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Several variants of concern (VOCs) explain most of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) epidemic waves in Europe. We aimed

to dissect the spread of the SARS-CoV-2 VOCs in the Canary Islands (Spain)

between December 2020 and September 2021 at a micro-geographical level.

We sequenced the viral genome of 8,224 respiratory samples collected in the

archipelago. We observed that Alpha (B.1.1.7) and Delta (B.1.617.2 and

sublineages) were ubiquitously present in the islands, while Beta (B.1.351) and

Gamma (P.1/P.1.1) had a heterogeneous distribution and were responsible for

fewer and more controlled outbreaks. This work represents the largest effort

for viral genomic surveillance in the Canary Islands so far, helping the public

health bodies in decision-making throughout the pandemic.
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Introduction

The continuous emergence and international widespread of

variants of concern (VOCs) of the severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) have revealed the

occurrence of multiple viral spike gene mutations that

promote increased transmissibility and some degree of

immune escape (Tao et al., 2021). In response, the public

health system activated the organization of centers for routine

viral genome surveillance starting in mid-January 2021 in our

laboratories, which were later distinguished as the Reference

Centre for the Network of COVID-19 Genomic Surveillance in

the Canary Islands.

We have previously tracked the entrance and surge of one of

the three most widely distributed VOCs, B.1.1.7 [Pango lineage

nomenclature (Rambaut et al., 2020)], or Alpha variant (WHO,

2022), in December 2020 in Tenerife (Alcoba-Florez et al., 2021)

due to the island direct flight connections with the United

Kingdom where it may have originated. This lineage has been

associated with increased transmissibility (Davies et al., 2021;

Volz et al., 2021) compared to the previously circulating

variants, a feature that has been linked to the presence of the

mutation N501Y in the Spike (S) receptor-binding domain

(RBD). Other VOCs that have also emerged in late 2020 are

B.1.351, or the Beta variant, and P.1/P.1.1, or the Gamma

variant, firstly identified in South Africa (Tegally et al., 2021)

and in Brazil (Faria et al., 2021), respectively. These lineages have

been associated with increased transmission (Faria et al., 2021;

Pearson et al., 2021; Tegally et al., 2021) and carry multiple

mutations affecting the RBD, most importantly the N501Y (such

as Alpha), as well as K417N/K417T and E484K that reduce the

effectiveness of some vaccines (Garcia-Beltran et al., 2021) and

specific monoclonal antibody treatments (Greaney et al., 2021;

Harvey et al., 2021). Later in time, lineage B.1.617.2, or the Delta

variant, was identified in India where it was responsible for a

surge of coronavirus disease 2019 (COVID-19) cases in April

2021 (Dhar et al., 2021). The Delta (B.1.617.2) variant presented

additional mutations, such as the L452R in the RBD and the

P618R, and has been characterized by higher transmissibility

(Campbell et al., 2021b) and reduced sensitivity to antibody

neutralization (Planas et al., 2021; Wall et al., 2021) and vaccine

effectiveness (Lopez Bernal et al., 2021; Planas et al., 2021). From

the Delta variant, numerous sublineages have emerged,

reporting the presence of additional mutations such as the

Y145H and the Y222V in the N-terminal domain of the S

protein found in the AY.4.2 lineage (Gangavarapu et al., 2022),

which was suggested to be more transmissible than the original

variant (Public Health England, 2021). Delta and its sublineages

became prevalent and completely displaced Alpha worldwide

throughout the summer of 2021 (WHO, 2022).

Here, we describe the introduction and temporal evolution

of these four VOCs in the Canary Islands (Spain). The

archipelago is formed by eight islands, four occidental
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(Tenerife, La Palma, La Gomera, and El Hierro) belonging to the

Tenerife province and four oriental islands (Gran Canaria,

Fuerteventura, Lanzarote, and La Graciosa) belonging to the Gran

Canaria province (Figure 1). Throughout the study period (18

December 2020 to 29 September 2021), there were a total of 70,401

reported COVID-19 cases and 489 COVID-19 deaths in the

archipelago, with the islands of Tenerife and Gran Canaria

accounting for most of them (60,069 COVID-19 cases and 421

deaths) (https://opendata.sitcan.es/dataset/datos-epidemiologicos-

covid-19).

