database provides a repository of datasets
across all “-omics” disciplines that can be accessed for free
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(Warrenfeltz et al., 2018), ensuring equitable access to these
resources. VEuPathDB is, however, not only a database, as the
web-based service includes tools available for data searching,
visualisation and comparisons. Moreover, the founding team is
committed to democratizing science and frequently offer training
world-wide to allowed hundreds of researchers across the global
North and South, to access the full capacity of this tool. The
online tutorials available through the resource also ensure that
users with limited bioinformatics experience are able to mine the
data deposited. Altogether, VEuPathDB has been committed to
promoting equitable access to data generated across our field.
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CONCLUDING REMARKS

In this review, we have explored ‘omics’-based technologies
and their major contributions to parasite biology (summarized
in Figure 11). Addressing the fundamental question: how can
we gain the most from the abundance of currently existing and
future ‘big data’? As ‘omics’ technologies progress and more
studies incorporate them in their research questions, a risk
that exists is the accumulation of data whose biological wealth
is not fully explored or exploited. To avoid this, we require an
advancement in data management/ integrat ion, and
FIGURE 11 | ‘Omics’ technologies in parasitology: challenges and future directions. Genomics, transcriptomics and proteomics (as well as other ‘omics’ technologies),
have allowed us to study a plethora of questions in parasitology. While bulk-based ‘omics’ have contributed greatly to parasitology, single cell-based ‘omics’ approaches
have highlighted unexpected heterogeneity in parasite populations. Given the complex life cycles of Apicomplexan and Kinetoplastid parasite species, understanding the
interconnection between parasite and host is key. ‘Omics’ technologies that allow the simultaneous investigation of parasite and host will continue to play important roles in
understanding host-pathogen interactions, including topics of current major interest such as tissue tropism; immune evasion; parasite latency, dormancy, and persistence;
and parasite-host circadian rhythms, among others. Functional screens based on genome mutagenesis, RNA regulation and protein regulation, have become vital tools for
investigating parasite biology. Together with auxiliary technologies, such as high-throughput imaging, functional screens are powerful tools for parasitology. Current advances
in microscopy are allowing valuable low-throughput techniques (eg. super-resolution, and electron microscopy), to be adapted for higher throughput. Together with the
incorporation of robotics and artificial intelligence, these valuable tools could become suitable for integration into ‘omics’ research and functional screens. Several challenges
remain for ‘omics’ in parasitology, including experimental, technological, and overall challenges. Among the latter are the need for better data annotation and integration. We
envisage that vital for an improved/increased use of available and future ‘omics’ data are within-omics data integration, multi-omics data integration, and multi-disciplinary
data integration. Equally funding and dedicated personnel to the creation, maintenance, annotation, curation and update of available data is vital. A successful transition in
this respect will enable improved collaborative science, and addressing novel and outstanding biological questions. Figure created with BioRender.com.
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potentially, a change in research practices towards ‘big data’.
Improved annotation of reference genomes is key for ‘omics’
technologies, as is the need for constantly updated reference
resources. This is a human resource-intensive task that should
not be underestimated in its requirements for dedicated
personnel and funding. Moreover, a research philosophy
that envisages better data integration practices, at single
‘omics ’ and ‘multi-omics ’ levels , is vital . Improved
accessibility is key for such integration. This comes in the
form of improved data avai labi l i ty , improved data
visualization tools, and a focus on training next generations
of scientists to include expertise that bridges disciplines (eg.
bioinformatics, artificial intelligence and biology). Together,
‘omics’ approaches and functional screens have pushed the
boundaries of our knowledge on parasite biology, and we
envisage that the aforementioned investments are some of
many that will allow us to take the most advantage of current
and future ‘big data’.
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The ROP2 Family of Toxoplasma Gondii Rhoptry Proteins: Proteomic and
Genomic Characterization and Molecular Modeling. Proteomics 6, 5773–5784.
doi: 10.1002/pmic.200600187

El-Sayed, N. M., Myler, P. J., Bartholomeu, D. C., Nilsson, D., Aggarwal, G., Tran,
A.-N., et al. (2005). The Genome Sequence of Trypanosoma Cruzi, Etiologic
Agent of Chagas Disease. Science 309, 409–415. doi: 10.1126/science.1112631

