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pediatric leukemia and
lymphoma patients are
associated with increasing
opportunistic pathogens and
decreasing bacteria responsible
for activities that enhance
colonic defense
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Due to decreased immunity, both antibiotics and antifungals are regularly used

in pediatric hematologic-cancer patients as a means to prevent severe

infections and febrile neutropenia. The general effect of antibiotics on the

human gut microbiome is profound, yielding decreased diversity and changes

in community structure. However, the specific effect on pediatric oncology

patients is not well-studied. The effect of antifungal use is even less

understood, having been studied only in mouse models. Because the

composition of the gut microbiome is associated with regulation of

hematopoiesis, immune function and gastrointestinal integrity, changes

within the patient gut can have implications for the clinical management of

hematologic malignancies. The pediatric population is particularly challenging

because the composition of the microbiome is age dependent, with some of

the most pronounced changes occurring in the first three years of life. We

investigated how antibiotic and antifungal use shapes the taxonomic

composition of the stool microbiome in pediatric patients with leukemia and
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lymphoma, as inferred from both 16S rRNA and metagenome data. Associations with

age, antibiotic use and antifungal use were investigated using multiple analysis

methods. In addition, multivariable differential abundance was used to identify and

assess specific taxa that were associated with multiple variables. Both antibiotics and

antifungals were linked to a general decline in diversity in stool samples, which

included a decrease in relative abundance in butyrate producers that play a critical

role in host gut physiology (e.g., Faecalibacterium, Anaerostipes, Dorea, Blautia),.

Furthermore, antifungal use was associated with a significant increase in relative

abundance of opportunistic pathogens. Collectively, these findings have important

implications for the treatment of leukemia and lymphoma patients. Butyrate is

important for gastrointestinal integrity; it inhibits inflammation, reinforces colonic

defense, mucosal immunity. and decreases oxidative stress. The routine use of broad-

spectrum anti-infectives in pediatric oncology patients could simultaneously

contribute to a decline in gastrointestinal integrity and colonic defense while

promoting increases in opportunistic pathogens within the patient gut. Because the

gut microbiome has been linked to both short-term clinical outcomes, and longer-

lasting health effects, systematic characterization of the gut microbiome in pediatric

patients during, and beyond, treatment is warranted.
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Introduction

The healthy gastrointestinal tract (GIT) contains a large and

complex microbial community of commensal bacteria, archaea,

eukaryotes, and viruses, which is referred to as the GIT

microbiome. The GIT microbiome benefits the host (Bäckhed

et al., 2005; Ley et al., 2006; Ley et al., 2008) through beneficial

interactions between the GIT microbiome and the host, These

interactions include, facilitating metabolic functions (nutrient

production, and digestion), providing protection from

pathogens, and participating in immune-system regulation

(Bäckhed et al., 2005; Ley et al., 2006; Finke, 2009; Hill and

Artis, 2010; Cheng et al., 2019; Khan et al., 2021). The GIT

microbiome is now thought to affect most host physiological

functions, either directly or indirectly. When the GIT

microbiome is disturbed it can result in an imbalance in the

normal physiological relationship between host and

microbiome, often referred to as dysbiosis. When in a

dysbiotic state, healthy host functions can be compromised,

either due to a reduction in beneficial bacteria and their

metabolic products (e.g., butyrate production) or to an

increase in opportunistic pathogens. Some combination of

these changes is thought to contribute to a variety of diseases

(Bäckhed et al., 2004; Manichanh et al., 2012; Morgan et al.,

2012; Aydin, 2017; Akshintala et al., 2019; Gérard and Vidal,

2019). Factors that contribute to changes in the microbiome
logy 02
include age, diet, medication, infection, disease, host genetic

factors, immune response, and environmental exposure.

However, healthy human microbiomes are naturally dynamic

in composition and not all these factors will necessarily play a

role in the origin of dysbiosis.

The composition of the GIT microbiome impacts both the

pathogenic development of cancer, as well as the efficacy of

treatments (Alexander et al., 2017; Geller et al., 2017; Chau et al.,

2021; Nearing et al., 2019; Thomas et al., 2019; Huang et al.,

2020; Lucafò et al., 2020; Rotz and Dandoy, 2020; Song et al.,

2020). This relationship is bidirectional in that both the

treatments of cancer, and the pathological state can influence

the composition of the GIT microbiome (Rajagopala et al., 2016;

Helmink et al., 2019; Oldenburg et al., 2021). As such, dysbiosis

can both cause, and be a result of, cancer. Therefore,

understanding and characterizing the GIT microbiome in

pediatric cancers, and how it changes with treatment, has

broad implications in clinical management. The typical

approach involves measuring bacterial genes present in the

stool, which is easier to collect and serves as a proxy for the

GIT (for this reason the term GIT microbiome, for both this

study and the broader literature, will refer to a microbiome

inferred from a stool sample). Assessing the GIT microbiome is

especially relevant when microbial activities and immune

function are interdependent (Frank et al., 2007; Mukherjee

et al., 2014; Khosravi et al., 2014; Shi et al., 2017; Iwamura
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et al., 2017). Mouse studies have demonstrated that regulation of

hematopoiesis depends on sensing of microbes (Khosravi et al.,

2014; Iwamura et al., 2017). In hematologic malignancies there

can be both dysbiosis of the GIT microbiota and dysregulation of

the immune system (see Uribe-Herranz et al., 2021 for review).

We believe that improved knowledge of microbiome changes

resulting from cancer treatments (e.g., prophylactic use of

antifungals and antacids), and their impact on the

physiological relationship between host and microbiome, could

inform clinical decision-making to optimize patient outcomes.

The pediatric population is particularly challenging because

the composition of the microbiome is age dependent, with some

of the most pronounced changes occurring in the first three

years of life (Palmer et al., 2007; Koenig et al., 2011; Yatsunenko

et al., 2012). The microbiome becomes more stable after the age

of three in which there is a shift towards a more adult-like

microbiome (Palmer et al., 2007; Koenig et al., 2011; Yatsunenko

et al., 2012). Compositional changes that occur during this time

include increasing alpha-diversity, increased Bacteroides and

species of the Firmicutes phylum, and a decrease in

Proteobacteria and bifidobacteria (Palmer et al., 2007; Koenig

et al., 2011; Yatsunenko et al., 2012). For this reason, it is

important to differentiate between patient populations above

and below three-years of age when characterizing the effect of a

clinical intervention on the patient microbiome.

Children with hematologic malignancies exhibit GIT

microbiome dysbiosis compared to healthy controls (Liu et al.,

2020). This difference is, in part, due to exposure to

chemotherapeutic agents. As patients undergo chemotherapy

the composition of their microbiomes change significantly

compared to its state prior to treatment (Rajagopala et al.,

2016). Changes attributed to chemotherapeutic agents include

loss of diversity, and decreases in Firmicutes taxa Anaerostipes,

Coprococcus, Roseburia, and Ruminococcus (Rajagopala

et al., 2016).

Exposure to anti-infectives including antibiotics and

antifungals also contributes to the origin of dysbiosis. Patients

with hematologic malignancies have immune dysfunction and

are particularly susceptible to infectious disease. As such,

pediatric hematologic cancer patients receive prophylactic

antibiotic treatment (Lehrnbecher et al., 2020). Patients who

develop life-threatening infections, and febrile neutropenia, are

often treated with additional broad spectrum empiric anti-

infectives including antibiotics and/or antifungals (Rasmy

et al., 2016). While broad spectrum anti-infectives are critical

for patient survival in the short term, they can further

dysregulate their GIT microbiota and thereby increase the

probability of life-threatening infections over the longer term

(Oldenburg et al., 2021). The interactive effect of chemotherapy

and additional broad spectrum anti-infectives on GIT dysbiosis

has not been investigated in pediatric hematologic

cancer patients.
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The progression and outcome of hematologic cancer has

been associated with a patient’s stool microbiome composition

(Montassier et al., 2016; Hakim et al., 2018; Nearing et al., 2019;

Jain et al., 2021; Doocey et al., 2022). For example, certain

microbes present in the stool of pediatric hematologic cancer

patients prior to induction chemotherapy may serve as

biomarkers to predict infectious complications and febrile

neutropenia in subsequent phases of treatment (Hakim et al.,

2018; Nearing et al., 2019). Furthermore, the diversity and

relative abundance of microbes in the stool has been linked to

how patients with hematologic cancers respond to

chemotherapy, hematopoietic stem cell transplants, and

monoclonal antibody therapy (Galloway-Peña et al., 2017).