The relative geographical isolation of the archipelago and its

islands and their central role as a hub for international tourism and

in the European migratory crisis have shaped the COVID-19

pandemic and delineated the introduction and spread of these

VOCs in the territory. In fact, the first SARS-CoV-2 outbreaks in

Spainwere detected in LaGomera andTenerife islands (January and

February 2020, respectively; available reports from: https://www.

isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/

EnfermedadesTransmisibles/Documents/INFORMES/Informes%

20COVID-19/Informe%20COVID-19.%20N%c2%ba%201_

11febrero2020_ISCIII.pdf).
Methods

Design and sample collection

The study was conducted at the University Hospital Nuestra

Senãora de Candelaria (HUNSC) (Santa Cruz de Tenerife,

Spain). The institutional review board approved the study

(approval number: CHUNSC_2020_24). We assessed

nasopharyngeal swabs from COVID-19/SARS-CoV-2 patients

from 18 December 2020 to 27 September 2021. Routine

COVID-19 testing in the centers was conducted using diverse

commercial RT-qPCR alternatives, as described elsewhere

(Alcoba-Florez et al., 2020). In line with the guidelines

indicated by the ECDC (European Centre for Disease

Prevention and Control, 2021) and assuming a prevalence of

10,000 positive cases per month in the territory (https://opendata.

sitcan.es/dataset/datos-epidemiologicos-covid-19), we estimated

the sequencing of 12,000 samples a year for accurate tracking of

viral variants (at 50% accuracy in prevalence estimates).
Viral genome sequencing and
classification

Samples were selected for sequencing if they showed a cycle

threshold (Ct) ≤30 for any of the amplicon targets included in

the COVID-19 diagnostic kits. Libraries were prepared following

either the Midnight protocol v.4 (Freed et al., 2020) by means of

the Rapid Barcoding kit (SQK-RBK004, Oxford Nanopore

Technologies) and sequenced on a MinION and an R9.4 flow
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cell (Oxford Nanopore Technologies) for 6 h or the COVIDSeq

Test (Illumina, Inc.) protocol based on the ARTIC V3 amplicons

and sequenced on a NextSeq 550 (Illumina) instrument on High

Output mode with 36-bp single- or pair-end (after 7 September

2021) reads following the procedures described elsewhere

(Alcoba-Florez et al., 2021; Ciuffreda et al., 2021). Positive and

negative amplification controls were included in each run (one

for each fraction of 94 samples).

The RAMPART (v.1.2.0) software package was used for real-

time monitoring of the MinION sequencing run. Reads were

basecalled and demultiplexed with Guppy 4.2.2 (high-accuracy

mode), and the ARTIC Network bioinformatics procedures

(https://github.com/artic-network/artic-ncov2019) were used

for read filtering (by length, 250–1,500 bp), consensus

assembly, and variant calling (nanopolish workflow with

maximum coverage of 200×). The COVIDSeq Test reads were

processed as described elsewhere (Alcoba-Florez et al., 2021)

based on the DRAGEN COVIDSeq Test v1.2.2 pipeline and the

DRAGEN Lineage v3.5.3 (Illumina, Inc.). Nextclade v.0.14.3

(Aksamentov et al., 2021) was used for variant calling and

functional predictions. In the final analysis, sequences having a

genome coverage less than 70% of the entire SARS-CoV-2

sequence and having a QC classified as “bad” by Nextclade

software were excluded. Pangolin v3.1.1 (O’Toole et al., 2021b)

was used for the classification of the consensus sequences.

