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In the human body, eachmicrobial habitat exhibits a different microbial population

pattern, and these distinctive microflorae are highly related to the development of

diseases. The microbial interactions from host different niches are becoming

crucial regulators to shape the microbiota and their physiological or pathological

functions. The oral cavity and gut are the most complex and interdependent

microbial habitats. Helicobacter pylori is one of the most important pathogens

from digestive tract, especially the stomach, due to its direct relationships with

many gastric diseases including gastric cancer. H. pylori infections can destroy the

normal gastric environment and make the stomach a livable channel to enhance

the microbial interactions between oral cavity and gut, thus reshaping the oral and

gut microbiomes. H. pylori can be also detected in the oral and gut, while the

interaction between the oral-gut axis microbiota andH. pylori plays a major role in

H. pylori’s colonization, infection, and pathogenicity. Both the infection and

eradication of H. pylori and its interaction with oral-gut axis microbiota can alter

the balance of the microecology of the oral-gut axis, which can affect the

occurrence and progress of related diseases. The shift of oral-gut axis

microbiota and their interactions with H. pylori maybe potential targets for H.

pylori infectious diagnosis and treatment.

KEYWORDS

Helicobacter pylori, oral-gut axis, oral microbiota, gut microbiota, interactions
between microorganisms
Introduction

The balance and dysbiosis of the human microbiome are inextricably associated with

health and disease (Hou et al., 2021). There are many different and specific microbial

habitats in the human body. Each microbial habitat shows a different microbial

population pattern, and the microbial interactions within the same niche or from

different niches are important for the microecological balance and host health

(Baquero et al., 2021). The oral cavity and gut are the most complex microbial
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habitats. The interaction between oral and gut microbiota is

complicated, unstable, and interconnected (Acharya et al., 2017).

Under normal physiological conditions, they can maintain a

fine-tuned balance, but the imbalance of crosstalk will contribute

to the occurrence and development of diseases (Albuquerque-

Souza and Sahingur, 2022).

The transmission of oral to gut and gut to oral

microorganisms can shape and/or reshape the microbial

ecosystem in both habitats and thus regulate the pathogenesis of

different diseases (Park et al., 2021), especially in cases of oral-gut

barrier damage (Khor et al., 2021). The composition of the gut

microbiota was similar to the oral microbiome under low gastric

acidity condition caused by the long-term usage of proton pump

inhibitors and the urease produced by infectedHelicobacter pylori,

further suggesting the interorgan translocation of the oral and gut

microbiota due to the oral-gut barrier dysfunction (Park et al.,

2021). H. pylori, a gram-negative human pathogen, has infected

approximately fifty percent of humans worldwide (Lee et al.,

2022). It is one of the most studied bacteria which can survive

stably in the gastric acid environment and has co-evolved with

humans for thousands of years (Kang and Blaser, 2006). Due to its

strong correlation with gastric cancer, the World Health

Organization’s International Agency for Research on Cancer

(IARC) classified H. pylori as “Group 1” carcinogen to humans.

H. pylori infection was capable to change the pH of the gastric

environment (Camilo et al., 2017), and it can transmit through the

oral-oral and fecal-oral route (Mégraud, 1995) to cause gastric

diseases including chronic gastritis, gastric ulcer, gastric

adenocarcinoma, etc. (Tsay and Hsu, 2018). The abundance of

H. pylori in the mouth is very low compared to that in the stomach

as it constituted approximately 42% – 97% of the total gastric

bacterial community (Schulz et al., 2018), but H. pylori can

significantly affect the oral community while some other

microorganisms can also affect its colonization in the oral cavity

(Vasapolli et al., 2019). H. pylori affects the microbiota and

diseases of the oral-gut axis (Mladenova and Durazzo, 2018) as

it connects the entire gastrointestinal tract through its

transmission route from mouth to the stomach.
Helicobacter pylori and
oral microbiome

Oral microbiome composition

As the initiation point of digestion, the oral cavity with its

unique niches, such as the gingival sulcus, the tongue, the hard

and soft palates, the saliva, and the teeth, is an exceptionally

complex habitat that presents over 700 species of microorganisms

including bacteria, fungi, viruses, and protozoa (Mark Welch

et al., 2019). Actinobacteria, Bacteroidetes, Firmicutes,

Proteobacteria, TM7 (Saccharibacteria), and Spirochaetes are

common bacteria at the phylum level, while Fusobacterium,
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Gemella, Haemophilus, Neisseria, Porphyromonas, Prevotella,

Streptococcus, Veillonella , Actinomyces , Alloprevotella,

Pseudomonas, Treponema, Solobacterium are common at the

genus level, which can be found in all the oral sites of healthy

subjects (Sharma et al., 2018b; Park et al., 2021). In particular,

Streptococcus was the most abundant genus which represented

12% to 66% of the total genera detected in the oral cavity. The

abundance of Neisseria, Prevotella, and Haemophilus genera were

also high, counting for 6% to 29% of the total bacteria detected

(Caselli et al., 2020). The oral microbiome is maintained in

homeostasis in the healthy state of the host (Lamont et al.,

2018), but the occurrence of host diseases will lead to the

imbalance of oral flora, indicating that the oral microbiome can

directly reflect the host health conditions (Hakansson et al., 2018).
Effects of oral microbiome on
Helicobacter pylori

The oral and gastric environments are linked together by

saliva and digested food (Freitas et al., 2018). A recent study

indicated that oral microbiome was the main source of gastric

microbes and was closely related to the infection and transmission

of H. pylori (Wu et al., 2021) (Table 1), and oral microorganisms

can impact the transmission and colonization of H. pylori (Kivi

and Tindberg, 2006). The main interaction patterns are

coaggregation, symbiotic biofilm formation, endosymbiosis, etc.

