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Leptospirosis is a zoonotic infectious disease affecting all vertebrates. It is caused by
species of the genus Leptospira, among which are the highly pathogenic L. interrogans.
Different mammals can be either resistant or susceptible to the disease which can present
a large variety of symptoms. Humans are mostly asymptomatic after infection but can
have in some cases symptoms varying from a flu-like syndrome to more severe forms
such as Weil’s disease, potentially leading to multiorgan failure and death. Similarly, cattle,
pigs, and horses can suffer from acute forms of the disease, including morbidity, abortion,
and uveitis. On the other hand, mice and rats are resistant to leptospirosis despite
chronical colonization of the kidneys, excreting leptospires in urine and contributing to the
transmission of the bacteria. To this date, the immune mechanisms that determine the
severity of the infection and that confer susceptibility to leptospirosis remain enigmatic. To
our interest, differential immune sensing of leptospires through the activation of or escape
from pattern recognition receptors (PRRs) by microbe-associated molecular patterns
(MAMPs) has recently been described. In this review, we will summarize these findings
that suggest that in various hosts, leptospires differentially escape recognition by some
Toll-like and NOD-like receptors, including TLR4, TLR5, and NOD1, although TLR2 and
NLRP3 responses are conserved independently of the host. Overall, we hypothesize that
these innate immune mechanisms could play a role in determining host susceptibility to
leptospirosis and suggest a central, yet complex, role for TLR4.
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INTRODUCTION

Leptospirosis is a neglected zoonotic disease causing around 1 million human cases and 60,000
deaths per year worldwide (Costa et al., 2015). Outbreaks are linked to environmental events, such
as floods (Ritter et al., 2018), and are most likely to increase with climate change. It is currently re-
and newly emerging, and the major challenges in the field are the lack of a cross-protective vaccine
between serovars and the poor diagnosis tools available.
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Leptospirosis—Zoonotic Cycle
Unlike other spirochetes, such as Borrelia burgdorferi and
Treponema pallidum which are obligate parasitic bacteria,
pathogenic Leptospira survive in the environment as well as
within the infected vertebrate hosts. Natural reservoirs are in
most cases asymptomatic rodents (namely, mice and rats
considered as resistant hosts) that are chronically colonized in
their kidneys upon infection and persistently excrete the bacteria in
their urine (Figure 1) (Ko et al., 2009). Once excreted in the
environment, leptospires can infect susceptible hosts, such as
human, cattle, and pets. Infection occurs through abrased or
damaged skin and mucosa. In the host, leptospires can cause a
systemic infection, leading to severe illness in some cases (Figure 1).
Furthermore, venereal transmission has been suggested in infected
cattle and goat (Lilenbaum et al., 2008). Not all leptospires spp. are
pathogenic, and recent genomic studies have reclassified and
clustered more than 60 species in groups and clades according to
their pathogenicity in human and animal hosts (Vincent et al.,
2019). Pathogenic species belonging to the P1 clade and responsible
for severe forms of leptospirosis are L. interrogans, L. kirschneri, L.
noguchii, L. santarosai, L. mayottensis, L. borgpetersenii, L.
alexanderi, L. weilii, L. alstonii, L. dzianensis, L. barantonii,
L. kmetyi, L. tipperaryensis, L. putramalaysiae, L. adleri, L. ellisii,
and L. gomenensis (Vincent et al., 2019), although L. interrogans is
responsible for the more severe diseases.

Leptospirosis—Various Hosts and Symptoms
All vertebrates can potentially be infected by leptospires, and
numerous hosts, such as humans, are susceptible to the disease,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
with the incubation period of leptospirosis varying greatly from a
few days to a few weeks (Adler, 2015). The disease presents itself
with an abrupt undifferentiated febrile syndrome, first
characterized by fever, chills, muscle pain, and headache
(Adler, 2015). In some patients, infection with leptospires can
cause more severe forms of the disease, characterized by
multiorgan failure (kidneys, liver, lungs, brain) at the late stage
of the disease (Adler, 2015). The most distinguishable form of
severe leptospirosis is kidney failure associated with jaundice,
called Weil’s disease. Overall, the general symptoms of
leptospirosis are common to many other infectious diseases,
hence complicating the diagnosis.

