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Background and Aims: The impacts of Helicobacter pylori (H. pylori)
eradication on the gastrointestinal microbiota are controversial, and whether
the short-term and long-term changes in the gastrointestinal microbiota
following different eradication regimens are consistent remains inconclusive.
This study aimed to examine the effects of various eradication regimens on the
gastrointestinal microflora at follow-up evaluations within 7 days, at 1-3
months, and over 6 months changes in the gastrointestinal microbiota.

Materials and Methods: Studies reported on the PubMed, Embase, Cochrane
Library, Web of Science, and ClinicalTrails.gov databases before March 2022
were collected. Data analysis and visualization were conducted using Review
Manager 5.4.1. The tool of the Cochrane Collaboration to assess the risk of bias
was suitable for randomized controlled trials with the Newcastle—Ottawa scale
for nonrandomized controlled trials. In addition, the process was conducted in
accordance with the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) statement.

Results: After a series of rigorous screenings, a total of 34 articles with 1,204
participants were included for this review analysis. The results showed changes
in the gut microflora at the phylum level or the family and genus levels. After
metronidazole-containing triple therapy, the number of Enterobacteriaceae
increased at 1-3 months follow-up. After Metronidazole-free triple therapy,
Actinobacteria decreased significantly, and this trend lasted for more than 6
months. Within 7 days after eradication treatment, the follow-up results
showed a decrease in the number of Lactobacillus. After Bismuth-containing
quadruple therapy, the changes in Actinobacteria fluctuated with the follow-up
time. The changes in Proteobacteria showed a downward trend lasting for 1-3
months after eradication but returned to baseline levels over 6 months after
eradication. Subgroup analyses indicated that host age could influence
changes in the gut microbiota.
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Conclusion: Different eradication regimens had varied effects on the short-term and
long-term abundance of the gastrointestinal microbiota, but the decreasing trend of
the microbiota diversity was the same for all regimens at the short-term follow-up.
This study summarizes the changes of gut microbiota at different stages after different
eradication regimens and hope to provide some references for supplementing
probiotics, while further studies is needed to support these findings.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/, identifier:

CRD42021292726
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1 Introduction

Helicobacter pylori (H. pylori) is a microaerophilic gram-
negative bacillus and a pathogenic bacterium that colonizes the
gastric mucosa (McNulty, 1999). H. pylori infection is associated
with a variety of digestive diseases, such as atrophic gastritis,
peptic ulcer, and gastric cancer (Kuipers et al, 1995). The
eradication of H. pylori can partially reverse atrophy and
intestinal metaplasia and reduce the risk of gastric cancer
(Choi et al., 2018; Hwang et al.,, 2018; Ford et al., 2020). In
2015, H. pylori infection was officially identified as an infectious
disease in the Kyoto global consensus report, and it was
recommended that all patients should be treated (Sugano
et al,, 2015). Conventional eradication regimens include triple
therapy with two antibiotics and a proton pump inhibitor (PPI),
quadruple therapy with bismuth, and dual therapy of one
antibiotic and a PPI (Rokkas et al, 2021). Symptoms of
gastrointestinal discomfort after eradication of H. pylori have
also been reported occasionally (Madden et al., 2005; Blaabjerg
et al., 2017). In addition, it has been reported that the
gastrointestinal flora changes greatly after eradication of H.
pylori, and these changes are likely related to the drugs used
in the eradication regimen (laniro et al., 2016). Therefore, the
effect of different eradication regimens on the gastrointestinal
microbiota is worth studying.