Thus, the potential to optimize the clinical management of

hematologic cancers will depend on improved knowledge of

both (i) GIT microbial dysbiosis (as inferred from stool)

associated with hematologic cancers and (ii) changes to the

microbiome that result from the interactive effects of common

cancer treatments.

Here we examine the impact of age, antibiotic, and antifungal

exposure on the microbiome composition of patients undergoing

similar chemotherapeutic treatments. We hypothesize that patients

under three will have a more limited microbiome and different

composition than those over three. In addition we hypothesize that

exposure to antibiotics, and antifungals will result in decreased

diversity and compositional changes. We will assess the impact of

these variables on the stool microbiome separately and in

combination, and examine what role the identified taxonomic

changes might play. We will use both 16S rRNA and auxiliary

taxonomic markers derived from metagenome sequence data to

assess compositional differences between these patient groups and

examine concordance between these different markers.
Methods

We investigated 134 stool samples collected throughout the

course of treatment from 47 pediatric patients undergoing care

at the IWK Health Centre, Nova Scotia, Canada with leukemia,

and lymphoma (table 1). Among the 47 patients were 33 acute

lymphoblastic leukemia (ALL), 5 acute myeloid leukemia

(AML), 4 hodgkin’s lymphoma (HL), and 5 non-hodgkin’s

lymphoma (NHL) patients. Ninety-seven stool samples were

collected from the 33 ALL patients (1 - 11 samples per patient

average 2.9 samples). Twenty-two stool samples from the 5 AML

patients (1-11 per patient, mean 4.4), five stool samples from the

4 HL patients (1-2 per patient, mean 1.25), and 10 stool samples

from the 5 NHL patients (1-3 samples per patient mean 2). Data

on age, sex, antibiotic, and antifungal use, and days from start of

chemotherapy were recorded for each sample.

Stool samples were stored at -20°C immediately following

collection and for transport, and were transferred to a -80°C
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freezer until analysis. Total stool DNA was extracted from each

sample using QIAGEN PowerFecal DNA kit. Both 16S rRNA

amplicon sequencing and whole genome shotgun metagenomic

sequencing were performed on the extracted DNA.
16S rRNA gene data

The V4-V5 variable region of the 16S rRNA gene was amplified

by using polymerase chain reaction from extracted DNA using

conditions and primers outlined in the Microbiome Helper

protocol (Comeau et. al., 2017). The amplified products were

sequenced on the Illumina MiSeq (paired-end 300 bp) at the

Integrated Microbiome Resource of Dalhousie University, Nova

Scotia, Canada. Analysis of 16S rRNA gene sequences employed the

standard Microbiome Helper workflow pipeline (Comeau et al.,

2017). Specifically, primers were removed using cutadapt (Martin,

2011) and sequences were imported into QIIME2 (Bolyen et al.,

2019). Paired-end reads were joined using VSEARCH (Rognes et.

al., 2016), and deblur (Amir et. al., 2017), with a trim length of 360

nucleotides, was used to correct reads and obtain amplicon

sequence variants (ASVs). ASVs account for sequencing error by

considering frequencies of sequences and result in a single sequence,

which can be compared to future samples. ASVs with a frequency
Frontiers in Cellular and Infection Microbiology 04
less then 0.1% of mean sequence depth were removed. MAFFT

(Katoh and Standley, 2013) was used to align ASV sequences and

SEPP-tree (Price et al., 2009) for tree construction. Taxonomic

assignment was done with classify-sklearn in QIIME2 using the

SILVA rRNA database (SILVA-132-99-16S_V4.V5_515F_926R)

(Quast et al., 2013). ASVs were collapsed to species levels

assignments for subsequent analyses using QIIME2 “taxa

collapse” option with level set to 7. Only species that occurred in

10% of samples were used in subsequent analyses.
Shotgun metagenome data

Shotgun metagenome sequences were obtained using

Nextera XT (Illumina) libraries prepared from purified DNA.

Libraries were pooled and subjected to paired-end NextSeq

(Illumina Hi-Output 300 cycle kit) sequencing (150 bp).

Sample processing followed the standard operating procedure

outlined in microbiome helper (Comeau et al., 2017). The

kneaddata pipeline was used with Trimmomatic (Bolger et al.,

2014) to remove low quality sequence reads (reads < 50 base

pairs, and with PHRED<Q20 were removed), and human and

PhiX174 contaminates were removed using Bowtie2 (Langmead

and Salzberg, 2012). MetaPhlAn3 (Beghini et al., 2021) was used
TABLE 1 Patient and sample population information.

Total ALL AML HL NHL

Patient information

Number of patients 47 33 5 4 5

Male 23 17 2 2 2

under 3 11 8 2 0 1

antibiotic use 43 32 5 2 4

antifungal use 29 21 5 0 3

average courses of antibiotic (min;max) 7.1 (0;28) 7.0 (0;28) 14.4 (5;25) 1.25 (0;3) 5.6 (0;13)

average courses of antifungal (min;max) 2.8 (0;16) 2.3 (0;8) 8.6 (5;16) 0 2.6 (0;5)

patients with pre-treatment samples 21 13 5 2 1

patients with first 30 days samples 30 21 3 2 4

patients with day 31-180 samples 20 13 3 1 3

patients with beyond 180 days samples 13 12 1 0 0

Stool information

Stool samples collected 134 97 22 5 10

Male samples 64 52 3 3 6

average number of samples per patient (min;max) 2.9 (1;11) 2.9 (1;11) 4.4 (1;11) 1.3 (1;2) 2.0 (1;3)

under 3 samples 49 40 8 0 1

samples with antibiotic use 15 days prior 71 44 20 2 5

samples with antifungal use 15 days prior 46 25 16 0 5

pre-treatment samples 22 13 6 2 1

first 30 days samples 41 31 3 2 5

day 31-180 samples 52 35 12 1 4

samples beyond 180 days 19 18 1 0 0

average number of day between start of chemotherapy and stool sample (min;max) 80.5
(-5;471)

94.2
(-5;471)

58.5
(-5;183)

14.4
(-5;38)

29.7
(-1; 91)
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to profile the taxonomic composition of the microbial

community from the sequence read data, and read counts of

taxa for each sample were obtained using the “–t

rel_ab_w_reads_stats” option. Only species that occurred in

10% of samples were used in downstream analyses.

The paired trimmed quality controlled and decontaminated

sequences were concatenated, and HUMAnN3 (Beghini et al.,

2021) was used to assign reads to Metacyc pathways (Caspi et al.,

2020). The pathway counts files for each sample were combined

and normalized as counts per million sequence reads. Only

pathways that occurred in 10% of samples were used in

downstream analyses.
Analyses

Relative abundance of taxa was assessed for both datasets.

Alpha-diversity (Shannon diversity, Chao-1, and Faith’s

phylogenetic diversity) was obtained from count data for both

16S rDNA (16S) ASVs, and metagenome sequence (MGS)

species data using the R packages phyloseq (McMurdie and

Holmes, 2013) and vegan (Oksanen et al., 2020). Changes in

alpha diversity (Shannon diversity, Chao-1, and Faith’s

phylogenetic diversity) with age, antibiotic use, antifungal use,

sex, treatment time, and cancer type were assessed (Wilcoxon

test or Kruskal-Wallis test) for significance (a<0.05).
Differential abundance analyses were performed on count

data to examine if specific taxa were associated with metadata

variables of interest. As there is no consensus opinion on the

method of analysis for this type of data, and as different

methodologies can yield differing results, we followed the

recent recommendation of Nearing and co authors (2022) and

utilized several methods to assess robustness of the taxa

identified. Methods examined included: 1.) The Wilcoxon test

on CLR transformed data. 2.) An ANOVA-like differential

expression (ALDEx2) (Fernandes et al., 2014) analysis using

CLR transformation accounting for the geometric mean of the

denominator two ways (all features and inter-quartile log ratio).