Among other susceptible hosts, ruminants are particularly
affected and infection results in morbidity, abortion, and
infertility, with some documented cases of severe illness (Ellis
et al., 1985; Ellis et al., 1986; Adler, 2015). Similarly, pigs and
horses suffer from various symptoms, with the peculiarity that
horses can have recurrent uveitis, potentially caused by
leptospiral biofilms (Ellis et al., 1983; Adler, 2015; Ackermann
et al., 2021). In the case of pets, dogs are susceptible, and
infection can result in an acute icteric form with severe
pulmonary (Moore et al., 2006; Adler, 2015). However, dogs
can also be chronically infected, with clinical signs including
chronic gastritis (Adler, 2015). In this context, it should be
emphasized that different hosts are preferentially infected with
different species (spp.) and serovars of leptospires. For instance,
Leptospira borgpetersenii serovar Hardjo-Bovis is mainly isolated
from cattle whereas Leptospira interrogans serovar Canicola is
mainly isolated from dogs (Adler, 2015). Additionally, almost all
FIGURE 1 | Zoonotic cycle of leptospirosis, susceptibility of various accidental hosts, and transmission modes. Adapted from Adler, 2015.
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infected animals are chronically colonized upon infection. In the
case of cattle, pigs, and horses, leptospires colonize the genital
tract as well as the kidneys. Such colonization allows for venereal
transmission of the pathogens as well as shedding of the
pathogen into the environment via the urine (Lilenbaum et al.,
2008) (Figure 1). In contrast to the mammalian species
mentioned above, mice and rats do not show signs of an acute
form of leptospirosis and do not present symptoms of severe
illness upon natural infection (Adler, 2015). However, upon
experimental infection, leptospires can colonize the proximal
tubules in their kidneys and remain present throughout the
lifetime of the mice (Ratet et al., 2014). Although mice present
very few symptoms of the disease, the chronic renal carriage
induces mild fibrosis (Fanton d’Andon et al., 2014; Ferrer et al.,
2018). Such colonization plays a key role in the zoonotic cycle of
leptospirosis, as leptospires get excreted in the urine of the
rodents, hence contaminating the environment. Of note, not
all rodents are resistant to the disease: guinea pigs, gerbils, and
hamsters for instance are used as experimental models of human
acute leptospirosis since they are sensitive and can die of acute
infection (Lourdault et al., 2009). When they survive the
infection, hamsters also present renal fibrosis (Matsui et al.,
2016; Gomes et al., 2018). Furthermore, studies suggest that cats
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
are very resistant to acute leptospirosis although they can be
colonized (Holzapfel et al., 2021), but very few clinical cases have
been described (Adler, 2015).

Leptospirosis has therefore many consequences for both
humans and animals and represents a major health and
economic burden for agriculture and breeding. In addition to
the details on human leptospirosis given above, information
concerning animal susceptibility, symptoms, chronicity, and
infecting species and serovars is summarized in Table 1.

Leptospira interrogans—Atypical
Cell Wall
Leptospira spp. responsible for leptospirosis are diderm bacteria
with an atypical cell wall composition (Figure 2). Although they
possess two membranes, leptospires exhibit an intermediate
staining phenotype and can therefore not be classified as
Gram-negative bacteria.

Their peptidoglycan (PG) layer is located slightly closer to the
inner membrane than in other bacteria (Cameron, 2015). In
addition, leptospires are equipped with two endoflagella (EFs),
embedded in the periplasm, that confer them great motility.
Leptospires are also particularly rich in outer membrane proteins
(OMPs), including numerous lipoproteins (Haake and Zückert,
TABLE 1 | Susceptibility and symptoms of various animal hosts upon natural infection by Leptospira spp.