(Nobbs and Jenkinson, 2015; Chen et al., 2021b) (Figure 1).

Fusobacterium nucleatum and Porphyromonas gingivalis, key

bacteria in periodontal diseases, can aggregate with H. pylori

cells and the coaggregation was inhibited by EDTA, lysine, or

arginine in vitro, indicating the potential promotion of H. pylori

oral-to-stomach colonization by oral bacteria (Okuda et al., 2003;

Park et al., 2016). Streptococcus mutans, the major cariogenic

bacterium, can form a symbiotic biofilm with H. pylori to increase

its survival in the unsuitable environment of the mouth (Nomura

et al., 2020).

Candida albicans is the most common fungus in the human

body and its main habitats are the oral cavity, upper respiratory

tract, and intestinal tract (D'Enfert et al., 2020). C. albicans can

synergize withH. pylori to enhance its survival in an unfavorable

living environment and promote its colonization and the

infection (Chen et al., 2021b). H. pylori was found to enter C.

albicans yeast cells in the oral cavity and vagina, while the

intracellular H. pylori showed active motility even under high

temperature, dryness, and antibiotics conditions (Saniee et al.,

2013), indicating that the internalization synergistic relationship

can protect H. pylori from unsuitable conditions. H. pylori can

also anchor on the surface of the C. albicans and aggregate with

C. albicans to form a mixed biofilm (Palencia et al., 2022).

Besides the synergistic interaction betweenH. pylori and oral

microorganisms, some oral bacterial strains showed a hostile

relationship with H. pylori, such as S. mutans JP2 and Ingbritt,
frontiersin.org
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TABLE 1 Studies assessing the influence of Helicobacter pylori (H. pylori) infection on oral microbiota.

Author,
year

Study groups Age Sample Microorganisms’ changes after H.
pylori infection

Main findings

Increased Decreased

(Li et al.,
2021)

Oral lichen planus (OLP)
and negative control (NC):
21 were H. pylori (+) OLP, 9
were H. pylori (−) OLP, 11
were H. pylori (+) NC, 10
were H. pylori (−) NC

Adult Saliva phylum: Bacteroidetes
genus: Alloprevotella,
Haemophilus

phylum:
Proteobacteria,
Firmicutes
genus: Actinomyces

• H. pylori affects erosive OLP by inducing the
secretion of cytokines IL-6, IL-17, and IL-8,
which causes the abundance of oral
microorganisms in OLP patients to change.

(Ji et al.,
2020)

34 were H. pylori (+), 24
were H. pylori (−)

Adult Saliva Acinetobacter,
Ralstonia, Leptothrix,
Sphingomonas,
Ochrobactrum, Afipia,
Leptotrichia,
Oribacterium, Moryella

Alloprevotella,
Aggregatibacter,
Klebsiella,
Leptotrichlaceae:G_1_,
Fusobacterium,
Parvimonas,
Peptococcus

• H. pylori produces large amounts of urease,
which reduces the acidic environment in the
stomach thereby altering the oral microbial
community and structure.

(Kadota
et al.,
2020)

29 were H. pylori (+), 10
were H. pylori (−)

Adult,
elder

Saliva,
dental
plaque,
dental pulp

P. gingivalis, T.
denticola, T. forsythia

P. intermedia,
Prevotella nigrescens,
Campylobacter rectus

• The planting of H. pylori in the oral cavity
related to the existence of the red complex (P.
gingivalis, T. denticola, and T. forsythia).
• Low pathogenic periodontal bacteria have an
inhibitory effect on H. pylori, such as orange
complex (P. intermedia, P. nigrescens, and C.
rectus), and green complex (Capnocytophage
ochracea, Capnocytophage sputigena, A.
actinomycetemcomitans, and Eikenella corrodens).
• H. pylori is associated with the formation of
periodontal pockets.

(Zhao
et al.,
2019)

Gastritis: 13 were (CagA−)
H. pylori (+), 35 were (CagA
+) H. pylori (+), 32 were H.
pylori (−)

Adult,
elder

Tongue
plaque

After (CagA−) H. pylori infection • CagA positive strains of H. pylori can reduce
the structural complexity of oral microorganisms,
leading to a reduction in structural stability.