3.) Linear discriminant analysis with effect size (LEfSe) (Segata

et al., 2011). 4.) Microbiome multivariate association with linear

models (MaAsLin2) (Mallick et. al., 2021), using either default

normalization and transformation (TSS and LOG) or using the

CLR transformed data. Note that for methods 1, 2 & 4 the

significance threshold was adjusted according to the Benjamini-

Hochberg (BH) method (Benjamini and Hochberg, 1995) to

control the expected proportion of false discoveries (FDR). For

method 3 we started with the p-values computed by LEfSe,

filtered them according to the BH method, and then restricted

our selection criteria to a linear discriminate value >2 among the

subset inferred to control the FDR (a<0.05). Note that these

methods differ in whether they account for the compositional

nature of the data, how transformation and normalization of the

data were performed, and what statistical distributions were
Frontiers in Cellular and Infection Microbiology 05
used, for a detailed comparisons see Nearing et al. (2022). The

methods of Wilcoxon (CLR), ALDEx2 (CLR), and MaAsLin2

(CLR) take the ratio of read counts of all taxa within a sample as

the reference for that sample to account for the compositional

nature of the data, while the other methods do not. All four

methods were used to separately analyze age, antibiotic use, and

antifungal use. In addition, we utilized MaAsLin2 with the CLR

transformation to carry out a joint analysis of the variables

simultaneously for association with the microbial community

composition and to examine functional changes.
Results

Patient population

The 134 samples from 47 patients were grouped by age at

diagnosis. Forty-nine stool samples from 11 patients were under

the age of 3 (U3) and 85 stool samples from 36 patients were

over the age of 3 (O3). Males and females were represented

equally, with 49% of patients and 48% of stool samples collected

from males. The collection of stool samples occurred at various

time points during chemotherapy. The average number of days

between start of chemotherapy and stool sample collection was

80.5 and ranged from 5 days before to 471 days after start of

chemotherapy (Table 1).

Prophylactic antibiotic use (septra - sulfamethoxazole/

trimethoprim) occurred in all patients and was not included in

the count of additional antibiotic use within this study as it was

continuously present. Anti-infective status corresponded to

antibiotics and antifungals given to patients (see Table 2)

required for treating infections and or febrile neutropenia

episodes as per institutional protocols. Beyond prophylactic

antibiotic use, 4 patients received no additional antibiotics

while the remaining 43 patients received between 1 and 28

courses of antibiotics with an average of 7.8 courses (average 7.1

when patients with no antibiotic use were included; Table 1).

Twenty-nine patients received antifungal treatment, while 18

patients did not. From one to 16 courses of antifungals were used

among patients treated with an average of 4.5 courses (average

2.8 courses when patients with no antifungal use were included;

Table 1). The 4 patients that received no additional antibiotics

also received no antifungals, while the remaining 14 patients that

did not receive antifungals received between 1 and 6 courses of

antibiotics with an average of 3.1 courses of antibiotics.

“Antibiotic use”, in this study, refers specifically to intervention

with additional antibiotics in the 15 days before stool sample

collection. Among the 134 stool samples collected, 71 samples

were assigned to the antibiotic use group (ab+) and the remaining

63 samples to no antibiotic use (ab-). Likewise, “antifungal use”

refers specifically to a prescribed antifungal intervention in the 15

days before stool sample collection. Among the 134 stool samples

collected 46 samples were assigned to the antifungal use group (af+)
frontiersin.org
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and the remaining 88 samples to no antifungal use (af-). Among the

stool samples collected 47 were ab- and af-, 41 were ab+ and af-, 16

were ab- and af+, and 30 were ab+ and af+.
Inferred taxonomic and functional
composition of patient
stool microbiomes

Analysis of the 16S rDNA data identified 1184 feature ASVs

after 0.1% filtering, in the 134 stool samples. Mean ASV reads

per sample was 24,757 (min: 1522; max: 81,140; median: 23,063).

Species level assignment (level-7 QIIME2) of ASVs resulted in

489 taxa with 413 occurring in more than one sample and 173

present in 10% of the samples. The average number of species

per sample was 61 (min: 6; max: 167; median: 49.5).

Analysis of alternative taxonomic markers derived from the

MGS data identified 402 species in the 134 stool samples. Among

these species, 325 were found in more than one sample, with 126

present in 10% of samples. The mean number of reads mapped

to clades was 3,788,329 with a minimum of 60,159, max of

15,817,214, and median of 2,709,516. Average number of species

per sample was 39 (min: 6; max: 99; median: 36).

Analysis and assignment of the metagenome sequence data

to Metacyc (Caspi et al., 2020) functional pathways was carried

out using HUMAnN3 (Beghini et al., 2021), and identified 506

pathways in the 134 stool samples. Most pathways (482) were
Frontiers in Cellular and Infection Microbiology 06
found in more than one sample, with 357 pathways present in

10% of samples. The average number of pathways per sample

was 238 (min: 94; max 375; median: 232.5).
Relative abundance and diversity

Comparison of relative abundance plots between 16S and

MGS data, at the phyla level (Figure 1), show more

Actinobacteria identified in metagenome sequences than in

16S sequence data whereas the relative frequency of most

other phyla were similar. Diversity analyses were performed

on rarefied data using the Shannon diversity measure, with

either Wilcoxon rank sum or Kruskal Wallis test employed to

test for a significant change in diversity between groups of

interest. Shannon diversity measures for both 16S and MGS

data were significantly decreased with antibiotic (p=0.0006;

p=0.008) and antifungal (p=0.0005; p=0.007) use (Figure 2),

while diversity in the under 3 age group was significantly

decreased for 16S data (p=0.0007) but only marginally

decreased for MGS data (p=0.07) (Figure 2). Sex (p=0.68;

p=0.73), type of cancer (p=0.40; p=0.90), and treatment period

(p=0.91; p=0.12) did not differ significantly in diversity in either

dataset (Figure 2). We also analyzed Chao-1 and Faith’s

phylogenetic diversity. These showed the same diversity

patterns and significance relationships as inferred under

Shannon diversity, but with one exception. The difference

involved treatment period, which was significant in both

datasets (p=0.0053; p=0.031) under the Chao-1 and Faith

metrics (Supplemental Figures 1, 2).
Differential abundance analyses

We performed six tests to examine differential abundance

(Wilcoxon-CLR, ALDEx2-denom, ALDEx2-iqlr, LEfSe,

MaAsLin2-default, and MaAsLin2-CLR). These tests were applied

to the count data from 16S and MGS datasets with respect to age

category, antibiotic use, and antifungal use. MaAsLin2-CLR was

applied to 16S and MGS datasets for a combination of factors.

For taxonomic association with age category (O3 vs U3) the

analyses identified from 6 to 54 taxa in the 16S dataset and from

10 to 36 taxa in the MGS dataset, depending on the test method

(Table 3). For taxonomic association with antibiotic use, these

analyses identified from 9 to 42 taxa in the 16S dataset and from

9 to 40 taxa in the MGS dataset (Table 3). For taxonomic

association with exposure to antifungals, these analyses

identified from 11 to 83 taxa in the 16S dataset and from 21 to

59 in the MGS dataset (Table 3). These results highlight the

impact that the analytical method has on findings and is

consistent with Nearing et al. (2022), which found ALDEx2 to

consistently identify fewer significant taxa, while LEfSe and

Wilcoxon identify the most taxa as significant. Note that the
TABLE 2 List of additional antibiotic and antifungals given to
patients.

Antibiotics used Antifungals used

Gentamicin sulfate Voriconazole

Tobramycin sulfate Fluconazole

Vancomycin Caspofungin acetate

Azithromycin Clotrimazole

Clarithromycin Amphotericin B Liposomal

Amoxicillin Pentamidine isethionate

Amoxicillin and clavulanate

Ampicillin

Piperacillin and tazobactam sodium

Cloxacillin

Meropenem

Metronidazole

Cefazolin

Cefixime

Cefotaxime

Ceftazidime

Ceftriaxone

Cephalexin

Ciprofloxacin

Levofloxacin

Clindamycin
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standard method of LEfSe analysis is intended for biomarker

discovery, and will typically identify the max number of taxa.