Engelberg, K., Chen, C.-T., Bechtel, T., Sánchez Guzmán, V., Drozda, A. A.,
Chavan, S., et al. (2020). The Apical Annuli of Toxoplasma Gondii are
Composed of Coiled-Coil and Signalling Proteins Embedded in the Inner
Membrane Complex Sutures. Cell. Microbiol. 22, e13112. doi: 10.1111/
cmi.13112

Escalante, A. A., Barrio, E., and Ayala, F. J. (1995). Evolutionary Origin of Human
and Primate Malarias: Evidence From the Circumsporozoite Protein Gene.
Mol. Biol. Evol. 12, 616–626. doi: 10.1093/oxfordjournals.molbev.a040241

Espada, C. R., Quilles, J. C. J., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T.,
Lorenzon, L. B., et al. (2021). Effective Genome Editing in Leishmania
(Viannia) Braziliensis Stably Expressing Cas9 and T7 RNA Polymerase.
Front. Cell. Infect. Microbiol. 11. doi: 10.3389/fcimb.2021.772311

Farrell, A., Coleman, B. I., Benenati, B., Brown, K. M., Blader, I. J., Marth, G. T.,
et al. (2014). Whole Genome Profiling of Spontaneous and Chemically Induced
Mutations in Toxoplasma Gondii. BMC Genomics 15, 354. doi: 10.1186/1471-
2164-15-354

Fehling, H., Niss, H., Bea, A., Kottmayr, N., Brinker, C., Hoenow, S., et al. (2021).
High Content Analysis of Macrophage-Targeting EhPIb-Compounds Against
Cutaneous and Visceral Leishmania Species. Microorganisms 9 (2), 422.
doi: 10.3390/microorganisms9020422

Feng, Y., Ryan, U. M., and Xiao, L. (2018). Genetic Diversity and Population
Structure of Cryptosporidium. Trends Parasitol. 34, 997–1011. doi: 10.1016/
j.pt.2018.07.009

Fernandes, M. C., Dillon, L. A. L., Belew, A. T., Bravo, H. C., Mosser, D. M., and
El-Sayed, N. M. (2016). Dual Transcriptome Profiling of Leishmania-Infected
Human Macrophages Reveals Distinct Reprogramming Signatures.MBio 7(3):
e00027-16. doi: 10.1128/mBio.00027-16

Fernandez, V., Hommel, M., Chen, Q., Hagblom, P., and Wahlgren, M. (1999).
Small, Clonally Variant Antigens Expressed on the Surface of the Plasmodium
Falciparum-Infected Erythrocyte are Encoded by the Rif Gene Family and are
the Target of Human Immune Responses. J. Exp. Med. 190, 1393–1404.
doi: 10.1084/jem.190.10.1393
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 31
Fesser, A. F., Braissant, O., Olmo, F., Kelly, J. M., Mäser, P., and Kaiser, M. (2020).
Non-Invasive Monitoring of Drug Action: A New Live In Vitro Assay Design
for Chagas’ Disease Drug Discovery. PloS Negl. Trop. Dis. 14, e0008487.
doi: 10.1371/journal.pntd.0008487

Fiebig, M., Kelly, S., and Gluenz, E. (2015). Comparative Life Cycle
Transcriptomics Revises Leishmania Mexicana Genome Annotation and
Links a Chromosome Duplication With Parasitism of Vertebrates. PloS
Pathog. 11, e1005186. doi: 10.1371/journal.ppat.1005186

Fisch, D., Evans, R., Clough, B., Byrne, S. K., Channell, W. M., Dockterman, J.,
et al. (2021). HRMAn 2.0: Next-Generation Artificial Intelligence-Driven
Analysis for Broad Host-Pathogen Interactions. Cell. Microbiol. 23, e13349.
doi: 10.1111/cmi.13349