Class Animal Susceptibility Chronicity SYMPTOMS Infecting species/serovars

Rodent Mouse
(Paiva-Cardoso M das et al., 2013; Moinet et al.,
2021)

Resistant +
kidneys

NA L. borgpetersenii Ballum

Rodent Rat
(Hathaway and Blackmore, 1981; Heuser et al.,
2017; Costa et al., 2021; Moinet et al., 2021)

Resistant +
kidneys

NA L. interrogans Copenhageni
& Icterohaemorrhagiae
L. borgpetersenii Ballum

Rodent Guinea pig
(Rigby, 1976; Monte et al., 2013)

Susceptible undetermined Acute illness
Icteric forms

L. interrogans
Icterohaemorrhagiae

Rodent Hamster
(Sebek et al., 1987; Desai et al., 2009)

Susceptible +
kidneys

Acute illness
Icteric forms

L. interrogans Pomona

Ruminant Cattle
(Ellis et al., 1985; Ellis et al., 1986)

Susceptible +
genital tractus
kidneys

Abortion
Premature birth
Some severe cases

L. borgpetersenii Hardjo-Bovis
L. interrogans Hardjo

Ruminant Deer
(Subharat et al., 2010)

Susceptible Undetermined Undetermined L. interrogans Pomona & Hardjo

Ruminant Sheep
(Ellis et al., 1983) (Hamond et al., 2019)

Intermediate +
genital tractus
kidneys

Sporadic outbreaks of
severe cases/abortion
Infertility

L. interrogans Pomona, Icterohaemorrhagiae,
Australis & Sejroe

Ruminant Goat
(Leonvizcaino et al., 1987)

Susceptible Undetermined Abortion
Some severe cases

L. interrogans Australis, Grippotyphosa,
Hebdomadis, Sejroe & Pomona

Swine Pig
(Ellis et al., 1986)

Intermediate +
genital tractus
kidneys

Abortion
Some severe cases
Infertility

L. interrogans Pomona, Australis & Tarassovi

Equid Horse
(Ellis et al., 1983)

Sensitive +
genital tractus
kidneys

Uveitis, abortion
Some severe cases
Infertility

L. interrogans Pomona, Grippotyphosa,
Icterohaemorrhagiae, Autumnalis, Sejroe &
Canicola

Pet Dog
(Moore et al., 2006)

Susceptible +
kidneys

Icteric forms
Severe pulmonary
forms
Chronic uveitis/gastritis

L. interrogans Canicola, Pomona,
Icterohaemorrhagiae, Bratislava & Autumnalis

Pet Cat
(Larsson et al., 1985; Holzapfel et al., 2021)

Resistant Undetermined NA undetermined
Adapted from Adler, 2015 and other references indicated.
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2015) which are the most abundant components of the
leptospiral cell wall. Finally, to our interest, Leptospira spp.
differ from most other spirochetes because they possess
lipopolysaccharides (LPSs) anchored in their outer membrane
(Vinh et al., 1986; Werts et al., 2001). The structure of the
leptospiral LPS has not been extensively studied, unlike LPS from
Escherichia coli or Salmonella minnesota. LPS is an assortment of
complex molecules that have a tripartite structure: (i) lipid A that
is composed of a disaccharide with acyl chains anchoring the LPS
in the outer membrane of the bacteria, (ii) the core (composed of
sugars) which forms the first part of the carbohydrate
component, and (iii) the O antigen that is an assembly of
repeated sugar units protruding outside of the bacteria which
forms the second (Figure 2).

The structure of the leptospiral lipid A (Que-Gewirth et al.,
2004) revealed that disaccharide is composed of 2,3-diamino-2,3-
dideoxy-D-glucopyranose units. It is hexa-acylated with two R-3-
hydroxylaurates (in 3 and 3′) and two R-3-hydroxypalmitate (in 2
and 2′) with the peculiarity of having two secondary unsaturated
acyl chains C12:1 in 2′ and C14:1 in 3′. Furthermore, the four
primary acyl chains are amine-linked because of the substitution of
carbon atoms by nitrogen atoms in 3 and 3′. Finally, unlike E. coli
LPS, the leptospiral LPS is lacking a 4′-phosphate group and the 1-
phosphate group is methylated (Figure 2) and therefore does not
present the usual negative charges. The peculiarities of the L.
interrogans lipid A are conserved in several pathogenic serovars
(Lai, Icterohaemorrhagiae, andManilae) (Que-Gewirth et al., 2004;
Eshghi et al., 2015; Novak et al., 2022).