However, in this study our LEfSe selection criterion includes a

step that controls the FDR; hence, the number of identified taxa

is greatly decreased, yielding results consistent with the other

methods which apply a FDR correction.
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Age-related taxonomic associations

Examination of difference in the microbiome based on age at

diagnosis identified an increased diversity in the O3 relative to U3

samples. This was more evident with the 16S data compared with

the MGS data (Figure 2). Within the 16S data 99 taxa were
FIGURE 2

Comparison of alpha diversity using Shannon diversity for 16S rRNA gene (16S) and whole shotgun metagenome data (MGS) for antibiotic use,
antifungal use, age category (O3, over 3 years of age; U3, under 3 years of age), time period of treatment (Pre, pre-chemotherapy days -5 to 0;
I, induction days 1 to 30; P1, post induction days 31 to 180; P2 post induction days 181+), cancer type (ALL, acute lymphoblastic leukemia; AML,
acute myeloid leukemia; HL, hodgkin’s lymphoma; NHL, non-hodgkin’s lymphoma). P values are calculated using Wilcoxon test for pairwise and
Kruskall-Wallis for multiple comparisons.
FIGURE 1

Phylum level relative abundance plot for 134 stool samples collected from 47 patients for 16S rRNA (16S) gene and whole shotgun metagenome
sequence (MGS) data. Data is separated by age category and cancer type, ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; HL,
hodgkin’s lymphoma; NHL, non-hodgkin’s lymphoma. For ease of comparison samples are in the same order in both datasets.
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identified in one or more test. Among these 99 taxa, 26 were

increased in U3 (3 Actinobacteria, 1 Bacteroidetes, 19 Firmicutes,

1 Fusobacteria, and 2 Proteobacteria) and 73 were increased in O3

(2 Actinobacteria, 13 Bacteroidetes, 55 Firmicutes, 2

Proteobacteria, and 1 Verrucomicrobia) (Supplemental Table 1).

In the MGS dataset 34 taxa were identified in one or more test as

differing between age groups, with 20 increased in U3 (4

Actinobacteria, 14 Firmicutes, and 2 Proteobacteria) and 14

increased in O3 (1 Actinobacteria, 8 Bacteroidetes, and 5

Firmicutes) (Supplemental Table 2).

Using the criterion of concordance among 4 or more

significance tests, we identified 11 taxa with increased relative

abundance in O3 (16S = 5 taxa; MGS = 6 taxa; Table 4). Among

these eleven, members of three taxonomic lineages were shared

between datasets: (i) Alistipes (A.sp, A. putredinis) in the

phylum Bacteroidetes; (ii) Parabacteroides (P. sp, P.

dis tasonis) in the phylum Bacteroidetes ; and (i i i )

Ruminococcus (R. sp, R. bromii) in the phylum Firmicutes.

Note that analysis of the intersection between 16S and MGS is

constrained by their different levels of taxonomic resolution.

This is why, for each above lineage, one was resolved to a

named species (MGS) and one was unresolved (16S; indicated

by “sp”). The 16S data identified 2 additional Firmicutes as

increased in O3 (C. spiroforme, and Ruminococcaceae Incertae

Sedis sp). The MGS data also identified additional taxa

increased in O3 (Table 4); 2 additional Bacteroides (B.

o v a t u s , B . u n i f o rm i s ) , a n d an Ac t i n o b a c t e r i a ,

Collinsella aerofaciens.
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We identified 13 taxa having increased relative abundance in

U3 (16S = 5 taxa; MGS = 8 taxa; Table 4) according to the

criterion of concordance among 4 or more significance tests.

Here, members of 5 taxonomic lineages were shared between

datasets: (i) Erysipelatoclostridium (E. sp, E. ramosum); (ii)

Ruminococcus gnavus ; ( i i i ) Streptococcus (S. sp, S.

thermophilus); (iv) Veillonella (V. sp, V. parvula, V. dispar);

and (iv) Escherichia (E. sp, E. coli) (Table 4). In only one case was

the lineage resolved as the same species, Ruminococcus gnavus,

by both datasets. In addition MGS identified the Actinobacteria

Bifidobacterium breve, and a Proteobacteria from the

Enterobacter cloacae complex as increased in U3.
Antibiotic related taxonomic associations

Microbiome diversity was significantly lower in the

antibiotic use group (ab+) for both types of data (Shannon

diversity; Figure 2). Within the 16S dataset we identified 73 taxa

as having significantly different relative abundance between

groups (ab+ vs. ab-) according to one or more of the methods;

40 were lower in the ab+ group (1 Actinobacteria, 38 Firmicutes,

and 1 Proteobacteria) and another 33 were higher in that group

(4 Actinobacteria, 1 Bacteroidetes, 25 Firmicutes, 1 Fusobacteria,

and 2 Proteobacteria) (Supplemental Table 1). In the MGS

dataset 60 taxa were identified as having significantly different

relative abundance between groups in one or more analysis; 28

were lower in the ab+ group (including 5 Actinobacteria, and 23
TABLE 3 Number of taxa identified in differential abundance analyses at a BH corrected p value <0.05 for different groups in the 16S rRNA (16S)
and metagenome sequence (MGS) dataset.

Analysis age category antibiotic use antifungal use

Wilcoxon clr

16S 54 40 60

MGS 36 40 52

ALDEx2-iqlr

16S 6 9 11

MGS 10 9 21

ALDEx2-denom

16S 7 10 13

MGS 13 14 25

LEfSea,b

16S 43 28 83

MGS 17 25 39

MaAsLin-default

16S 49 42 83

MGS 19 37 59

MaAsLin2-clr

16S 23 34 37

MGS 23 37 42
aLEfSe works at multiple taxonomic levels, only Species level significant counts are shown, additional taxonomic levels were also significant. bp-values computed by LEfSe were filtered
according to the BH method, and then we restricted our selection criteria to a linear discriminate value >2 among the subset inferred to control the FDR (a<0.05).
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Firmicutes) and another 32 were higher in the ab+ group

(including 5 Actinobacteria, 3 Bacteroidetes, 20 Firmicutes, 3

Proteobacteria, and 1 Ascomycota) (Supplemental Table 2).

Using the criterion of concordance among 4 or more

significance tests, we identified 17 taxa with lower relative

abundance in the ab+ group (16S = 9 taxa; MGS = 8 taxa;

Table 5). Among these, members of six taxonomic lineages were

identified in both datasets: (i) Anaerostipes (A. sp, A. hadrus), (ii)

Blautia (B. sp, B obeum, B.faecis), (iii) Dorea (D. sp, D.

longicatena), (iv) Fusicatenibacter (F. sp, F. saccharivorans), (v)

Roseburia (R. sp, R. intestinalis), and (vi)Ruminococcus gnavus

(Table 5). In addition to the above taxa, Romboutsia sp and

Subdoligranulum sp were identified in the 16S dataset and

Agathobaculum butyriciproducens, and Coprococcus comes in

the MGS dataset (Table 5).

We identified a set of seven taxa having higher relative

abundance in the ab+ group (16S = 2 taxa; MGS = 5 taxa;

Table 5) according to the criterion of concordance among 4 or

more significance tests. Only Abiotrophia (A. sp, A. uncultured)
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was found to have significantly higher relative abundance in

both datasets (Table 5). The taxon uniquely inferred from the

16S dataset as having higher relative abundance in the ab+ group

was Enterococcus sp. The four taxa uniquely identified in the

MGS data as having higher relative abundance in this group

were: (i) Actinomyces sp oral taxon 181, (ii) Rothia mucilaginosa,

( i i i ) Clo s t r i d ium bo l t ea e , and ( i v ) Lac tobac i l l u s

rhamnosus (Table 5).
Antifungal-related taxonomic
associations

Microbiome diversity was also significantly lower in the

group having received antifungals (again, up to 15 days before

stool collection) for both types of data (Shannon diversity;

Figure 2). Within the 16S dataset we identified 134 taxa as

having significantly different relative abundance between

groups (af+ vs. af-) according to one or more of the
TABLE 4 Taxa identified as significantly increased in 4 or more differential abundance analysis methods based on age category (over 3 years O3
and under 3 years U3 of age) using 16S and MGS data.