Bacteroidetes,
Firmicutes,
Fusobacteria

Actinobacteria,
Proteobacteria

After (CagA +) H. pylori infection

Actinobacteria,
Proteobacteria

Bacteroidetes,
Firmicutes,
Fusobacteria

(Chua
et al.,
2019)

10 were H. pylori (+), 14
were H. pylori (−)

Adult Cheek
mucosa

Pseudomonas,
Roseomonas

Fusobacterium,
Solobacterium,
Streptococcus,
Haemophilus

• H. pylori-positive individuals show more
differences than negative in both alpha and beta
diversity during the daytime.
• H. pylori disrupts the balance of the oral
microbiota only during the day by affecting
systemic metabolic and immune factors.
• H. pylori secretes proteins and metabolites, as
well as alters the nutrient supply and pH in the
oral cavity through proliferation, which affects
the growth and structure of the oral microbiome
during the day.

(Schulz
et al.,
2018)

Gastritis: 16 were H. pylori
(+), 24 were H. pylori (−)

Adult,
elder

Saliva genus: Treponema genus: Haemophilus
species: P. acnes, P.
oris

• Bacteria can migrate continuously through the
upper gastrointestinal tract, demonstrating that
saliva is a major source of gastric
microorganisms.

(Hu et al.,
2016)

Chronic periodontitis: 13
were H. pylori (+), 15 were
H. pylori (−)

Adult Plaque P. gingivalis, P.
intermedia, F.
nucleatum, T. denticola

A.
actinomycetemcomitans

• H. pylori infection increases the risk of
periodontal disease by increasing the proportion
of total periodontal pathogens in dental plaque.

(Umeda
et al.,
2003)

Once or now suffering from
gastritis and peptic ulcer: 45
were H. pylori (+), 12 were
H. pylori (−)

Adult,
elder

Saliva,
supragingival
plaque,
tongue
plaque

Bacteroides forsythus,
A.
actinomycetemcomitans

P. gingivalis, P.
intermedia

• Supragingival plaque and shallow periodontal
pockets provide a good environment for H.
pylori and also promote the co-aggregation of H.
pylori with oral microorganisms, thus increasing
the prevalence of H. pylori.

(Continued)
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Streptococcus sobrinus 6715, and three Prevotella species

significantly inhibited the growth of H. pylori in vitro, and this

growth inhibitory activity was affected by heat and protease

treatments (Ishihara et al., 1997).
Effect of Helicobacter pylori on
the oral microbiome

H. pylori infection can disrupt oral microbiome homeostasis

through the interplay with multiple members of the oral

microbial community, such as H. pylori supernatant could

inhibit S. mutans and Streptococcus sanguinis dual-species

biofilm formation and their EPS production in vitro studies,

but enhance the acid production of S. mutans to increase the

abundance of S. mutans in this acidic condition as S. mutans is

more acid resistant than S. sanguinis (Zhang et al., 2018).

However, H. pylori-induced oral microbiome changes may

differ under different oral samples and various host health
FIGURE 1

The changes and interactional mechanisms of H. pylori and oral microbiota. Th
co-aggregation, endosymbiosis, and formation of symbiotic biofilm. The eradica
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conditions. Without oral and gastrointestinal diseases, several

studies have determined the different changes of the microflora

caused by H. pylori from different oral ecological niches. By

sequencing the bacterial 16S rRNA gene V3-V4 hypervariable

regions in saliva samples, the alpha diversity ofH. pylori-infected

subjects was similar to that of uninfected subjects, but for buccal

swab samples, a and b diversity changed significantly in H.

pylori-positive individuals compared to H. pylori-negative

individuals (Ji et al., 2020). H. pylori infection had a significant

effect on the abundance of both Pseudomonas and Rosemonas

genera and significantly decreased the abundance of

Haemophilus, and Streptococcus in cheek mucosa samples, but

the saliva samples showed no significant changes (Chua et al.,

2019). These results indicate that H. pylori infection showed

different effects in oral niches.

The interaction between H. pylori and oral microorganisms

can differ from that of asymptomatic H. pylori-positive people

with oral disease or gastrointestinal disease. The increase of

certain oral bacteria was positively correlated with the
TABLE 1 Continued

Author,
year

Study groups Age Sample Microorganisms’ changes after H.
pylori infection

Main findings

Increased Decreased

(Ishihara
et al.,
1997)

Peptic ulcer or gastritis: 54
were H. pylori (+), 48 were
H. pylori (−)

Adult,
elder

Saliva,
plaque,

F. nucleatum, P.
gingivalis

– • Antagonism of oral bacteria against H. pylori
can lead to its low detection rate

(Ji et al.,
2020)

34 were H. pylori (+), 24
were H. pylori (−)

Adult Saliva After H. pylori eradication • H. pylori produces large amounts of urease,
which reduces the acidic environment in the
stomach thereby altering the oral microbial
community and structure.