The LPS from L. interrogans has very little amount of the
traditional KDOmoiety (Vinh et al., 1986; Patra et al., 2015), and
it is currently hypothesized that Leptospira spp. could use other
forms of sugars such as KDO (Vinh et al., 1986; Patra et al.,
2015), as is the case for Acinetobacter and Burkholderia spp.
(Erridge et al., 2002). Also, very little is known regarding the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
structure of the O antigen. The O antigen of E. coli is composed
of repeated sugar units that make a very characteristic ladder-like
pattern when revealed on acrylamide gel. In the case of
Leptospira, arabinose, xylose, mannose, galactose, and
mannoheptose were found in several O antigens (Patra et al.,
2015); however, the smear-like bands visible in silver-stain SDS-
PAGE analyses suggest that the leptospiral O antigen is much
more complex than the repeated sugar units present in E. coli or
S. enterica LPS (Cinco et al., 1986; Bonhomme and Werts, 2020).
Indeed, the genomic organization of the leptospiral LPS
biosynthesis pathway encompasses up to 30 rfb open reading
frames for the O antigen, in addition to the lpx genes for the lipid
A biosynthesis (Pena-Moctezuma et al., 1999; Ren et al., 2003).

The leptospiral genome encodes for more than 170 putative
lipoproteins (Haake and Zückert, 2015). Proteomics approaches
showed that they are expressed from 1,500 to 35,000 copies/cell
(Malmström et al., 2009), illustrating that they are a very
abundant component of the bacteria. The main lipoproteins
are as follows (in order of relative abundance): LipL32, LipL21,
LipL41, LipL36, LipL45, and Loa22 (Malmström et al., 2009).
Most of these lipoproteins are conserved in the pathogenic
species and serotypes of Leptospira (Haake et al., 2000; Cullen
et al., 2003); however, only Loa22 has been described as a
virulence factor (Ristow et al., 2007).

The two leptospiral endoflagella (EFs) are embedded within
the periplasmic space and do not protrude outside of the
bacteria. They are inserted at each pole of the bacteria and
promote the leptospiral motility by alternating clockwise and
counterclockwise rotations. Interestingly, unlike other bacteria
such as Salmonella, the leptospiral flagellar filament is composed
of different flagellin-like proteins: two FlaAs (1-2), four FlaBs (1-
4), and two flagella-associated proteins FcpA and FcpB (Gibson
et al., 2020). The complex structure of the leptospiral flagellum
was recently resolved for L. biflexa and evidenced an
FIGURE 2 | Leptospira interrogans cell wall and MAMPs: peptidoglycan (PG), endoflagella (EF), abundant lipoproteins and atypical lipopolysaccharide (LPS).
Adapted from Que-Gewirth et al. (2004), Haake and Zückert (2015), Ratet et al. (2017), Gibson et al. (2020).
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asymmetrical assembly in which FlaBs form the core of the
flagellar filament, enveloped by all FlaAs and Fcps in a structure
called sheath (Gibson et al., 2020) (Figure 2). These EFs hence
differ largely from the classical flagella structure, described in
Salmonella, and in which one type of monomer, FliC, assembles
to form 11 protofilaments forming the flagellar filament.
Additionally, the FlaB subunits, which compose the core of the
EFs, have been predicted to be structurally different from FliC.
Indeed, they would possess the D0–D1 domains but would lack
the immunogenic D2–D3 domains (Holzapfel et al. ,
2020) (Figure 2).