Phylum Class Family taxa W Ad Ai L Md Mc data

O3

Actinobacteria Coriobacteriia Coriobacteriaceae Collinsella aerofaciens x x x x x MGS

Bacteroidetes Bacteroidia Rikenellaceae Alistipes putredinis x x x x x MGS

Bacteroidetes Bacteroidia Rikenellaceae Alistipes sp. x x x x x x 16S

Bacteroidetes Bacteroidia Bacteroidaceae Bacteroides ovatus x x x x x x MGS

Bacteroidetes Bacteroidia Bacteroidaceae Bacteroides uniformis x x x x x x MGS

Bacteroidetes Bacteroidia Tannerellaceae Parabacteroides distasonis x x x x x MGS

Bacteroidetes Bacteroidia Tannerellaceae Parabacteroides sp. x x x x 16S

Firmicutes Bacilli Erysipelatoclostridiaceae Clostridium spiroforme x x x x x 16S

Firmicutes Clostridia Ruminococcaceae Ruminococcaceae Incertae Sedis sp. x x x x 16S

Firmicutes Clostridia Ruminococcaceae Ruminococcus sp. x x x x 16S

Firmicutes Clostridia Ruminococcaceae Ruminococcus bromii x x x x x x MGS

U3

Actinobacteria Actinobacteria Bifidobacteriaceae Bifidobacterium breve x x x x MGS

Firmicutes Erysipelotrichia Erysipelotrichaceae Erysipelatoclostridium ramosum x x x x x x MGS

Firmicutes Bacilli Erysipelatoclostridiaceae Erysipelatoclostridium sp. x x x X 16S

Firmicutes Clostridia Lachnospiraceae Ruminococcus gnavus x x x x x x MGS

Firmicutes Clostridia Lachnospiraceae Ruminococcus gnavus group sp. x x x x 16S

Firmicutes Bacilli Streptococcaceae Streptococcus sp. x x x x 16S

Firmicutes Bacilli Streptococcaceae Streptococcus thermophilus x x x x MGS

Firmicutes Negativicutes Veillonellaceae Veillonella dispar x x x x x MGS

Firmicutes Negativicutes Veillonellaceae Veillonella parvula x x x x x x MGS

Firmicutes Negativicutes Veillonellaceae Veillonella sp. x x x x x x 16S

Proteobacteria Gammaproteobacteria Enterobacteriaceae Enterobacter cloacae complex x x x x x MGS

Proteobacteria Gammaproteobacteria Enterobacteriaceae Escherichia coli x x x x x x MGS

Proteobacteria Gammaproteobacteria Enterobacteriaceae Escherichia Shigella sp. x x x x x x 16S
f
rontiers
W, Wilcoxon test on CLR transformed data corrected for multiple tests using BH. Ad, ALDEx2 using CLR transformed data with all features used as the denominator for the geometric
mean calculations. Ai, ALDEx2 using CLR transformed data using the “iqlr” (features with variance between lower and upper quartile variance) set of features as the denominator for the
geometric mean calculation. L, LEfSe analysis using the p value (p< 0.008 16S; p<0.003 MGS) that controls the FDR and an LDA >2, this analysis included all taxonomic levels but only
Species level results are shown. Md, MaAsLin2 with default parameters TSS normalization and LOG transformation. Mc, MaAsLin2 analysis on CLR transformed data.
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methods; 103 taxa were lower (8 Actinobacteria, 15

Bacteroidetes, 76 Firmicutes, 3 Proteobacteria, and 1

Verrumicrobiota) and 31 were higher (2 Actinobacteria, 21

Firmicutes, 1 Fusobacteria, and 7 Proteobacteria) in the af+

group (Supplemental Table 1). In the MGS dataset 89 taxa

were identified as having significantly different relative

abundance between groups according to one or more of the

methods; 55 were lower (13 Actinobacteria, 8 Bacteroidetes,

33 Firmicutes, and 1 Ascomycota) and 34 were higher (4

Actinobacteria, 2 Bacteroidetes, 21 Firmicutes, and 7

Proteobacteria) in the af+ group (Supplemental Table 2).

Using the criterion of concordance among 4 or more

significance tests, we identified 19 taxa with lower relative

abundance in the af+ group (16S = 10 taxa; MGS = 9 taxa;

Table 6). Among these, members of five taxonomic lineages were

identified in both datasets: (i) Alistipes (A. sp, A. finegoldii, A.

putredinis), (ii) Parabacteroides merdae, (iii) Anaerostipes (A. sp,

A. hadrus), (iv) Faecalibacterium (F. sp, F. prausnitzii), and (v)
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Blautia (B. faecis, B. obeum). The 16S dataset also identified a

Bacteriodes sp., Ruminococcus sp., two species of Oscillospiraceae,

and Subdoligranulum sp as lower in relative abundance (Table 6).

The MGS dataset also identified Bifidobacterium longum,

Collinsella aerofaciens, and Fusicatenibacter saccharivorans.

We identified a set of 21 taxa having higher relative

abundance in the af+ group (16S = 5 taxa; MGS = 16 taxa;

Table 6) according to the criterion of concordance among 4 or

more significance tests. Among these, members of four

taxonomic lineages were identified in both datasets: (i)

Rothia (R.sp, R. mucilaginosa), (ii) Enterococcus (E.sp, E.

faecalis, E. faecium), (iii) Clostridium paraputrificum, and

(iv) Clostridioides (formerly Clostridium C.difficile, C.sp)

(Table 6). The 16S dataset also identified a species of

Enterobacteriaceae as having higher relative abundance in

the group treated with antifungals. The MGS dataset

identified eleven additional taxa having higher relative

abundance in this group (Table 6).
TABLE 5 Taxa identified by 4 or more different methods as being differentially abundant based on antibiotic use in the 15 days before sampling
identified in 16S and MGS data.

Phylum Class Family Species W Ad Ai L Md Mc data

decreased

Firmicutes Clostridia Lachnospiraceae Anaerostipes hadrus X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Anaerostipes sp. X X X X X X 16S

Firmicutes Clostridia Lachnospiraceae Blautia faecis X X X X X X 16S

Firmicutes Clostridia Lachnospiraceae Blautia obeum X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Blautia sp. X X X X X X 16S

Firmicutes Clostridia Lachnospiraceae Coprococcus comes X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Dorea longicatena X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Dorea sp. X X X X X 16S

Firmicutes Clostridia Lachnospiraceae Fusicatenibacter saccharivorans X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Fusicatenibacter sp. X X X X X X 16S

Firmicutes Clostridia Lachnospiraceae Roseburia intestinalis X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Roseburia sp. X X X X X X 16S

Firmicutes Clostridia Lachnospiraceae Ruminococcus gnavus X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Ruminococcus gnavus group sp. X X X X 16S

Firmicutes Clostridia Peptostreptococcaceae Romboutsia sp. X X X X X X 16S

Firmicutes Clostridia Ruminococcaceae Agathobaculum butyriciproducens X X X X X X MGS

Firmicutes Clostridia Ruminococcaceae Subdoligranulum sp. X X X X X X 16S

increased

Actinobacteria Actinobacteria Actinomycetaceae Actinomyces sp oral taxon 181 X X X X X MGS

Actinobacteria Actinobacteria Micrococcaceae Rothia mucilaginosa X X X X X MGS

Firmicutes Bacilli Aerococcaceae Abiotrophia sp HMSC24B09 X X X X X MGS

Firmicutes Bacilli Aerococcaceae Abiotrophia uncultured sp. X X X X X 16S

Firmicutes Bacilli Enterococcaceae Enterococcus sp. X X X X X 16S

Firmicutes Bacilli Lactobacillaceae Lactobacillus rhamnosus X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Clostridium bolteae X X X X MGS
f
rontiersi
W, Wilcoxon test on CLR transformed data corrected for multiple tests using BH. Ad, ALDEx2 using CLR transformed data with all features used as the denominator for the geometric
mean calculations. Ai, ALDEx2 using CLR transformed data using the “iqlr” (features with variance between lower and upper quartile variance) set of features as the denominator for the
geometric mean calculation. L, LEfSe analysis using the p value (p <0.004 16S; p<0.008 MGS) that controls the FDR and an LDA >2, this analysis included all taxonomic levels but only
Species level results are shown. Md, MaAsLin2 with default parameters TSS normalization and LOG transformation. Mc, MaAsLin2 analysis on CLR transformed data.
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TABLE 6 Taxa identified by 4 or more different methods as being differentially abundant based on antifungal use in the 15 days before sampling
identified in 16S rDNA and shotgun metagenome sequence data.