Increased Decreased

phylum: Fusobacteria
genus: Leptotrichia,
Campylobacter,
Pseucomonas

genus: Alloprevotella,
Aggregatibacter
e interactions between H. pylo
tion of H. pylori infection can
ri and oral microbiome may act through
also affect the oral microbiota.
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colonization of H. pylori. For example, the Bacteroidetes at

phylum level increased in Oral lichen planus (OLP) patients

with H. pylori infection, while there was a positive correlation

between H. pylori infection and the relative abundance of

Haemophilus and Alloprevotella at the genus level (Li et al.,

2021). When H. pylori infection was accompanied by

gastrointestinal diseases, such as gastritis, an increase in

Treponema at the genus level was detected in the oral cavity

(Schulz et al., 2018), but some oral microorganisms showed

opposite changes in abundance, such as the decreasing trend of

Haemophilus at the genus level, Propionibacterium acnes,

Prevotella oris, P. gingivalis, and Prevotella intermedia at the

species level were also observed in gastrointestinal disorders

patients with H. pylori infection, indicating the different

interaction between H. pylori and gastrointestinal diseases on

oral microbiome (Umeda et al., 2003; Schulz et al., 2018).

The expression of virulence factors of H. pylori may also

affect the oral microbiome. The abundance of Actinobacteria

and Proteobacteria was increased, while the abundance of

Bacteroidetes, Firmicutes, and Fusobacteria was decreased

from the tongue plaque samples of CagA-positive H. pylori-

infected patients, but these changes were totally reversed in the

CagA-negative H. pylori-infected patients (Zhao et al., 2019).

The H. pylori eradication can also cause the changes of oral

microbiome. In saliva samples from patients without severe oral

diseases, such as periodontitis and OLP, the eradication

treatment of H. pylori decreased the salivary bacterial diversity,

but the genera Lautropia, Burkholderiales, Burkholderiaceae,

and Actinomyces were enriched (Ji et al., 2022). Another study

found that the eradication of H. pylori was followed by a relative

increase of most oral bacteria, including Ralstonia, Leptotrichia,

Sphingomonas, Leptothrix, Oribacterium, and Acinetobacter,

except for Ochrobactrum (Ji et al., 2020). More importantly,

the experiment also revealed that H. pylori eradication

exacerbates the changes in oral microorganisms caused by H.

pylori infection, for example, Alloprevotella, Aggregatibacter,

Leptotrichlaceae:G_1_, Parvimonas, and Fusobacterium would

further decrease in number (Ji et al., 2020). In conclusion, the

infection/eradication ofH. pylori can change the structure of oral

microorganisms, and thus may affect the development and

progress of oral diseases.
Oral diseases and Helicobacter pylori

The infection of H. pylori is highly correlated with oral

diseases (Perez-Perez et al., 2004; Anand et al., 2006), and the

shift of oral microbial community induced by H. pylori is one of

the potent reasons for the oral diseases (Martin and Solnick,

2014). Periodontitis, a commonmicrobiome-driven inflammatory

disease (Hajishengallis, 2022), was highly related to H. pylori

infection. P. gingivalis, as an established pathogenic agent

of periodontitis (Miller and Scott, 2021), had a positive
Frontiers in Cellular and Infection Microbiology 05
correlation with H. pylori. In chronic periodontitis patients with

H. pylori infection, the red complex associated with periodontal

disease was significantly increased in plaque, including P.

gingivalis, Treponema denticola, Tannerella forsythia (Hu et al.,

2016), indicating thatH. pylori infectionmay promote periodontal

disease. However, the orange and green complex showed low

abundance in H. pylori-positive individuals (Kadota et al., 2020).

H. pylori and increased P. gingivalis due toH. pylori infection, can

both produce heat shock protein 60 (HSP60), which can target

human HSP60 and aggravate the progression of periodontitis

(Matsuura et al., 2008; Rizzo et al., 2012). H. pylori infection was

also closely correlated to the erosive OLP (Li et al., 2021) as H.

pylori infection increased the production of inflammatory

cytokines IL-6 and IL-8, while these inflammatory cytokines

may regulate the oral immune microenvironment through

blood to exacerbate the inflammatory response in oral cavity

(Du Teil Espina et al., 2019). There was also a strong correlation

between H. pylori infection and halitosis, but the mechanism was

not clear as it was difficult to determine whether the halitosis was

induced by H. pylori in the stomach or caused by the changes of

oral microflora induced byH. pylori infection (Anbari et al., 2019).

A study analyzed the correlation between Behçet’s syndrome (BS)

and H. pylori infection and found that BS patients had a higher

rate of H. pylori infection, and the clinical symptoms including

oral ulceration, genital ulceration, and cutaneous lesions could be

improved afterH. pylori eradication (Yu et al., 2019). However, its

specific mechanism remains to be explored.

H. pylori infection is closely related to a variety of oral

diseases, but traditional antibiotic therapy is increasingly difficult

to eradicate H. pylori in the stomach, however, periodontal

therapy, adjunctive treatment of traditional antibiotic therapy,

had been shown to play an important role in the eradication of

gastric H. pylori (Ren et al., 2016). It can also effectively reduce

the oral pathogenic bacteria enriched by H. pylori infection to

achieve the prevention and treatment of oral diseases (Okuda

et al., 2003).
Helicobacter pylori and
gut microbiome

Gut microbiome
The gut is the largest microbial ecosystem in the human body

which contains approximately 500 to 1000 species in more than 50

different phyla (Qin et al., 2010). The human gut microbiome is

established early in life and can be altered by host diet, lifestyle factors,

and health status (Shanahan et al., 2021). The childhood/adolescent

gut communities are enriched in Bifidobacterium spp.,

Faecalibacterium spp., and members of the Lachnospiraceae family

(Hollister et al., 2015). In contrast, the adult gut microbiome is more

stable, and it is seemed that the environmental factors play a much

greater role than genetic factors (Spor et al., 2011). The gut
frontiersin.org
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microbiota, mainly anaerobic, consists of five major phyla including

Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and

Verrucomicrobia, while Cyanobacteria and Fusobacteria are

presented in a minor proportion (Sekirov et al., 2010; Ghosh and

Pramanik, 2021). Various disease states are directly related to the gut

microbial diversity and their functions (Baruch et al., 2021; Davar

et al., 2021), therefore, gut microbiota can reflect host age, health

conditions, behaviors, and lifestyles (Zmora et al., 2019).
Effect of Helicobacter pylori on
the gut microbiome

As an important member of the gut ecosystem, H. pylori can

influence the gastrointestinal microbiota through host-microbial

or microbial-microbial interactions (Schulz et al., 2018; Noto

et al., 2019) (Table 2). H. pylori can regulate the gut

microenvironment in different ways (Figure 2). The virulence

factors secreted by H. pylori may affect the gut microbiota. In a

transgenic Drosophila model heterologously expressed the H.

pylori virulence factor CagA, the expression of CagA alone

shifted the gut microbial community, such as the proliferation

of Lactobacillus brevis was significantly increased (Jones et al.,

2017). H. pylori infection could also induce the secretion of

different gastrointestinal hormones (He et al., 2016). The

increased gastrin release was found in H. pylori-positive

subjects and the hormone levels remodeled the intestinal

metabolism, thereby affecting the gut microbiome, such as the

level of leptin was positively correlated with the quantity of

Bifidobacterium and Lactobacillus (Mohammadi et al., 2020). H.

pylori may also influence the abundance of Lactobacillus,

Allobaculum, Turicibacter, and Anaeroplasma by elevating the

secretion of ghrelin (Kienesberger et al., 2016). H. pylori can

affect the gut microbiota by changing the pH of the colonic

environment. H. pylori decreased the acidity of the colon to

cause a decrease in Bacteroidetes and an increase in Firmicutes

and Proteobacteria in the fecal microbiota (Gao et al., 2018; Hold

and Hansen, 2019). The infection of H. pylori was accompanied

by an increase of Lactobacillus salivarius and a decrease of

Lactobacillus acidophilus, which was also related to the

decrease of gastric acid secretion (Iino et al., 2018). H. pylori

infection may also modulate the immune response to affect the

gut microbiota (Ge et al., 2018). H. pylori-positive patients

exhibited a decreased number of short-chain fatty acids

(SCFAs) producing gut bacteria, which played important roles

in modulating intestinal homeostasis (Smith et al., 2013), leading

to the enrichment of Prevotella copri (Sitkin et al., 2022). In

addition, H. pylori infection also affected the growth of many gut

microorganisms, commonly including Desulfovibrio, Prevotella,

Haemophilus, Bacteroides, Parasutterella, Pseudoflavonifractor

at the genus level, Candida glabrata, Enterobacter cloacae,

Klebsiella pneumoniae, Sutterella wadsworthensis, Bacteroides
Frontiers in Cellular and Infection Microbiology 06
vulgatus, Escherichia coli at the species level (Dash et al., 2019;

Frost et al., 2019; Martıń-Núñez et al., 2019; Wang et al., 2019),

but the mechanisms remain to be explored.

H. pylori eradication also affects gut bacteria through different

mechanisms. For example, H. pylori may compete for the

nutrition to affect the gut microbiota, as the capacities of

nutrient metabolism were restored after the eradication of H.

pylori, and the abundance of Actinobacteria, Bacteroidetes,

Firmicutes, and Fusobacteria at the phylum level, Lactobacillus,

and Bifidobacterium at the genus level were increased significantly

(Tao et al., 2020). After the eradication of H. pylori, the pH in the

stomach significantly decreased, which led to the decrease in the

Bacteroidetes-to-Firmicutes ratio and the enrichment of

Bifidobacterium-related taxa in gastrointestinal microbiota (Guo

et al., 2020). The eradication of H. pylori was usually achieved by

bismuth-containing quadruple therapy (BQT) (Rimbara et al.,

2011). However,H. pylori eradication with BQT also reshaped the

structure of the gut microbiota, including changes in bacterial

abundance at the genus level and species level (He et al., 2019;

Martıń-Núñez et al., 2019; Sung et al., 2020). After the BQT, most

of the changed bacteria returned to normal levels, except for those

belonging to Ruminococcaceae, Lachnospiraceae, and

Eubacterium, as some beneficial bacteria belonged to

Lachnospiraceae and Ruminococcaceae, and the major butyrate-

producing bacteria were still kept in a decreased level (Chen et al.,

2018). Some pathogenic bacteria such as Acinetobacter baumannii

NIPH60, Klebsiella sp., and Haemophilus sp. were also increased

After the BQT (Chen et al., 2018). It is also worth noting that

probiotic supplementation in BQT for H. pylori eradication,

reversed the long-term influence in the gut microbiome caused

by the use of antibiotics and improved gastrointestinal symptoms,

although no significant differences in eradication rates were

observed (Chen et al., 2018). However, whether the changes in

gut microbiology afterH. pylori eradication are related toH. pylori

itself or BQT is still unclear and needs to be further investigated.
Gut diseases and Helicobacter pylori