The gastrointestinal microbiota is constantly changing from
infancy to adulthood. It plays a vital role in human health and
can perform essential functions in the body’s immune,
metabolic, and nervous systems (Adak and Khan, 2019).
When the gastrointestinal microbiota is dysregulated, it is
accompanied by changes in the abundance and diversity of the
microbial community, which can affect a variety of the host’s
physiological functions, leading to the occurrence of various
diseases. The effect of H. pylori on the gastrointestinal
microbiota is reflected in both the bacteria themselves and the
eradication regimen that is used (Chen et al., 2021). On the one
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hand, colonization by H. pylori affects the gastric
microenvironment, thereby influencing the types and
populations of gastric microbiota and may also affect the gut
microbiota. In the presence of H. pylori, the interaction of the
microbiota in the stomach is greatly reduced (Coker et al., 2018).
Clinical studies have reported that the dysbacteriosis associated
with H. pylori infection is associated with a variety of digestive
system diseases, such as gastric ulcers, gastritis, and gastric
cancer (Ferreira et al., 2018; Guo et al., 2020; Rajilic-Stojanovic
et al,, 2020). On the other hand, the drugs selected for H. pylori
eradication also cause changes in the gut microbiota. Accepted
opinion had shown that metronidazole can inhibit the presence
of anaerobic flora in the gut, which is considered to be the
normally dominant gut flora, which has a protective effect on the
overall gut environment (Freeman et al., 1997). A number of
previous reports found that after H. pylori eradication, the
diversity of the microbiota significantly decreased in a short
period, and this change may last for 1 month or more than 6
months (Jakobsson et al., 2010; Liou et al., 2019; Kakiuchi et al.,
20205 Guillemard et al., 2021). It has also been reported that the
diversity of the intestinal flora increased during the 1-year
follow-up of H. pylori eradication (Sung et al., 2020). On the
basis of previous studies, short-term and long-term changes in
the gastrointestinal microbiota after H. pylori eradication
are unclear.

Changes in the gastrointestinal microbiota after eradication
of H. pylori are controversial. On the basis of the high infection
rate of H. pylori and the important role of the gastrointestinal
microbiota, this study conducted a meta-analysis to analyze
whether the short-term and long-term effects of different
treatment regimens on the gastrointestinal microbiota
following H. pylori eradication were consistent and whether
there were differences among the various treatments regarding
specific impacts on the gastrointestinal microbial community.
This study was divided into groups according to eradication
regimen, and the short-term and long-term changes in the
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gastrointestinal microbiota under each regimen were recorded
and analyzed. Changes resulting from the different treatment
regimens were compared. In addition, factors such as age and
race were analyzed to comprehensively analyze the changes in
the flora.

2 Materials and methods
2.1 Literature search

A literature search was conducted through five databases: PubMed,
Embase, the Cochrane library, Web of Science, and ClinicalTrails.gov.
The time limit was before March 2022, and nonhuman studies and
non-English studies were excluded. To search the literature as
comprehensively as possible, the following search terms were
combined: (Gastrointestinal Microbiome OR Gastrointestinal
Microbiomes OR Microbiome OR Gastrointestinal OR Gut
Microbiome* OR Microbiome, Gut OR Gut Microflora OR
Microflora, Gut OR Gut Microbiota* OR Microbiota, Gut OR
Gastrointestinal Flora OR Flora, Gastrointestinal OR Gut Flora
OR Flora, Gut OR Gastrointestinal Microbiota* OR Microbiota,
Gastrointestinal OR Gastrointestinal Microbial Community* OR
Microbial Community, Gastrointestinal OR Gastrointestinal
Microflora OR Microflora, Gastrointestinal OR Gastric Microbiome*
OR Microbiome, Gastric OR Intestinal Microbiome* OR Microbiome,
Intestinal OR Intestinal Microbiota* OR Microbiota, Intestinal OR
Intestinal Microflora OR Microflora, Intestinal OR Intestinal Flora OR
Flora, Intestinal OR Enteric Bacteria OR Bacteria, Enteric) AND
(Helicobacter pylori OR H. pylori OR Hp OR Helicobacter
nemestrinae OR Campylobacter pylori* OR Campylobacter pylori
subsp. Pylori) AND (Therapeutics OR Therapeutic OR Therapy*
OR Treatment* OR eradicate* OR regimen*). The detailed retrieval
process is shown in Supplementary Table 1. The literature retrieved
from the above five databases was managed through EndNote 20, and
the literature was screened according to the inclusion and exclusion
criteria in the next step.

2.2 Study selection

The inclusion criteria of the articles were as follows: (a) full
text of research papers in English; (b) human beings as research
subjects; (c) samples available for microbiota analysis; (d)
successful application of different therapies, such as dual
therapy, triple therapy, and quadruple therapy; (e) data on
microbiota changes after eradication; and (f) prospective study.
Animal experiments were not included in this study, and all
clinical data were derived from published studies. Articles that
did not meet the inclusion criteria and were repeatedly retrieved
from different databases were excluded. Two authors
independently completed the above process. When differences
of opinion arose, a third author was required to re-evaluate the
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differences and come to the final result in addition; the process
was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) statement
(Liberati et al., 2009).