Phylum Class Family Species W Ad Ai L Md Mc data

decreased

Actinobacteria Actinobacteria Bifidobacteriaceae Bifidobacterium longum X X X X X X MGS

Actinobacteria Coriobacteriia Coriobacteriaceae Collinsella aerofaciens X X X X X X MGS

Bacteroidetes Bacteroidia Bacteroidaceae Bacteroides sp. X X X X X X 16S

Bacteroidetes Bacteroidia Rikenellaceae Alistipes finegoldii X X X X X X MGS

Bacteroidetes Bacteroidia Rikenellaceae Alistipes putredinis X X X X X X MGS

Bacteroidetes Bacteroidia Rikenellaceae Alistipes sp. X X X X X X 16S

Bacteroidetes Bacteroidia Tannerellaceae Parabacteroides merdae X X X X X X 16S

Bacteroidetes Bacteroidia Tannerellaceae Parabacteroides merdae X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Anaerostipes hadrus X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Anaerostipes sp. X X X X X X 16S

Firmicutes Clostridia Lachnospiraceae Blautia faecis X X X X 16S

Firmicutes Clostridia Lachnospiraceae Blautia obeum X X X X X X MGS

Firmicutes Clostridia Lachnospiraceae Fusicatenibacter saccharivorans X X X X MGS

Firmicutes Clostridia Ruminococcaceae Faecalibacterium prausnitzii X X X X X X MGS

Firmicutes Clostridia Ruminococcaceae Faecalibacterium sp. X X X X X X 16S

Firmicutes Clostridia Ruminococcaceae Ruminococcus sp. X X X X X X 16S

Firmicutes Clostridia Ruminococcaceae Subdoligranulum sp. X X X X X 16S

Firmicutes Clostridia Oscillospiraceae UCG-002 sp. X X X X 16S

Firmicutes Clostridia Oscillospiraceae Oscillospiraceae sp. X X X X X 16S

increased

Actinobacteria Actinobacteria Actinomycetaceae Actinomyces sp oral taxon 181 X X X X MGS

Actinobacteria Actinobacteria Micrococcaceae Rothia mucilaginosa X X X X X X MGS

Actinobacteria Actinobacteria Micrococcaceae Rothia sp X X X X 16S

Firmicutes Bacilli Aerococcaceae Abiotrophia sp HMSC24B09 X X X X X MGS

Firmicutes Bacilli Enterococcaceae Enterococcus faecalis X X X X X X MGS

Firmicutes Bacilli Enterococcaceae Enterococcus faecium X X X X X X MGS

Firmicutes Bacilli Enterococcaceae Enterococcus sp. X X X X X X 16S

Firmicutes Bacilli Streptococcaceae Streptococcus infantis X X X X X MGS

Firmicutes Bacilli Streptococcaceae Streptococcus peroris X X X X X X MGS

Firmicutes Clostridia Clostridiaceae Clostridium paraputrificum X X X X X X MGS

Firmicutes Clostridia Clostridiaceae Clostridium paraputrificum X X X X X X 16S

Firmicutes Clostridia Peptostreptococcaceae Clostridioides difficile X X X X MGS

Firmicutes Clostridia Peptostreptococcaceae Clostridioides sp. X X X X X 16S

Firmicutes Erysipelotrichia Erysipelotrichaceae Erysipelatoclostridium ramosum X X X X MGS

Firmicutes Negativicutes Veillonellaceae Veillonella dispar X X X X MGS

Firmicutes Negativicutes Veillonellaceae Veillonella parvula X X X X MGS

Proteobacteria Gammaproteobacteria Enterobacteriaceae Enterobacter cloacae complex X X X X MGS

Proteobacteria Gammaproteobacteria Enterobacteriaceae Escherichia coli X X X X X MGS

Proteobacteria Gammaproteobacteria Enterobacteriaceae Klebsiella variicola X X X X MGS

Proteobacteria Gammaproteobacteria Enterobacteriaceae Enterobacteriaceae sp. X X X X X 16S

Proteobacteria Gammaproteobacteria Pasteurellaceae Haemophilus parainfluenzae X X X X X MGS
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rontiers
W, Wilcoxon test on CLR transformed data corrected for multiple tests using BH. Ad, ALDEx2 using CLR transformed data with all features used as the denominator for the geometric
mean calculations. Ai, ALDEx2 using CLR transformed data using the “iqlr” (features with variance between lower and upper quartile variance) set of features as the denominator for the
geometric mean calculation. L, LEfSe analysis using the p value (p<0.015 16S; p<0.005 MGS) that controls the FDR and an LDA >2, this analysis included all taxonomic levels but only
Species level results are shown. Md, MaasLin2 with default parameters TSS normalization and LOG transformation. Mc, MaasLin2 analysis on CLR transformed data.
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Multivariate analysis of age, antibiotic
use and antifungal use

Because age and treatment with either antibiotics or

antifungals could have interactive effects on microbiome

composition, it can be challenging to jointly interpret the

separate analyses described above. Furthermore, applying

feature-specific methods to inference involving multiple

covariates can have unpredictable effects on inference,

although the typical result is excess false positives (Mallick

et al., 2021). In this study to guard against spurious discoveries

of specific taxa, we used FDR control in our analyses in

combination with a strict concordance criterion (>4 methods).

However, the cost of this approach is reduced power in the

univariate cases, and it does not necessarily control false

discoveries when trying to infer taxa that are significantly

associated with several variables. MaAsLin2 is designed to

maintain statistical power in settings involving multiple

covariates while controlling the FDR. Hence, we used

multivariate MaAsLin2 to analyze the combined effects of age,

antibiotic use and antifungal use.

MaAsLin2 analysis of the 16S data identified 44 taxa

(Figure 3A) and MGS data identified 58 taxa (Figure 3B) as

significantly associated in one or more variable. Most taxa

identified (36 in the 16S and 48 in the MGS) were significant

for a single variable (Figure 3A, B 1 shaded box) with antibiotic

use associated with the most taxa (16S: 21, MGS: 29), followed by

age (16S: 16, MGS: 24), and antifungal use (16S: 15, MGS: 15).

We identified an association with multiple variables in eight taxa

in 16S and 10 taxa in MGS (Figure 3A, B 2 shaded boxes).

For age or antibiotic use, as expected, there were fewer

taxonomic associations (Table 4, 5) under the univariate

analyses, as they required strict concordance among 4

methods, compared to multivariate MaAsLin2. For age, most

of the concordant univariate discoveries described above were

recovered within the larger set of taxa identified by 16S

MaAsLin2 analysis (7/10 concordant univariate taxa within

MaAsLin2 age-associated [n=16]) and MGS MaAsLin2

analysis (13/14 concordant univariate taxa within MaAsLin2

age-associated [n=24]). The same general relationship between

the univariate discoveries and the multivariate MaAsLin2 results

was observed for antibiotic use (16S: 9/11 within MaAsLin2

[n=21] and MGS: 13/13 within MaAsLin2 [n=29]). However, for

antifungal use the number of univariate discoveries were the

same (16S: n=15 vs. MaAsLin2: n=15) or more than the number

of multivariate MaAsLin2 discoveries (MGS: n=25 vs.

MaAsLin2: n=15). This suggests that discovery of taxa

associated with more than one variable is likely to be more

complicated than predicted simply according to the univariate

results. For this reason, identification and interpretation of taxa

associated with more than one variable will be inferred only

from the multivariate MaAsLin2 results.
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Among the lineages associated with more than one variable

(n=18), many (n=14) were Firmicutes involved in short chain fatty

acid (SCFA) production or lactic acid production (Figures 3A, B).

Each of the following SCFA producing Firmicutes (Coprococcus sp.,

C. comes, Dorea sp. D. longicatena, Fusicatinbacter sp., F.

saccharivorans, and Oscillospiraceae UCG-002) had significantly

lower relative abundance in both U3 and ab+ groups. A SCFA

producing Firmicutes, Ruminococcus sp., had significantly lower

relative abundance in both the U3 and af+ groups. Finally, SCFA-

producingAnaerstipes (A. sp, andA. hadrus) had significantly lower

relative abundance in both ab+ and af+ groups. The lactic acid

producing Firmicutes Streptococcus sp and S. thermophiles had

significantly higher relative abundance in U3 and ab+ groups,

and the lactic acid producing Firmicutes Streptococcus peroris and

Abiotrophia sp had significantly higher relative abundance in ab+

and af+ groups. Interestingly, additional SCFA producing

Firmicutes had significantly lower relative abundance in either the

ab+ or af+ groups and were not associated with age (e.g. Roseburia,

Faecalibacterium, Subdoligranulum) and additional lactic acid

producing Firmicutes had significantly higher relative abundance

in either ab+ or af+ groups and were not associated with age (e.g.,

Enterococcus, Lactobacillus).

Two other patterns are detectable within the MaAsLin2

results (Figure 3A, B), that are corroborated by the univariate

results. First, several taxa that are significantly more frequent in

the ab+ or af+ group are commonly associated with the human

oral microbiome (e.g., Actinomyces, Abiotrophia, Rothia,

Streptococcus, Lactococcus). Furthermore, these lineages

represent multiple phyla. Second, several taxa that are

significantly more frequent in af+ group are opportunistic

pathogens (e.g., Enterococcus, Clostridium paraputrificum,

Klebsiella, Haemophilus), and represent several phyla.
Functional multivariate analysis of age,
antibiotic use and antifungal use

To assess if changes in the taxonomic composition resulted

in changes in functional pathways with age, antibiotic use and

antifungal use we performed multivariate analysis using

MaAsLin2 using functional pathway data. We identified 165

pathways as significantly associated with one or more variable.