The disturbance of the oral-gut axis microbiota is closely

related to the occurrence and development of gut diseases,

including inflammatory bowel disease (IBD) and colorectal

cancer (CRC), etc. (Park et al., 2021), while H. pylori infection

enriched some bacteria played key roles in gut diseases, such as

F. nucleatum, P. gingivalis, and so on. IBD, including Crohn’s

disease (CD) and ulcerative colitis (UC), is closely linked with

oral-gut axis microbiome dysbiosis (Lee and Chang, 2021). IBD

patients exhibited the increase of intestinal epithelial

permeability due to the impacts on mucosal barrier (Sharma

et al., 2018a). F. nucleatum, a common bacterium in oral cavity,

which can be increased after H. pylori infection, was

significantly enriched in the gut of IBD patients, but rarely in
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TABLE 2 Studies assessing the influence of Helicobacter pylori (H. pylori) infection on gut microbiota.

Author,
year

Study
groups

Age Sample Microorganisms’ changes Main findings

After H. pylori infection After H. pylori eradication

Increased Decreased Increased Decreased

(Sung
et al.,
2020)

H. pylori (+)
patients: 295
were BQT
(+), 292 were
BQT (−)

Adult,
elder

Gastric
biopsy
tissue

– – genus: Ralstonia,
Granulicatella,
Actinomyces,
Rothia,
Peptostreptococcus,
Streptococcus,
Abiotrophia,
Parvimonas
species: A. lwoffii,
S. anginosus

genus:
Haemophilus,
Neisseria,
Actinobacillus

• H. pylori
eradication
promotes the
enrichment of
intestinal
protective bacteria
and facilitates the
treatment of
precancerous
lesions.

(Wu et al.,
2019)

duodenal
ulcer (DU):
40 were H.
pylori (+), 20
were H.
pylori (−)

Adult,
elder

Feces genus: Faecalibacterium,
Ruminococcus, Escherichia,
Akkermansia

phylum:
Gemmatimonadetes,
Nitrospirae,
Chlorobi, WS3
genus: Bacteroides,
Roseburia, Prevotella,
Bifidobacterium,
Actinobacteria,
Caldithrix,
Lachnospira, Termi

– – • H. pylori
eradication therapy
significantly
reduces gut
microbial diversity
of duodenal ulcers,
which can be
improved by
supplementation
with Bacillus
subtilis and
Enterococcus
faecium (BSEF).

(Dash
et al., 2019;
Frost et al.,
2019;
Martıń-
Núñez
et al., 2019;
Wang
et al.,
2019)

392 were H.
pylori (+),
465 were H.
pylori (−)

Adult,
elder

Feces family: Coriobacteriaceae,
Enterococcaceae,
Rikenellaceae
genus: Succinivibrio,
Turicibacter, Desulfovibrio,
Prevotella, Haemophilus
species: C. glabrata, P. copri,
E. cloacae, K. pneumoniae

genus: Bacteroides,
Parasutterella,
Pseudoflavonifractor
species: B. vulgatus,
S. wadsworthensis, E.
coli

phylum:
Bacteroidetes
genus: Megamonas
species: Bacteroides
fragilis

phylum:
Actinobacteria,
Firmicutes,
Proteobacteria
family:
Rikenellaceae,
Streptococcaceae,
Turicibacteraceae,
Ruminococcaceae,
Oxalobacteriaceae,
Bifidobacteriaceae
genus:
Butyricimonas,
Streptococcus,
Turicibacter,
Oscillospira,
Oxalobacter
species:
Eubacterium
biforme,
Oxalobacter
formigenes

• H. pylori
infection indirectly
causes vitamin B12
deficiency by
affecting the
categories and
function of gut
microorganisms.
• Eradication of H.
pylori affects
bacteria associated
with the regulation
of glucose
homeostasis in the
gut microorganism
and could be a
new target for
glycemic
improvement.
• The disorders of
the gut microbial
group caused by
H. pylori infections
can destroy the
intestinal barrier
and increase the
susceptibility to
the disease.
• H. pylori
infection increases
the biodiversity of
gut
microorganisms,
thus enhancing
stability against
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Frontiers in
 Cellular and I
nfection M
icrobiolog
y 07
 frontiersin.org

https://doi.org/10.3389/fcimb.2022.914418
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fcimb.2022.914418
TABLE 2 Continued

Author,
year

Study
groups

Age Sample Microorganisms’ changes Main findings

After H. pylori infection After H. pylori eradication

Increased Decreased Increased Decreased

external
disturbances

(Iino et al.,
2018; He
et al.,
2019)

gastritis: 236
were H.
pylori (+),
531 were H.
pylori (−)

Adult Feces species: L. salivarius species: L.
acidophilus

genus:
Lactobacillus,
Prevotella,
Streptococcus,
Acinetobacter,
Bacteroides,
Bifidobacterium,
Blautia,
Lachnoclostridium

genus: Alistipes • After eradication
of H. pylori by
BQT, the
abundance and
diversity of gut
microorganisms
decreases in the
short term, but
gradually returns
to the level of
healthy individuals
• H. pylori
infection and
subsequent
atrophic gastritis
reduces gastric
acid secretion,
resulting in
compromised
diversity and
function of
Lactobacillus in the
gut microflora.