2.3 Data extraction

When the included articles were identified, the following main
study characteristics were extracted and recorded. Information
extraction tables were designed in advance and included the
author, year of publication, number of included research
subjects, and basic characteristics of the research subjects
(gender, age, ethnicity, etc.), the specific eradication strategy, the
time of sample evaluation, and the changes in the types and
quantities of gastrointestinal microbes before and after
eradication. According to the different measurement standards
of the outcome indicators of different studies, the analysis of
gastrointestinal microbiota abundance and diversity was divided
into the phylum level obtained by next-generation sequencing and
the family and genus level obtained by microbial culture. At the
phylum level, representative microbial flora genera such as
Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria
would serve as our measure of the microbiota, at the family and
genus level, Bifidobacterium, Lactobacillus, Enterobacteriaceae,
and Enterococcus were planned to be used as our observation
indicators of the gut microbiota (Ye at al., 2020). Data on bacterial
diversity in the findings should also be listed. The data extraction
process required two evaluators to cross-check independently. In
addition, pre-extraction was conducted before the data were
formally extracted to evaluate whether the data extraction table
was reasonable and the degree of consistency of understanding of
the same problem among different evaluators. If there was any
disagreement in the process, it was communicated and resolved
first, and a third evaluator intervened.

2.4 Quality assessment

Randomized controlled trials were assessed by the Cochrane
Collaboration tool for risk of bias assessment, while
nonrandomized controlled trials were assessed for quality
using the Newcastle-Ottawa scale (Lo et al., 2014).

2.5 Data analysis

By calculating the desired outcome based on the data
provided, we included as many articles and data from
randomized controlled trials and prospective studies as
possible for the meta-analysis. Continuous variables in the
study results were expressed as the mean + standard deviation
(SD), including the mean relative abundance (%) (NGS, Next
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Generation Sequencing), mean counts (log colony forming units
(CFUs)/g fecal wet weight) (conventional microbial culture).
Weighted mean differences (WMDs) with 95% confidence
intervals were selected for continuous variable results.
Statistical heterogeneity was assessed using the I* statistic and
Cochran’s Q-test. In addition, pooled estimates were obtained
using the fixed model (Mantel and Haenszel) method (I < 50%,
P >.1) or the stochastic model (M-H anomaly) method (P>
50%, P <.1). Subgroup analysis was performed to compare
differences in gut flora after H. pylori eradication in different
age groups. In addition, we used sensitivity analysis to assess
whether the meta-analysis results were stable or dependable. The
software used for data analysis in this study was Review Manager
(RevMan) (Version 5.4.1, The Cochrane Collaboration, 2020).

3 Results
3.1 Study selection and characteristics

By searching the five databases, a total of 2,311 results were
identified; finally, 34 studies and 1,204 participants were
included (Adamsson et al., 1998; Adamsson et al., 1999;
Buehling et al,, 2001; Madden et al, 2005; Plummer et al,
2005; Shimbo et al., 2005; Myllyluoma et al., 2007; Imase et al.,
2008; Jakobsson et al., 2010; Wang and Huang, 2014; Oh et al,,
2016b; Yap et al.,, 2016; Wang et al,, 2017; Yanagi et al,, 2017;
Chen et al., 2018; Gotoda et al., 2018; Hsu et al., 2018; Yildiz et
al., 2018; Cornejo-Pareja et al., 2019; He et al., 2019; Hsu et al,,
2019; Liou et al., 2019; Olekhnovich et al., 2019; Guo et al., 2020;
Kakiuchi et al., 2020; Martin-Nuiiez et al, 2020. The specific
process is shown in Figure 1. The criterion for evaluating
successful H. pylori eradication was the results of 13/14C-UBT
or biopsies. The main information of the included literature has

Records identified through datebase searching
(n=2311)
Pubmed:62
Embase:687
Cochrane library:21
Web of science:1539
ClinicalTrails.gov:2

10.3389/fcimb.2022.913384

been listed in Supplementary Table 2, including the key
findings and specific comments of the study. After grouping
according to the treatment regimen, the specific information is
displayed in Supplementary Tables 3-5. All included studies
provided definite follow-up time, including 23 studies within 7-
day short-term follow-up, 22 studies with mid-term follow-up in
1-3 months, and 9 studies with long-term follow-up over 6
months (Supplementary Tables 6-8). Sensitivity analysis
showed that the listed results were stable. The quality
assessment is shown in Supplementary Figure 1 and Table 9.