Fisch, D., Yakimovich, A., Clough, B., Mercer, J., and Frickel, E.-M. (2020). Image-
Based Quantitation of Host Cell-Toxoplasma Gondii Interplay Using HRMAn:
A Host Response to Microbe Analysis Pipeline. Methods Mol. Biol. 2071, 411–
433. doi: 10.1007/978-1-4939-9857-9_21

Fisch, D., Yakimovich, A., Clough, B., Wright, J., Bunyan, M., Howell, M., et al.
(2019). Defining Host-Pathogen Interactions Employing an Artificial
Intelligence Workflow. Elife 8, e40560. doi: 10.7554/eLife.40560
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Hiraiwa, P. M., de Aguiar, A. M., and Ávila, A. R. (2018). Fluorescence-Based
Assay for Accurate Measurement of Transcriptional Activity in
Trypanosomatid Parasites. Cytometry. A 93, 727–736. doi: 10.1002/
cyto.a.23387

Horn, D. (2022). Genome-Scale RNAi Screens in African Trypanosomes. Trends
Parasitol. 38, 160–173. doi: 10.1016/j.pt.2021.09.002

Howick, V. M., Peacock, L., Kay, C., Collett, C., Gibson, W., and Lawniczak, M. K.
N. (2022). Single-Cell Transcriptomics Reveals Expression Profiles of
Trypanosoma Brucei Sexual Stages. PloS Pathog. 18, e1010346. doi: 10.1371/
journal.ppat.1010346

Howick, V. M., Russell, A. J. C., Andrews, T., Heaton, H., Reid, A. J., Natarajan, K.,
et al. (2019). The Malaria Cell Atlas: Single Parasite Transcriptomes Across the
Complete Plasmodium Life Cycle. Science 365. doi: 10.1126/science.aaw2619

Hrdlickova, R., Toloue, M., and Tian, B. (2017). RNA-Seq Methods for
Transcriptome Analysis. Wiley Interdiscip. Rev. RNA 8 (1), 10.1002/
wrna.1364. doi: 10.1002/wrna.1364

Huang, G., Voet, A., and Maglia, G. (2019). FraC Nanopores With Adjustable
Diameter Identify the Mass of Opposite-Charge Peptides With 44 Dalton
Resolution. Nat. Commun. 10, 835. doi: 10.1038/s41467-019-08761-6

Hu, T., Chitnis, N., Monos, D., and Dinh, A. (2021). Next-Generation Sequencing
Technologies: An Overview. Hum. Immunol. 82, 801–811. doi: 10.1016/
j.humimm.2021.02.012

Hung, J., Goodman, A., Ravel, D., Lopes, S. C. P., Rangel, G. W., Nery, O. A., et al.
(2020). Keras R-CNN: Library for Cell Detection in Biological Images Using
Deep Neural Networks. BMC Bioinf. 21, 300. doi: 10.1186/s12859-020-03635-x

Hutchens, M., and Luker, G. D. (2007). Applications of Bioluminescence Imaging
to the Study of Infectious Diseases. Cell. Microbiol. 9, 2315–2322. doi: 10.1111/
j.1462-5822.2007.00995.x

Hutchinson, S., Foulon, S., Crouzols, A., Menafra, R., Rotureau, B., Griffiths, A. D.,
et al. (2021). The Establishment of Variant Surface Glycoprotein Monoallelic
Expression Revealed by Single-Cell RNA-Seq of Trypanosoma Brucei in the
Tsetse Fly Salivary Glands. PloS Pathog. 17, e1009904. doi: 10.1371/
journal.ppat.1009904

Hutchinson, R., and Gibson, W. (2015). Rediscovery of Trypanosoma
(Pycnomonas) Suis, a Tsetse-Transmitted Trypanosome Closely Related to
T. Brucei. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 36,
381–388. doi: 10.1016/j.meegid.2015.10.018

Hwang, B., Lee, J. H., and Bang, D. (2018). Single-Cell RNA Sequencing
Technologies and Bioinformatics Pipelines. Exp. Mol. Med. 50, 1–14.
doi: 10.1038/s12276-018-0071-8

Ilboudo, H., Noyes, H., Mulindwa, J., Kimuda, M. P., Koffi, M., Kaboré, J. W., et al.
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