(Schulz
et al.,
2018)

gastritis:16
were H.
pylori (+), 24
were H.
pylori (−)

Adult,
elder

Duodenal
aspirate
and
biopsy
tissue

phylum: Proteobacteria,
Bacteroidetes

phylum: Firmicutes
family:
Rhodobacteriaceae,
Lachnospiraceae
genus: Actinomyces
species: Salmonella
infantis,
Campylobacter
gracilis,
Staphylococcus
aureus, Enterococcus

– – • H. pylori affects
the bacterial
community in the
duodenum and
distinguishes
between host
effects and
sampling regions
on the bacterial
community.

(Gao et al.,
2018)

24 were H.
pylori current
infection, 23
were H.
pylori
previous
infection

Adult,
elder

Feces Gemella,
Erysipelotrichaceae_UCG_004

Acidovorax,
Rhodococcus

– – • Intestinal
microbial
homeostasis is
affected by H.
pylori infection,
which leads to the
promotion of
gastrointestinal
precancerous
lesions.

(Chen
et al.,
2018)

35 were H.
pylori (+) in
14-day BQT,
35 were H.
pylori (+) in
14-day
Clostridium
butyricum
supplemental
BQT, 35 were
H. pylori (−)

Adult,
elder

Feces – Nitrospirae Proteobacteria,
Cyanobacteria

Firmicutes,
Bacteroidetes,
Verrucomicrobia,
Lentispaerae

• Long-term
fluctuations in the
gut microbiome
caused by the use
of antibiotics to
eradicate H. pylori
are harmful to the
organism, but
probiotics can be
supplemented to
improve
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the healthy individuals (Lavelle and Sokol, 2020). It can

exacerbate colitis by disrupting the epithelial barrier and

inducing aberrant inflammation (Liu et al . , 2020).

Meanwhile, oral dysbiosis in patients with periodontitis can

directly modulate the pathogenesis of IBD through the

recruitment of the oral-gut axis (She et al., 2020). Specifically,

P. gingivalis, a key pathogen of periodontitis, destroyed the gut

barrier function by inducing the depression of tight junction

proteins and causing dramatic alterations in the gut
Frontiers in Cellular and Infection Microbiology 09
microbiome, including the enrichment of the Clostridiaceae

family, thus promoting the gut and systemic inflammation

(Kato et al., 2018; Kobayashi et al., 2020).

The imbalance of intestinal microecology due to H. pylori

infection may also be associated with a series of other systemic

diseases. Numerous retrospective cohort studies indicated that

there was a correlation between positive H. pylori serological test,

gut flora disturbance, and the incidence of Alzheimer’s disease

(Baj et al., 2021). The gut microbiota creates a natural protective
FIGURE 2

The changes and interactional mechanisms of H. pylori and gut microbiota. H. pylori infection can regulate the gut microbiota through 1.
secretion of virulence factors; 2. mobilizing antibacterial peptides; 3. nutrition competition; 4. inducing or reducing the secretion of
gastrointestinal hormones; 5. changing the pH of the environment; 6. affecting the immune response.7. eradication of infection.
TABLE 2 Continued

Author,
year

Study
groups

Age Sample Microorganisms’ changes Main findings

After H. pylori infection After H. pylori eradication

Increased Decreased Increased Decreased

gastrointestinal
symptoms.

(Benavides-
Ward
et al.,
2018)

28 were H.
pylori (+), 28
were H.
pylori (−)

Children Feces phylum: Proteobacteria,
Firmicutes
genus: Clostridium, Prevotella

– – – • H. pylori-positive
children have a
twofold chance of
having an
increased variety
and number of
microorganisms in
their colon tract
compared to
normal individuals.
• H. pylori infects
the absorption of
nutrients by gut
microorganisms
and increases
susceptibility to
intestinal diseases.
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barrier, and secrets numerous neurotransmitters and

neuromodulators, such as serotonin, g-aminobutyric acid,

dopamine, or SCFA including acetate, propionate, and butyrate

to defend against microorganisms and endotoxin translocation

(Paone and Cani, 2020), however, the H. pylori infection could

remodel the gut microbiota, which may affect the function of the

nervous system by inducing the degeneration and loss of neurons

(Baj et al., 2021). Other systematic diseases related to gut

microbiota, such as inflammation, dyslipidemia, hyperglycemia,

arteriosclerosis, and hypertension could also be affected by H.

pylori infection through its impacts on the changes in gut

microbiota (Beydoun et al., 2018). However, its specific

mechanism of action remains to be explored.