Microbetrace v0.8.2 (Campbell et al., 2021a) was used for
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cluster investigation together with epidemiological data from

the public health authorities.
Results

An overview of COVID-19 cases and sequenced samples in

the Canary Islands throughout the study period is presented in

Figures 2, S1. Of the 70,588 positive samples collected in the

archipelago from 18 December 2020 to 27 September 2021,

11,956 (16.9%) were sequenced using either Illumina sequencing

(11,936) or Oxford Nanopore Technologies (20). Of these, 8,224

samples passed the QC filtering steps and had an assigned

lineage. In the period, 3,447 samples (41.9%) were assigned to

Alpha, 138 (1.7%) to Beta, 47 (0.6%) to Gamma, and 3,262

(39.7%) to Delta and sublineages of Delta [1,066 (12.9%)], while

1,330 (16.1%) were assigned to other non-VOC lineages. Within

the Delta sublineages, AY.4 (153) and AY.12 (119) were the most

commonly found throughout the period. None of the Delta

sublineages was assigned to AY.4.2 (also known as Delta plus).

The temporal distribution of the different VOCs in the

Canary Islands is represented in Figure 3. Since there were

relatively few samples sequenced from two of the smallest islands

[La Gomera (n = 17) and El Hierro (n = 50)] (Figure S1) and the

samples from La Graciosa were collected within those from

Lanzarote, we excluded these islands from the following
FIGURE 1

Geographical location of the Canary Islands with respect to the Iberian Peninsula and Northwest Africa.
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description. As it was previously reported for Tenerife alone

(Alcoba-Florez et al., 2021), the first description of Alpha in the

Canary Islands occurred around 23 December 2020 and was

associated with an increase in the 14-day accumulated incidence

(Figure 3A). After that, the replacement of non-VOC lineages by

the Alpha variant occurred more sharply in Gran Canaria and

Lanzarote than in the other islands (Tenerife, Fuerteventura, and

La Palma) with almost the totality of sequenced cases belonging

to Alpha already by early February 2021 (Figures 3B, C).

Apart from a first imported case in La Palma at the end of

January 2021 due to a traveler returning from Cameroon,

community transmission of the Beta variant in the archipelago

was first identified in the island of Gran Canaria, where a large

cluster of 46 cases was observed between the end of March and

mid-May 2021. At the beginning of April, a second small cluster

of six cases was observed in Gran Canaria with no apparent

connection to the first one. In Tenerife, three small clusters of an

average of four cases were observed, one at the beginning of

April and two throughout June. In mid-May, a second big cluster

of 58 cases was observed in Gran Canaria that lasted up to the

beginning of August, when the last case of this variant was

observed. Almost no cases of the Beta variant were found on any

other island throughout the study period. Cases of the Gamma

variant were scarce and observed in Tenerife, Gran Canaria, La

Palma, and Lanzarote up to the end of May 2021, when a cluster

of 24 P.1.1 cases was observed in Fuerteventura. The

Fuerteventura outbreak was associated with a religious

celebration involving local residents and foreign visitors and

lasted up to the middle of June. An overview of the Canary

Islands archipelago geography and of the heterogeneous

distribution of Beta and Gamma variants in the archipelago is

presented in Figure 4.

Alpha, Beta, and Gamma lineages were replaced by the Delta

variant that started circulating in Tenerife at the beginning of

June 2021 (the first case detected in Tenerife on the 17th of May)
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followed by its identification in all other islands probably due to