3.2 Short-term and long-term alterations
in gastric microbiota after eradication

Of the 34 included studies, a total of six studies presented
gastric microbiota analysis, four of which included only gastric
data (Adamsson et al., 1998; Adamsson et al., 1999; He et al.,
2019; Guo et al., 2020; Sung et al., 2020; Yuan et al.,, 2021). After
arranging the provided data, it was found that all six studies only
concerned whether the changes in the microbiota before and
after treatment were statistically different, without specific data,
so meta-analysis could not be carried out (Supplementary
Table 10). Besides, inconsistent conclusions in different studies
regarding changes in the diversity.

3.3 Short-term and long-term alterations
in gut microbiota after eradication

3.3.1 Alterations in gut microbiota after
dual therapy

Only one of the included articles used dual therapy to
eradicate H. pylori and only provided significant differences

Gecords excluded (n=1853),

l with reasons:
Records after duplicates removed -Animal experiment(n=273) .
(n=1902) -Review,case report,letter,meeting/reference abstract
(n=1050)
-Not English(n=6)
-No Hp eradication or gastrointestinal microbiota appears in
Full texts assesed for eligibility K‘he title or abstract(n=524)
(n=49)
(Full texts excluded(n=15),
with reasons:
-not prospective study(n=9)
Studies included in the article -Subgroups of the same RCT (n=1)
(n=34) !No data of gastrointestinal microbiota(n=>5)

FIGURE 1
Literature screening flowchart.
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without specific available data (Supplementary Table 3). Due to
the small number of available studies and the limitation of
unanalyzable outcome data in the literature, meta-analysis of
the short-term or long-term effects of dual regimens on gut
microbes could not be carried out, and the effect of dual
regimens on gut microbes still needs further and high-quality
research to illustrate.

3.3.2 Alterations in gut microbiota after
triple therapy

There were a total of 21 articles on the changes in microbiota
after triple therapy, and the main information is listed in
Supplementary Table 4. At the phylum level, gut microbiota
are expressed by relative abundance (%), and at the family and
genus levels, gut microbiota are expressed by log CFU/g.
Considering the impact of antibiotic types on the flora, the
triple therapy regimens were further divided into
Metronidazole-containing regimen and Metronidazole-free
regimen. Antibiotic regimens administered in individual
studies are listed in Supplementary Table 4.

3.3.2.1 Alterations in gut microbiota after
Metronidazole-containing triple therapy

Five of the included studies used Metronidazole-containing
triple therapy, but only two studies provided data on the changes
in the microbiota at the family and genus levels 1-3 months after
eradication treatment. The analysis results are shown in
Figure 2. The results showed that the number of
Enterobacteriaceae (WMD = —0.22[-0.45, 0.00]) increased at
follow-up 1-3 months after treatment (Figure 2A). Meanwhile,
the number of Enterococcus did not differ significantly
(Figure 2B). Analysis could not be performed due to a lack of
microbiota data at the phylum level and other follow-up times.
In addition, the results of these two studies did not involve
statistics related to bacterial diversity.

A

base line 1

10.3389/fcimb.2022.913384

3.3.2.2 Alterations in gut microbiota after
Metronidazole-free triple therapy

At the phylum level, the data of Actinobacteria and
Bacteroidetes at 1-3 months after eradication treatment follow-up
were analyzed. The results showed that Actinobacteria decreased
(WMD =0.51 [0.46, 0.56] %) (Figure 3A). However, the difference
in the change in Bacteroidetes was not statistically significant
(Figure 3B). The results after more than 6 months after
eradication treatment follow-up showed that Actinobacteria
decreased (WMD = 2.22 [0.45, 3.99] %), while Bacteroidetes,
Firmicutes, and Proteobacteria showed no significant difference
(Figures 3C-F), which was consistent with the 1-3 month follow-
up. Age-based subgroup analysis results also showed differences in
Actinobacteria changes between adults and children (Figure 3G).