PG is an essential component of the cell wall that protects
bacteria from turgor pressure (Vollmer et al., 2008). Although
the specific components vary between Gram- and Gram+
bacteria, PG is always composed of alternating sugars cross-
linked by various peptides. Linear chains made of a repetition of
N-acetyl-glucosamine (GlcNAc) and N-acetyl-muramic acid
(MurNAc) are connected by stem peptides bound to the
MurNAc sugars. In the case of Leptospira, these peptides are
(i) L-alanine (L-Ala), (ii) D-glutamine (D-Glu), (iii) meso-
diaminopimelic acid (mDAP), and (iv) D-alanine (D-Ala)
(Cameron, 2015) (Figure 2). The cross-linking occurs between
mDAP in position 3 and D-Ala in position 4. One peculiarity of
the leptospiral PG is that it is located close to the inner
membrane (Cameron, 2015). The outer membrane is therefore
more fluid, as it is not anchored to the PG like in classical Gram
negative bacteria (Charon et al., 1981; Raddi et al., 2012).
Furthermore, the leptospiral PG is responsible for the helix
shape of the bacteria (Slamti et al., 2011).

Innate Immunity and PRRs—Toll-like
Receptors, NODs and NOD-like Receptors
Cells of the mammalian innate immune system play a key role in
sensing pathogens upon infection. Sensing relies on the
expression of germline-encoded conserved receptors, called
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
pattern recognition receptors (PRRs) that recognize
microorganism-specific patterns. These microbe-associated
molecular patterns (MAMPs) are components that have been
highly conserved throughout evolution and that are essential to
microbial survival but absent from the host.

Toll-like receptors (TLRs) are eukaryotic transmembrane
receptors expressed in immune (myeloid and lymphoid) and
non-immune (fibroblast, epithelial, and endothelial) cells, which
recognize a large variety of microbial ligands (Figure 3). TLRs
are proteins composed of 750–1,000 residues and are ~ 75–100
kDa. The structure of TLRs reveals that they are transmembrane
proteins composed of (i) an N-terminal extracellular domain for
ligand binding composed of hydrophobic leucine-rich repeats
(LRR), forming a horseshoe structure; (ii) one transmembrane
helix of ~ 20 hydrophobic residues; and (iii) a C-terminal
cytosolic toll/interleukin-1 receptor domain for signal
transduction (Botos et al., 2011). Upon binding of the ligand
through the extracellular domain, TLRs dimerize to form either
homo- or heterodimers. Once the dimers are formed, the
intracellular TIR domains of the two TLRs interact and
activate cytosolic adaptors to induce signaling cascades leading
to inflammatory and antimicrobial responses. It is interesting to
note that the exchange of one amino acid within the ligand-
binding domain of a TLR or its co-factor can alter its specificity
(Meng et al., 2010; Osvaldova et al., 2014; Lozano-Aponte
et al., 2020).

In addition to the membrane-bound TLRs, nucleotide-
binding oligomerization domain (NOD) receptors and NOD-
like receptors (NLRs) are sensors that are present in the cytosol
of immune and epithelial cells. They recognize, among others,
fragments of bacterial peptidoglycan (Figure 3), thus providing a
redundancy of the pathogen recognition system. The first
common feature of all NODs and NLRs is their conserved
central NOD oligomerization domain. Furthermore, most of
them harbor a hydrophobic LRR domain in the C-terminal
FIGURE 3 | Overview of PRRs from the TLRs and NODs families, with their respective ligands. Adapted from Kawai and Akira (2010).
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portion allowing ligand binding. The signal transducing N-
terminal domains are however diverse and are the basis of the
NLR classification (Fritz et al., 2006; Carneiro et al., 2007).

Relationship Between Host-Specificity of
TLR and NOD Responses Against
Leptospira and Multifaceted Leptospirosis
Leptospires are pathogenic bacteria that can infect vertebrates,
and the disease presents itself in several forms depending on the
hosts. Nevertheless, the immune mechanisms that determine the
severity of the infection and that confer susceptibility to
leptospirosis remain enigmatic. Early recognition of microbes
by innate immune receptors plays a key role in the onset of an
infection. Therefore, we hypothesize that differential escape/
recognition of leptospires by PRRs of various hosts could
influence the outcome of the disease and understanding these
mechanisms could be key to shedding light on the host-
specificity of leptospirosis. In this review, we will summarize
the current knowledge on leptospire recognition by PRRs of the
TLR, NOD, and NLR families in human, mouse, bovine, and
canine. First, we will describe the responses that seem to occur
independently of the host species, namely TLR2 and NLRP3.
Then, we will focus on other responses, for which host-
specificities have been described: NOD1, TLR5, and most
importantly TLR4.
CONSERVED RECOGNITION—IN BOTH
RESISTANT AND SUSCEPTIBLE HOSTS

Upon infection with Leptospira interrogans, the activation of
some PRRs has been shown to be conserved in both resistant and
susceptible hosts. These conserved activation responses include
the activation of TLR2 by the leptospiral lipoproteins and the
activation of the NLRP3 inflammasome. Both of these will be
discussed in this section.