multiple introductions of this variant in the archipelago. The

presence of Delta was associated with a rapid surge of COVID-

19 cases in all islands when the archipelago entered the fifth

wave, and the highest number of cases was reached since the

beginning of the pandemic. From the end of July 2021, the

previous heterogeneous distribution of VOCs in the different

islands converged to a similar figure, with Delta becoming

prevalent and almost completely displacing all other variants

circulating in the archipelago. At the beginning of August, the

sublineages of Delta (mainly AY.4 and AY.12) started circulating

in the islands, completely superseding Delta by the end of

September 2021.
Discussion

In this work, we dissected the spread of VOCs in the Canary

Islands archipelago in the period between mid-December 2020

and late September 2021. Through genome sequencing and

lineage assignment of more than 8,000 SARS-CoV-2-positive

nasopharyngeal swab samples, we were able to track the

spatiotemporal distribution of the variants Alpha, Beta,

Gamma, and Delta in the archipelago. We observed that the

viral sequences detected in the islands were characterized by a

diverse epidemiological background and variant distribution

throughout the study, which can be largely explained by their

geographical isolation and heterogeneous population size. While

Alpha spread ubiquitously across the archipelago early after its

first appearance in the island of Tenerife, Beta and Gamma

variants were observed only in some of the islands and not in

others. Beta was observed in the archipelago from late January

up to August 2021, and its spatial distribution was mainly

circumscribed to the islands of Gran Canaria and Tenerife,

even though it was already present in several European
FIGURE 2

Number of cases, sequenced samples, and the 14-day accumulated incidence (AI; continuous line) throughout the study period in the Canary
Islands archipelago.
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countries by mid-January (O’Toole et al., 2021a), representing

up to 20% and 8% of cases in Austria and France, respectively, at

that moment (Hodcroft, 2021). Cases associated with the

Gamma variant were also relatively few, with a small cluster of

cases observed in Tenerife in late January 2021, followed by

isolated cases in the other islands. The largest Gamma cluster

was a P.1.1 cluster observed in Fuerteventura. Both Beta and
Frontiers in Cellular and Infection Microbiology 05
Gamma did not spread throughout the archipelago such as

Alpha did, something that was also observed in other

European countries (Hodcroft, 2021). We can attribute this to

two factors: 1) Alpha was largely spread in Europe and

worldwide at that time, something that increases the likelihood

of multiple introductions of this variant in the different islands of

the archipelago; 2) travel restrictions were in place during the
A

B

C

FIGURE 3

Proportion of variants of concern (VOCs) and the 14-day accumulated incidence throughout the study period for (A) the Canary Islands as a
whole and disaggregated by island for (B) the Tenerife province and (C) the Gran Canaria province. Black lines depict the 14-day accumulated
incidence. AY.X denotes the sublineages of Delta (B.1.617.2).
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early months of 2021 (up to May 2021) and limited the spread of

Beta and Gamma once they were introduced. When Delta

emerged, it was associated with a surge of cases in the

archipelago throughout the summer, mimicking what occurred

in the United Kingdom (Riley et al., 2021) and in the rest of

Europe (Hodcroft, 2021). We attribute this not only to the

intrinsically higher transmissibility of the Delta variant

compared to the previously circulating VOCs (Campbell et al.,

2021b) but also to the concurrent lifting of COVID-19

restrictions in the archipelago and nationwide. Since August

2021, we observed the emergence of diverse Delta

sublineages (AY.4 and AY.12), similar to what occurred

worldwide throughout the summer (Angeletti et al., 2021;

Eales et al., 2021).

In summary, as a response to the COVID-19 pandemic, we

established a network for genomic surveillance of SARS-CoV-2

in the Canary Islands based on two sequencing technologies,

leveraging homogeneous and centralized processing of samples,

efficient sequencing workflows, rigorous data quality control,

and accurate sequence classification. To do so, we relied on both

previously existing capacities and human resources in the

involved laboratories and the rapid dissemination of

information over VOCs and open-source bioinformatics tools

made available by researchers worldwide. We managed to

sequence more than 15% of COVID-19 cases of the

archipelago in the study period, aligning our sequencing

strategy to the WHO and the ECDC recommendations. We
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recognize sampling bias as a limitation of our study, with sample

collection being not proportional to the number of cases in all

islands. In fact, the island of Tenerife always had the highest

percentage of sequenced samples mainly because the network

was physically located in the island and therefore sample

logistics was easier. Despite this, we managed to efficiently

identify and track all VOCs in the Canary Islands since

December 2020 and promptly inform the public health

authorities in the region.
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