At the family and genus levels, within 7 days after
eradication treatment, the follow-up results showed a decrease
in the number of Lactobacillus (WMD = 1.10 [0.39, 1.80] log
CFU/g), whereas there was no significant difference in
Bifidobacterium and Enterobacteriaceae (Figures 3H-]).

A total of nine articles in Supplementary Table 4 recorded
whether the diversity change was significantly different, but there
was no consistent result in the diversity change among different
research results, so meta-analysis could not be conducted.

In addition, when subgroup analysis was performed on the two
major categories of triple therapy regimens, the available data
showed that the gut microbiota at the family and genus levels was
not significantly different within 7 days after eradication treatment
follow-up with the two triple regimens, but other follow-up time
points were due to the lack of data that could not be analyzed
temporarily (Supplementary Figures 2A-C).

3.3.3 Alterations in gut microbiota after
quadruple therapy

A total of 11 studies are listed in Supplementary Table 5,
four of which described the microbiota at the phylum level, gut
microbiota expressed by relative abundance (%), and two described
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Follow-up results at the family and genus levels after Metronidazole-containing triple therapy of (H) pylori. (A) Changes in Enterobacteriaceae at
1-3 months after eradication treatment follow-up. (B) Changes in Enterococcus at 1-3 months after eradication treatment follow-up.
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the microbiota at the species level, gut microbiota expressed by log
CFU/g. Another five had no data available for analysis. Quadruple
regimens are divided into Bismuth-containing quadruple and
Bismuth-free quadruple based on whether the regimen contains
bismuth. Only three studies used a Bismuth-free quadruple
regimen and two had the specific data, the specific information
about the antibiotic regimens administered in individual studies is
listed in Supplementary Table 5.

At the phylum level, data analysis within 7 days after
eradication treatment follow-up showed that Actinobacteria
(WMD = 2.52 [0.25, 4.80] %) and Bacteroidetes (WMD = 24.17
[20.00, 28.33] %) decreased, Proteobacteria (WMD = —52.10
[-63.74, —40.45] %) increased, and Firmicutes showed no
significant difference (Figures 4A-D). The results of 1-3 months
after eradication treatment follow-up showed that Bacteroidetes
(WMD = 11.24 [0.68, 21.81] %) decreased and Proteobacteria
(WMD = -9.48 [-15.98, —2.98] %) increased, while
Actinobacteria and Firmicutes changed with no difference
(Figures 4E-H). More than 6 months after eradication
treatment, the follow-up results showed that Actinobacteria
(WMD = 1.55 [0.03, 3.08] %) decreased, whereas other flora
basically recovered to the baseline level (Figures 41-L).

At the phylum level, within 7 days, compared with 1-3 months
after eradication treatment, the follow-up results. It was presented as
Actinobacteria (WMD = —-1.98 [-3.32, —0.64] %) and Firmicutes
(WMD = -24.51[-34.57, —14.44] %) increased, Proteobacteria
(WMD = —42.41 [23.66, 61.15] %) decreased, and there was no
significant difference in Bacteroidetes (Figures 5A-D). Within 7 days
compared with more than 6 months after eradication treatment
follow-up results, Bacteroidetes (WMD = —28.13 [-47.98, —8.28] %)
and Firmicutes (WMD = -18.74 [-29.11, —8.37] %) increased,
Proteobacteria (WMD = 49.75 [31.34, 68.15] %) decreased, and
there was no significant difference in the changes in Actinobacteria
(Figures 5E-H). When 1-3 months were compared with more than
6 months after eradication treatment follow-up results, an increase in
Bacteroidetes (WMD = —12.12 [-20.21, —4.04] %), a decrease in
Proteobacteria (WMD = 7.48 [0.86, 14.10] %), and changes in
Actinobacteria and Firmicutes were not significantly different
(Figures 5I-L).

At the family and genus levels, only one Bismuth-containing
quadruple regimen was available with detailed data and
therefore could not be analyzed.

Nine of the 11 studies listed provided significant differences in
diversity, and 8 follow-up data suggested a reduction in diversity within
7 days after radical treatment, a change that was inconsistent between
medium- and long-term follow-up (Supplementary Table 5).

3.4 Alterations in gut microbiota after
different therapies during follow-up

After analyzing the changes of gut microbiota in different
follow-up times after the same treatment, we re-analyzed
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whether there were differences in gut microbiota of different
treatment regimens at the same follow-up time. All included
studies provided definite follow-up time (Supplementary
Tables 6-8) and the result was shown in Figure 6.