TLR2 and Leptospiral Lipoproteins
TLR2 is the receptor that allows the recognition of lipopeptides
such as bacterial lipoproteins, lipoteichoic acids (from Gram+
bacteria), and lipomannans (frommycobacteria). TLR2 is known
to heterodimerize with either TLR1 to accommodate tri-acylated
lipopeptides present in Gram bacteria or TLR6 for di-acylated
lipopeptides found in Gram+ bacteria.

Activation Mechanism
The structures of these dimers with their respective synthetic
ligands Pam3CSK4 and Pam2CSK4 have been solved (Jin and Lee,
2008; Kang et al., 2009) and showed one ligand binding per
dimer. The structural analysis of the TLR2/TLR1 heterodimer
revealed that both TLRs have a hydrophobic pocket on the
convex side of their LRR domain at the interface between the
central and C-terminal sections (LRR10–LRR15), hence
providing unusual binding sites for lipidic anchors (Jin and
Lee, 2008). It was shown that two lipidic anchors of the
Pam3CSK4 ligand interact with TLR2, whereas the third one
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
interacts with TLR1 (Jin and Lee, 2008). In the case of the TLR2/
TLR6 heterodimer, it was shown that only TLR2 contributes to
Pam2CSK4 lipidic chain support (Kang et al., 2009). Indeed,
sequence analyses showed that despite a 56% sequence homology
with TLR1, TLR6 does not have the hydrophobic residues
essential for lipid accommodation (Jin and Lee, 2008; Botos
et al., 2011). However, it was suggested that TLR6 could interact
with the peptide fragment directly (Kang et al., 2009).
Furthermore, for both sets of heterodimers, it has been
suggested that weakly bound heterodimers are constitutively
preformed at the plasma membrane and that the ligand
binding induces the rearrangement of these dimers into
actively signaling platforms.

Host-Specificity of TLR2 Activation
TLR2 signaling upon ligand binding is well conserved in different
host species (Werling et al., 2009), with the particularity that for
avian TLR2, only one heterodimer is present and allows
recognition of both di- and tri-acylated peptides (Keestra et al.,
2007; Werling et al., 2009). Additionally, a study on wild brown
rats (Rattus norvegicus) in China reported little intraspecies
diversity for TLR2 and reported few polymorphism sites,
compared to other TLRs such as TLR8 (Su et al., 2021). Of
note, the murine (m)TLR2 hydrophobic binding site is shorter
than that of the human (h)TLR2, hence resulting in a better
accommodation of very short lipopeptides (Botos et al., 2011).

Leptospiral Recognition by TLR2
Leptospires are potent agonists of human, mouse, and canine
TLR2 (Werts et al., 2001; Nahori et al., 2005; Hsu et al., 2010;
Novak et al., 2022). Furthermore, in mice, TLR2 activation is
dependent on TLR2/1 heterodimer formation (Nahori et al.,
2005), leading to the recognition of tri-acylated lipoproteins.
Another study reported TLR2-dependent activation of a bovine
fibroblast cell line (Guo et al., 2016), suggesting that the bovine
receptor could also be activated. The same group also suggested
that porcine TLR2 could be activated in response to Leptospira
infection (Guo et al., 2015). LipL32, the major lipoprotein of
leptospires, has been demonstrated to be a TLR2 ligand (Werts
et al., 2001; Hsu et al., 2010), activating the receptor through
hydrophobic interactions (Hsu et al., 2010; Hsu et al., 2017).
Furthermore, a calcium-binding cluster on LipL32 is essential to
sustaining the lipoprotein structure and allows proper TLR2
signaling (Lo et al., 2013). Loa22 has also been shown to be a
ligand for TLR2 (Hsu et al., 2021), and several lipopeptides from
leptospiral outer membrane proteins (OMPs) have been
predicted to interact with TLR2 (Akino Mercy and
Natarajaseenivasan, 2021). However, these are probably not the
only lipoproteins that signal through TLR2, although initial
results reported that LipL41 does not stimulate TLR2 (Yang
et al., 2006). Of note, the TLR2 activity of the leptospiral LPS
(Werts et al., 2001) is conferred by co-purifying lipoproteins,
among them LipL32, that can be removed only upon extensive
purification (Bonhomme et al., 2020).