Like the taxonomic analysis most pathways (130) were

associated with just one variable (Figure 4, single shaded

box), however it differed from the taxonomic analysis in that

antifungal use was associated with the most pathways (57)

followed by age (47) and antibiotic use had the least

associations (26). An association with multiple variables was

identified in 35 pathways (Figure 4, 2 shaded boxes), with most

of these (28) shared between antifungal use and age, while just

4 pathways were associated with both age and antibiotic use

and 3 with both antifungal and antibiotic use. Pathways were
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predominately of one of three types: biosynthesis pathways

(92), degradation/utilization/assimilation pathways, (hereafter,

collectively referred to as degradation pathways: 47), and

generation of precursor metabolites and energy pathways,

(hereafter, collectively referred to as generation pathways: 24).

The largest number of significant pathways (88) was

associated with antifungal use, with 83 pathways increased in

relative abundance in those samples (Figure 4). The 83 increased

pathways were predominately involved in biosynthesis pathways

(50) followed by degradation pathways (25) and generation

pathways (7), while the 5 decreased pathways were
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predominately biosynthesis pathways (4), with the remaining

pathway involved in degradation. We identified 79 pathways

that were increased in the U3 samples (35 biosynthesis; 30

degradation; 12 generation; and 2 other) (Figure 4). We

identified 33 pathways associated with antibiotic use, with 24 of

these significantly decreased in relative abundance with antibiotic

use compared to no antibiotic use. Most of these (17) were

biosynthesis pathways, but also included generation (4) and

degradation pathways (3). Among the 9 pathways increased in

relative abundance with antibiotic use 7 were biosynthesis

pathways and the remaining 2 were generation pathways.
A B

FIGURE 3

Heatmap showing taxa significantly (FDR corrected p<0.05) associated with antibiotic use, antifungal use and age category in a multivariate
analysis using (A) 16S rRNA gene data and (B) whole shotgun metagenome data. Intensity of change is determined as the negative log of the q-
value *coefficient of change, blue indicates taxa increased with antibiotic use (ab+), antifungal use (af+) or in the under 3 age group (U3) and
red are taxa decreased with antibiotic use (ab+), antifungal use (af+) or in the under 3 age group (U3). Taxa are sorted by phyla, which are
indicated in the bar adjacent to the heatmap.
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Discussion

It is well-known that the GIT microbial community is sensitive

to many intrinsic and extrinsic factors, including age, antibiotic, and

chemotherapy treatment (Palmer et al., 2007; Mangin et al., 2010;

Dethlefsen and Relman, 2011; Koenig et al., 2011; Fouhy et al., 2012;

Yatsunenko et al., 2012; Bokulich et al., 2016; Korpela et al., 2016;

Rajagopala et al., 2016; Oldenburg et al., 2021). Here, we extend this

important line of inquiry by investigating the relationship between

microbiome composition and three clinically important variables

(age, antibiotic exposure, and antifungal exposure) in a pediatric

hematological cancer patient population consisting of leukemia and

lymphoma patients from Maritime Canada. We found significant

differences in microbial diversity due to age, antibiotic use, and

antifungal use, and no difference between types of cancers or period

of treatment.

We utilized both a portion of the 16S (V4V5) and MGS data to

examine the taxa present in stool samples, which we treated as a

proxy for what was occurring in the GIT. As each source of

taxonomic information has its pros and cons, we chose to

examine their concordance. We found general agreement

between these two datasets. Notwithstanding that 16S data

doesn’t typically identify taxa to species level, whereas MGS does,

we found general agreement between the two types of data for

taxonomic identification down to the genus level. There were some

disagreements between the two datasets, which may be due to the

choice of variable region selected, amplification bias, and or taxa
Frontiers in Cellular and Infection Microbiology 14
present in the reference databases used for each. One of these was

the increased relative abundance of Actinobacteria in theMGS data,

as compared to the 16S data. Examination of the entire 16S rRNA

gene in the future, which is now cost effective, may be useful to

reassess these differences along with others and may allow for more

detailed resolution of taxa for comparison.

The microbiome and its diversity changes with age, with some

of the most pronounced changes occurring in the first three years of

life followed by a more stable adult-like microbiome developing

after this time-period (Palmer et al., 2007; Koenig et al., 2011;

Yatsunenko et al., 2012). Examining this pediatric oncology

population by age group (U3 and O3) we found increased alpha-

diversity in O3 compared to U3 population, a pattern similar to that

found previously (Palmer et al., 2007; Koenig et al., 2011;

Yatsunenko et al., 2012). We identified increases in Bacteroides

and Parabacteroides spp in the O3 group, while Escherichia and

Bifidobacterium were increased in the U3 group. The results from

this patient population agree with past studies, in other populations,

that show increased Bacteroides in the O3 and increased

Enterobacteriaceae and Bifidobacterium (Palmer et al., 2007;

Koenig et al., 2011; Yatsunenko et al., 2012) as well as

Veillonellaceae in U3 (Yao et al., 2021). However, we did not find

increased Firmicutes taxa in O3 in this population, which has been

reported in some previous studies (Palmer et al., 2007; Yatsunenko

et al., 2012). These observed taxonomic differences between the U3

and O3 populations is consistent with the differences in pathway

relative abundance we observed with age. Our unique result for this
FIGURE 4

Heatmap showing Metacyc pathways significantly (FDR corrected p<0.05) associated with antibiotic use, antifungal use and age category in a
multivariate analysis. Intensity of change is determined as the negative log of the q-value *coefficient of change, blue indicates pathways
increased with antibiotic use (ab+), antifungal use (af+) or in the under 3 age group (U3) and red are pathways decreased with antibiotic use (ab
+), antifungal use (af+) or in the under 3 age group (U3). Pathways are sorted into Metacyc superclasses, and classes. Biosynthesis refers to
biosynthesis pathyways; degradation refers to degradation utilization and assimilation pathways, and generation refers to generation of
precursor metabolites and energy pathways.
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patient population could be due to antibiotic use within this

population, as we found antibiotics to have the largest impact on

Firmicutes taxa. It is noteworthy that most studies exclude samples

with antibiotic use when examining changes in the GIT

microbiome. This is not possible, nor desirable, within this

patient population because antibiotic use is prevalent and

understanding its role has implications for management of

hematologic cancer patients.

The antibiotics most used in these patients were piperacillin-

tazobactam and vancomycin. The first has broad anti-bacterial

activity impacting both Gram positive and Gram negative bacteria

and so is expected to have large effects on the distribution of phyla.

In contrast, vancomycin acts against Gram positive bacteria and so

is expected to have a large effect on taxa within Firmicutes and

Actinobacteria.We found that themarginal effect of antibiotic use is

associated with a significant decrease in the relative abundance of

Firmicutes, mostly within the Lachnospiraceae and

Ruminococcaceae. Many of the Firmicutes with reduced relative

abundance are important for SCFA production (Anaerostipes,

Blautia, Dorea, Roseburia, Coprococcus, Subdoligranulum). SCFA

production is necessary for GIT epithelial health including epithelial

cell energy metabolism, intestinal barrier function, and

immunological homeostasis (Morrison and Preston, 2016; Parada

Venegas et al., 2019; Deleu et al., 2021). Interestingly, antifungal use

was associated with reduced relative abundance of many of the

same taxa, as well as another important lineage of SCFA producers,

Faecalibacterium. Declines in these taxa had been previously

identified as differing between pediatric ALL patients and healthy

controls, and was attributed to chemotherapy treatment

(Rajagopala et al., 2016). Our results suggest that antibiotic or

antifungal treatment also impacts SCFA producing bacteria. It was

clear from the multivariate analysis that taxa linked with SCFA

production were highly impacted by both antibiotic and antifungal

exposure. This finding has important implications for protective

GIT barrier function. Of the SCFAs, butyrate is the main effector

molecule on physiological regulation of the host GIT; it serves as an

energy source for mucosal epithelial cells and it is an important

regulator of inflammation, differentiation, and apoptosis in host

cells (Scheppach and Weiler, 2004; Hamer et al., 2007; Pajak et al.,

2007; Mowat and Agace, 2014). Butyrate affects the colonic cells,

and thus gastrointestinal integrity, by inhibiting inflammation and

carcinogenesis, reinforcing colonic defense, and decreasing

oxidative stress via inhibition of nuclear factor kappa b activation

and histone deacetylation (Hamer et al., 2007). Note that this

patient population is subject to increased oxidative stress, and it

would benefit from inhibition of inflammation and reinforced

colonic defense. However, increased antibiotic and antifungal use

in this same population is associated with a stool microbiome

community having significantly lower relative abundance of taxa

responsible for beneficial butyrate production. While the stool

microbiome community does not fully represent the taxonomic

complexity of the colonic luminal environment it is suggestive of
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changes that could impact colonic healthy. Whether patient GIT

health could be improved by increasing butyrate producers (thereby

improving colonic defense and gastrointestinal inflammation)

without a negative impact on this already immune compromised

group requires further investigation.