3.4.1 Alterations in gut microbiota within 7
days after different therapies

At the phylum level, Actinobacteria decreased and
Proteobacteria increased for both the Bismuth-containing
quadruple therapy and Firmicutes showed a decreasing trend
only after treatment with the Reverse hybrid therapy, which was
inconsistent with the results for the Metronidazole-free triple
therapy (Figures 6A, C, D). Bacteroidetes showed a decreasing
trend only after treatment with Bismuth-containing quadruple
regimen(Figure 6B). At the family and genus levels,
Bifidobacterium tended to decrease after quadruple regimen
treatment (with or without bismuth), but not after triple
regimen (with or without metronidazole) (Figure 6E).
Enterobacteriaceae showed an increasing trend after
Metronidazole-containing triple therapy but no difference after
Metronidazole-free triple therapy (Figure 6F). Lactobacillus
declined after Metronidazole-free triple and Bismuth-
containing quadruple regimen but unchanged in other
regimens (Figure 6G).

3.4.2 Alterations in gut microbiota at 1-3
months after different therapies

At the phylum level, Actinobacteria showed a decreasing
trend only after Metronidazole free triple therapy (Figure 6H).
Bacteroidetes showed a decreasing and Proteobacteria showed an
increasing trend only after Bismuth-containing quadruple
regimen (Figures 61, K). Firmicutes decreased only after
Reverse hybrid therapy, which was inconsistent with other
treatments (Figure 6]). At the family and genus levels, there
was lack of studies to analyze.

3.4.3 Alterations in gut microbiota more than 6
months after different therapies

At the phylum level, Actinobacteria showed a decreasing
trend after Metronidazole-free triple and Bismuth-containing
quadruple regimens, which was inconsistent with other
regimens (Figure 6L). The changes of Bacteroidetes and
Proteobacteria after different treatment regimens were
consistent, and there was no significant difference
(Figures 6M, O). Firmicutes decreased only after Reverse
hybrid therapy, which was inconsistent with results from other
regimens (Figure 6N).

In summary, in order to easily see the changes in the gut
microbiota at different follow-up times after different treatment
regimens, the changes were listed in Table 1 in detail. The blank
space in the table indicated lack of data or no differences in
previous literature.
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FIGURE 4

Follow-up results after Bismuth-containing quadruple therapy of H. pylori at the phylum level. (A—D) Alterations in gut microbiota within 7 days
after eradication treatment follow-up. (E=H) Alterations at 1-3 months after eradication treatment follow-up. (I-L) Changes more than 6
months after eradication treatment follow-up.
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FIGURE 5

Comparison of results at different follow-up times after Bismuth-containing quadrupole therapy of H. pylori at the phylum level. (A-D) The
alterations in gut microbiota within 7 days and 1-3 months after eradication treatment follow-up. (E—H) Alterations compared within 7 days and
more than 6 months after eradication treatment follow-up. (I-L) Changes compared by 1-3 months and more than 6 months after eradication
treatment follow-up.
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FIGURE 6

Comparison of results at different follow-up times after
different treatments. (A—D) At the phylum level, alterations
in gut microbiota within 7 days. (E-G) At the family and
genus levels, alterations in gut microbiota within 7 days.
(H-K) Alterations in gut microbiota at 1-3 months. (L—O)
Alterations in gut microbiota more than 6 months.
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4. Discussion

The status of the gastrointestinal microbiota is a
consideration that clinicians need to evaluate following H.
pylori eradication, although the existing published studies
remain inconclusive concerning the short-term and long-term
effects of different eradication regimens on the gastrointestinal
microbiota. This study selected the form of meta-analysis to
summarize and analyze the prospective studies published thus
far on changes in the abundance and diversity of gastrointestinal
microbiota following H. pylori eradication treatment. This study
was the first to analyze gastrointestinal microbiota data at
different follow-up times according to the various
eradication regimens.

Due to the lack of specific data on gastric microbiota, meta-
analysis was not performed in this study, and more research is
needed in the future to provide information on changes in
gastric microbiota after H. pylori radical therapy.