Probiotics appear to be an effective way to prevent and treat

related diseases by regulating the balance of microbiota. Probiotics

are defined as living microbial species, including bacteria and

yeast, with the capabilities of regulating the host immune

functions or by preserving the balance of intestinal flora,

promoting nutrient absorption and maintaining intestinal health

(Chee et al., 2020; Da Silva et al., 2021). They can be used to treat

gastrointestinal disorders, sometimes in combination with other

drugs (Domingo, 2017), to improve the balance of gut microbiota,

enhance the production of short-chain fatty acids, and interact

with host cells such as immune, nerve, and endocrine cells in the

gastrointestinal tract (Hori et al., 2020). Therefore, for H. pylori-

infected patients, probiotics may be an effective alternative to the

antibiotic eradication therapy of H. pylori. The mechanisms of

probiotics acting on H. pylori are mainly due to the following

ways: 1. Probiotics secreted various antibacterial substances such

as lactic acid, acetic acid, and hydrogen peroxide to inhibit the

growth of H. pylori (Kim et al., 2003); 2. Probiotics can adhere to

the receptor through non-specific competition to inhibit the

adhesion of H. pylori on the gastric epithelial cells (Johnson-

Henry et al., 2004); 3. Probiotics can restore the secretion of gastric

mucus, which was significantly reduced in the patients’ gastritis

because of the gastric epithelium damage or proliferation (Mack

et al., 2003); 4. Probiotics can interact with epithelial cells and

promote the secretion of anti-inflammatory cytokines to reduce

the host’s immune response (Gill, 2003). Therefore, probiotics can

be used as new agents to regulateH. pylori infection and its effects

on gut microbiome by providing effective prevention and control

of gastrointestinal diseases.
Oral–gut microbiota in gastric
disease and cancer

The pathogenicity ofH. pylorimainly depends on its flagella,

helical structure, lipopolysaccharide, cytotoxin-related protein,

vacuolar toxin, and other pathogenic factors (Yamaoka, 2010),

and its infection is closely related to chronic gastritis, peptic

ulcer, gastric mucosa-associated lymphoid tissue lymphoma,
Frontiers in Cellular and Infection Microbiology 10
gastric cancer, and other diseases. H. pylori also showed

synergistic effect on the oral-gut axis commensal microbiota

(Wong et al., 2019). Bacteria in the oral cavity and gut may be

associated with the gastric cancer and be served as a diagnostic

biomarker for gastric cancer (Park et al., 2021). For example,

oropharyngeal or intestinal commensals such as Streptococcus,

Bifidobacterium, Lactobacillus, Veilonella, Klebsiella, Escherichia,

Pseudomonas, Neisseria, Staphylococcus, and Bacillus were all

related to the development of gastric cancer as patients with

gastric cancer had higher bacterial counts of these species than

patients with other gastric diseases (Chen et al., 2021a).

The oral and gut are anatomically belonged to the digestive

tract and are well-linked physically and chemically (Park et al.,

2021). Under healthy conditions, the microbiota of these two

habitats is separated, but under pathological conditions, they may

enhance their communications (Seedorf et al., 2014). Common

oral flora, such as Porphyromonas, Fusobacterium, Pseudomonas,

Haemophilus, and Veillonella, can be detected in the gut of the

elderly and patients with low gastric acid (Odamaki et al., 2016;

Iwauchi et al., 2019). The stomach is anatomically located between

the oral cavity and the gut. The gastric diseases are also

significantly related to the microbiome of the oral-gut axis

(Olsen and Yamazaki, 2019). In the oral cavity of chronic

gastritis caused by H. pylori infection, low levels of F. nucleatum

and P. gingivalis were detected (Contaldo et al., 2021). In the oral

cavity of gastric cancer patients, pro-inflammatory taxa such as

Corynebacterium and Streptococcus were enriched, but

Haemophilus, Neisseria, Parvimonas, Peptostreptococcus,

Porphyromonas, and Prevotella were reduced, indicating that the

salivary microbiota was involved in gastric cancer pathogenesis by

inducing the accumulation of pro-inflammatory bacteria and the

reduction of carcinogenic N-nitroso compounds as Haemophilus

and Neisseria can reduce the nitrite (Huang et al., 2021).

Antibiotics and proton pump inhibitors which are used to treat

H. pylori infection can reduce the diversity of microorganisms in

the stomach and reduce gastric acid secretion to increase the

translocation of microorganisms from the oral-gut axis, such as

more oral predominant flora can be found in the stomach (Khor

et al., 2021). However, the specific mechanisms remain to be

further explored.
Conclusion

H. pylori infection has a great impact on the microbiome of

the oral-gut axis and has played important roles in the

maintenance of host health and the development of oral, gut,

and systematic diseases (The Integrative HMP (iHmp) Research

Network Consortium, 2019; Park et al., 2021). However, their

interactions are dynamic due to the possible reasons: 1. the growth

conditions are different between in vivo and in vitro experiments;

2. the body’s immune defense and microbial composition are

diverse under different host health conditions; 3. Different strains
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from the same genus or species may show different pathogenicity.

Therefore, the interaction between H. pylori and oral-gut axis

microbiota under different conditions is important for the

prediction, prevention, and treatment of diseases, but the

evaluations of detailed mechanisms are still needed.
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