Also associated with antibiotic and antifungal use was a

significant increase in the relative abundance of taxa present in

the stool samples that are normally associated with the oral

microbiome community, including Actinomyces, Rothia,

Abiotrophia, and Streptococcus species. Increases in oral

bacteria within the GIT microbiome have been shown in

colorectal cancer patients, and this has been implicated in its

pathogenesis based on their absence in healthy controls (Drewes

et al., 2017; Segata, 2018; Cheng et al., 2019; Thomas et al., 2019).

We suggest a possible alternative hypothesis for increased oral

bacterial presence. Antacid and proton pump inhibitor use is

high within our patient population, and we hypothesize that

their use promotes oral bacteria to transit the stomach into the

intestine. With a reduced bacterial population from

chemotherapy, along with antibiotic, and or antifungal use,

these oral bacteria can more readily colonize the available GIT

niches. Studies examining the impact of antacids and proton

pump inhibitors on microbial taxa passing from the stomach

into the GIT clearly show that gastric acid reduction alters

intestinal bacteria (Williams and McColl, 2006; Kanno et al.,

2009; Lombardo et al., 2010; Garcia-Mazcorro et al., 2012;

Freedberg et al . , 2014). Studies found increases in

oropharyngeal Lactobacillus and Veillonella taxa (Kanno et al.,

2009) as well as decreases in Bacteroidetes (Freedberg et al.,

2014). In addition, enteric infection and bacterial overgrowth

have been related to gastric acid reduction (Drasar et al., 1969;

Howden and Hunt, 1987; Thorens et al., 1996; Husebye, 2005;

Freedberg et al., 2014). Oncology patients frequently use

antacids as a result of chemotherapy treatment, however the

impact of acid reduction on the microbial landscape concurrent

with other sources of GIT dysbiosis has yet to be examined.

Fungal infections can occur in oncology patients due to

decreased immunity and often require the use of systemic

antifungal agents. While many studies have examined the

impact of antibiotic use on the GIT microbiome far fewer

have examined antifungal use on the microbiome, with most

using mouse models (Qiu et al., 2015; Sam et al., 2017;

Udawatte et al., 2020; Heng et al., 2021). Past mouse studies

looking at antifungal use identified Bacteroides, Alistipes,

Lactobacillus, some Firmicutes, and Proteobacteria taxa to be

increased while members of the Clostridium XIVa were

decreased (Qiu et al., 2015; Udawatte et al., 2020; Heng et al.,

2021). We however identified significantly decreased

Bacteroidetes taxa (Bacteroides , Parabacteroides , and

Alistipes) as well as Lachnospiraceae, and Ruminococcaceae,

including butyrogenic (Faecalibacterium, Subdoligranulum,

and Anaerostipes), and acetogenic taxa (Blautia) among
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patients treated with antifungals. We also identified

significantly increased lactic acid bacteria (Enterococcus, and

Streptococcus), Actinobacteria, and several potential

opportunistic pathogens from the Proteobacteria (Klebsiella,

Haemophilus , and Enterobacter), and Firmicutes (C.

paraputrificum, and Clostridioides difficile) among samples

treated with antifungals. The microbial community we

observed in patients treated with antifungals closely reflects

that reported as associated with C. difficile infections; i.e.,

decreased diversity, scarcity of Firmicutes, decreased relative

abundance of Ruminococcaceae, and Lachnospiraceae, which

results in low levels of butyrogenic and acetogenic taxa and

increased relative abundance of lactic acid bacteria (Antharam

et al., 2013; Vakili et al., 2020). These findings suggest that

antifungal use in our patient population may contribute to an

environment favorable to C. difficile. Even if patients receiving

antifungals already begin treatment with more opportunistic

pathogens such as C. difficile, managing the effect of antifungal

treatment on the host microbiome could have positive effects

on patient outcomes. Future investigation of the relationship

between the use of antifungals, their effect on the commensal

microbiome, and the distribution of C. difficile prior to, and

throughout, patient care is warranted.

The clinical care for leukemia and lymphoma patients, despite

the relative rarity of active fungal disease, sometimes includes

prophylactic antifungal treatment. We found that antifungal

treatments had profound effects on bacterial community

composition and, surprisingly, was the single biggest factor

affecting the functional capacity of the microbial community.

Furthermore, the majority of the microbial pathways affected by

antifungal treatment were associated with bacterial metabolic

activities. In the context of ecological coexistence theory

(Chesson, 2000), these findings raise the possibility that

antifungal treatments are having profound and unexpected

effects on bacterial community ecology. A core concept of

community ecology is that direct competition between species

leads to competitive exclusion, and a loss of diversity (Hardin,

1960). Because community-level metabolic activities mediate

consumer–resource interactions among GIT microbes,

ecological coexistence theory predicts that community diversity

can be maintained via metabolic niche differentiation (Johnson

and Bronstein, 2019; Johnson, 2021). From the ecological

perspective, metabolic resource partitioning within the human

GIT should therefore discourage interspecific competition and

serve as a stabilizing mechanism for the GIT community. The

observation that antifungal treatment has profound effects on

both species composition and functional capacity implies that

fungal metabolic activities play a critical role in resource

partitioning. A possible mechanism is fungal degradation of

carbohydrates that are otherwise inaccessible to fermenting

bacteria (Li et al., 2020; Luo et al., 2021), which could diversify

resources and thereby allow a larger fraction of the bacterial
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species to co-exist in the human gut. Notwithstanding the

mechanistic details, altering fungal biodiversity appears to

change the competitive and mutualistic dynamics among

bacteria, thereby causing widespread competitive exclusion and

general reductions in diversity within the human gut. Recent

advances in coexistence theory are raising awareness of how

competitive trade-offs impacted by antibiotic treatments could

affect the persistence of pathogens in a clinical setting (Letten

et al., 2021). Since very little is known about how antifungal

treatment alters niche overlap in the GIT community, and the

extent to which this drives changes in both commensals and drug-

resistant pathogens, coexistence theory should be further

developed to include antifungal treatments in a clinical setting.

While our findings have a variety of implications for both

human health and microbial community stability, there are

several limitations that could impact our ability to generalize

our findings. While we had very strong sampling among patients

will ALL, samples from AML, HL and NHL patients were more

limited and so additional sampling from this population would

be valuable to confirm these findings within those patient

populations. In addition, collection time points between

patients varied and future work should include a more

balanced sampling of patients at different times of treatment.

This will improve the inference of both taxonomic and

functional changes that occur over the course of treatment.

Lastly, empirical quantification of competitive and mutualistic

coexistence of microbes within the GIT is challenging.

Additional theoretical developments will be required to guide

future empirical studies and, ultimately, to rigorously frame and

evaluate predictions relevant to the clinical setting.
Conclusion

Antibiotic and antifungal use are critical in the care of

leukemia and lymphoma patients to prevent infections and

febrile neutropenia events that would be life threatening given

the decreased immunity of this cohort. We show however that

the use of these compounds does impact the microbiome both

taxonomically and functionally and may further contribute to a

dysfunctional GIT barrier. Because shifts in microbial

composition and functional pathways can cause changes in

host physiology that may have a long lasting impact on future

health, it is especially important to consider the effect of age.

Children under 3 present a dilemma as they are more susceptible

to severe infection due to their age, but also have less biodiversity

in their microbiome and as such are at increased risk of diversity

loss with antibiotic/antifungal use. While this is a topic of

ongoing clinical investigation for safety and efficacy, it may be

prudent to increase nutritional supplementation of healthy

bacteria in this age group. In addition, when prophylactic acid

suppression is prescribed in children with leukemia to mitigate
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gastric erosion caused by corticosteroids, the accompanying

antacids should be discontinued as soon as the child is not

receiving steroids. Lastly, the use of antifungals has received little

to no attention in this vulnerable group, and there could be a

larger impact on the microbiome than appreciated by clinicians.

We suggest that concerted reassessment of how and when

antifungals are used in this patient population is warranted

with further studies in this area.
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