After treatment with dual therapy, available follow-up data
suggested that the gut microbiota had returned to baseline at 1-3
months after eradication follow-up. The findings of Horii et al.
also suggest that Firmicutes decreased and Bacteroidetes

increased within 7 days after radical treatment. However,
there was only 1 literature supported this conclusion, which is
biased (Horii et al., 2021). Considering the pharmacological
effects of antibiotics themselves, the triple regimens were divided
into Metronidazole-containing triple therapy and
Metronidazole-free triple therapy. After Metronidazole-
containing triple therapy, the number of Enterobacteriaceae
increased at 1-3 months after the treatment follow-up, but the
number of Enterococcus did not differ significantly. Since few
studies were retrieved, analysis could not be performed due to a
lack of microbiota data at the phylum level and at follow-up
times. In addition, the results did not involve statistics related to
bacterial diversity. Therefore, more research is needed to explore
the effect of metronidazole-containing regimens on the
gastrointestinal microbiota. After Metronidazole-free triple
therapy, Actinobacteria decreased significantly at the phylum
level, and this trend lasted for more than 6 months, while at the
family and genus levels, Lactobacillus decreased within 7 days
after eradication. According to the drug types of the quadruple
regimen, the quadruple regimen was divided into Bismuth-
containing quadruple regimen and Bismuth-free quadruple
regimen. After the Bismuth-containing quadruple regimen
treatment, at the phylum level, the changes in Actinobacteria
fluctuated with the follow-up time, showed a downward trend
within 7 days after eradication, recovered to the baseline level at
1-3 months, and then decreased at more than 6 months of
follow-up. Bacteroidetes, a decrease in abundance, was indicated
at the 7-day and 1- to 3-month follow-ups, with no difference at
more than 6 months of follow-up. When the data at different
time points were compared, it was found that Bacteroidetes
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TABLE 1 Detailed list of gut microbiota changes.

Follow-up

Within 7
days

1-3 months

Over 6 months

Eradicationregimens

Dual therapy

Metronidazole-containing
triple therapy

Metronidazole-free
triple therapy

Bismuth-containing
quadruple therapy

Reverse hybrid therapy
concomitant therapy
Dual therapy

Metronidazole-containing
triple therapy

Metronidazole-free
triple therapy

Bismuth-containing
quadruple therapy

Reverse hybrid therapy
concomitant therapy
Dual therapy

Metronidazole-containing
triple therapy

Metronidazole-free
triple therapy

Bismuth-containing
quadruple therapy

Reverse hybrid therapy

Concomitant therapy

Phylum level(%)

Family and genus levels (log CFU/g)

Actinobacteria  Bacteroidetes

Increased
Decreased Decreased
Decreased
Decreased

Decreased
Decreased
Decreased

Firmicutes

Decreased

Decreased

Decreased

Decreased

Decreased

Decreased

Proteobacteria

Increased

Increased

Increased

Bifidobacterium Enterobacteriaceae

Decreased

Decreased

Increased

Enterococcus

Lactobacillus

Decreased

Decreased
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showed an upward trend, which also explained why the number
of Bacteroidetes returned to baseline levels at more than 6
months of follow-up. The changes in Firmicutes did not show
significant differences during the follow-up, but when the data at
different follow-up time points were compared in pairs, it was
found that the overall trend increased during the follow-up
period. Although the available data showed that Firmicutes
showed significant differences within 7 days, 1-3 months and
over 6 months of follow-up, this upward trend may be confirmed
at longer follow-up periods. The trend of changes in
Proteobacteria was relatively simple; the downward trend
lasted for 1-3 months after eradication and returned to
baseline levels over 6 months. When the data at different time
points were compared, it was found that Proteobacteria showed
a downward trend. Subgroup analyses indicated that age could
influence changes in the gastrointestinal microbiota, such as
differences at the phylum level between adults and children at
the 1- to 3-month follow-up after Metronidazole-free triple
therapy. Only three studies used Bismuth-free quadruple
regimen, and a meta-analysis could not be performed. Of the
three studies, one was reverse hybrid therapy (PPI, amoxicillin
for 14 days, clarithromycin and metronidazole in the initial 7
days) and two were concomitant therapy (PPI and three
antibiotics) (Wang et al, 2017; Hsu et al, 2019; Liou et al,
2019). Direct analysis was not possible due to inconsistent units
of microbiota data.

By analyzing different treatments at short-term follow-up,
the results showed that the changes in Actinobacteria and
Proteobacteria after Bismuth-containing quadruple regimen
and reverse hybrid regimen were consistent. The change of
Bacteroidetes was inconsistent that showed a decreasing trend
only after treatment with Bismuth-containing quadruple
regimen. The decreased trend in Bifidobacterium was
consistent across the quadruple regimen, with or without
bismuth. Enterobacteriaceae showed an increasing trend only
after Metronidazole-containing triple therapy. Lactobacillus
declined consistently after Metronidazole-free triple and
Bismuth-containing quadruple regimen. At mid-term follow-
up, the changes in the microbiota were not consistent, which
may be caused by the limited number of included literatures. At
long-term follow-up, the decreasing trend of Actinobacteria was
consistent in Metronidazole-free triple and Bismuth-containing
quadruple regimens.

Regarding the analysis of diversity, no matter which
eradication method was chosen, the decreasing trend of
diversity in the short term was consistent, but the results in
the medium-term and long-term follow-ups were quite different,
and further research is needed.

The dominant microbiota of the gastrointestinal tract
includes Actinobacteria, Bacteroidetes, Firmicutes,
Proteobacteria, Bifidobacterium, and so forth (Bik et al., 2006;
Sekirov et al,, 2010). It has been reported that Bacteroidetes and
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Bifidobacterium can produce short-chain fatty acids such as
butyrate, propionate and acetate to provide abundant energy
for the host (Macfarlane and Macfarlane, 2003; Sartor, 2008). In
addition, members of the genus Bacteroides, such as Bacteroides
thetaiotaomicron, which mainly organizes carbohydrate
metabolism, are closely related to body metabolism. Sharp
decreases in the dominant microbiota after the eradication of
H. pylori causes corresponding gastrointestinal symptoms, and
the most obvious symptom is diarrhea (Blaabjerg et al., 2017).

The target flora of different antibiotics was different. For
example, after treatment with amoxicillin, Clostridium
perfringens and Eubacterium rectum in Firmicutes were
reduced (Barc et al, 2004), Amoxicillin and clarithromycin
can reduce the relative abundance of Firmicutes (Oh et al.,
2016a), Actinobacteria were reduced by clarithromycin
treatment (Williams et al., 1992; Jakobsson et al., 2010).
Therefore, specific antibiotics must be considered when
exploring the effect of different treatments on the microbiota.

Of the 34 included studies, 14 used the addition of probiotics
as a control for conventional H. pylori eradication regimens to
study changes in microbiota. In these studies, the conclusions
showed that probiotics can alleviate the flora dysbiosis and
improve gastrointestinal symptoms caused by H. pylori
eradication to varying degrees, but the research also points out
that it may not be necessary to take probiotics alone in young
people with H. pylori infection (Yuan et al., 2021). This study
summarizes the changes of gut flora at different stages after
treatment with different regimens, so we hope to provide some
references for supplementing probiotics.

Although our study yielded some significantly different results,
there were some potential limitations. First, the sample size
included in the meta-analysis was relatively small. Although we
included as many articles as possible by broadening the search,
most of the articles lacked analyzable data and provided only
relevant significant differences, a problem that resulted in the
availability of fewer data for actual analysis. The statistical results
of gastrointestinal microbiota were also scattered, and the
gastrointestinal microbiota obtained by different studies had
diverse types, so it was difficult to merge the data. In addition,
when grouped by different regimens, the short-term, mid-term, and
long-term follow-up data may be incomplete, so some analyses
could only discuss the differences at a certain time point. On the
basis of the above points, small sample sizes could lead to unreliable
measurement results. Second, there seems to be some bias in this
study; for example, the choice of antibiotics in quadruple radical
therapy was associated with bacterial resistance and susceptibility,
which may have contributed to selection bias. The emergence of
heterogeneity was largely due to bias. Due to the small sample size
included in the study, bias could not be assessed well. Finally,
subgroup analyses demonstrated that age influenced the
microbiota results, but more quantitative results were lacking to
confirm further analyses.
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Conclusions

Different regimens used to eradicate H. pylori have varied
effects on the short-term and long-term abundance of the gut
microbiota, but a decrease of the microbial diversity was
consistent across all eradication regimens at the short-term
follow-up evaluations. This study provides some references for
supplementing probiotics before and after H. pylori eradication,
while further studies is needed to support these findings.
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