In addition to the formation of TLR2/1 heterodimers, the
recognition of leptospiral lipoproteins also seems to involve the
CD14 molecule, a member of the LPS–receptor complex
July 2022 | Volume 12 | Article 932137
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involving CD14, LPS-binding protein (LBP), MD2, and TLR4.
However, CD14 is also important for the signaling of some tri-
acylated lipoproteins through TLR2/1 complexes (Ranoa et al.,
2013). In the case of Leptospira, activation of hTLR2 was shown
to be CD14-dependent (Werts et al., 2001). Of note, such a
mechanism is conserved in other Spirochetes such as Borrelia
and Treponema (Sellati et al., 1998; Wooten et al., 1998; Sellati
et al., 1999). Although the proper function of CD14 in TLR2
signaling remains unknown, it is hypothesized that it could
contribute to support binding of the hydrophobic chains of the
lipoproteins, similar to the mechanism of recognition of lipid A
and TLR4 (Ranoa et al., 2013). Interestingly, very little host-
specificity was described for CD14 (Delude et al., 1995),
suggesting again that TLR2 signaling upon activation by
leptospires is conserved between species.

NLRP3 and Leptospiral Glycolipoprotein
The inflammasome is a multiprotein complex and acts as a
cytosolic protein sensor that, upon activation, leads to the
cleavage and maturation of key inflammatory cytokines such
as IL-1b and IL-18. Among the numerous NLRPs encoded, the
NLRP3 inflammasome is the best described and is relevant in the
context of infection by L. interrogans.

NLRP3 Activation Mechanism
In mice, activation of the NLRP3 inflammasome requires the
integration of (at least) two signals to be fully functional. First,
the NLRP3 system needs to be primed. Such priming occurs by
stimulating PRRs with MAMPs or cytokines (such as TNF),
followed by the translocation of NF-kB (Bauernfeind et al., 2009;
Franchi et al., 2009). This priming allows the transcription of
NLRP3 mRNA as well as pro-cytokines mRNA, making the cell
more responsive to subsequent activation (Bauernfeind et al.,
2009). The second signal leads to the formation of the actual
inflammasome complex and requires activation by various
cellular stress factors, including mitochondrial reactive oxygen
species (ROS) (Lawlor and Vince, 2014) production, calcium
(Ca2+) influx (Brough et al., 2003), toxins, and lysosomal leakage
(He et al., 2016). NLRP3 activation often arises from potassium
(K+) efflux, caused by damaged or downregulated sodium/
potassium pumps (Muñoz-Planillo et al., 2013; He et al., 2016).
Upon NLRP3 activation, the ASC adaptor is recruited to the
inflammasome and oligomerizes in filaments that serve as
amplification platforms for caspase cleavage (Dick et al., 2016).
Caspases are cysteine proteases that play an essential role in cell
death and immunity. Most caspases function in a similar
manner: they are constitutively inactive in pro-caspase form
and are cleaved and activated upon stimuli (Yamin et al., 1996).
Caspases then cleave substrates with aspartic residues. Caspase 1
was the first caspase to be described as part of the inflammatory
response. It carries the interleukin-converting enzyme (ICE)
activity and catalyzes mature IL-1b and IL-18 from pro-IL-1b
and pro-IL-18 (Miller et al., 1993; Sansonetti et al., 2000).

Host-Specificity of NLRP3 Activation
NLRP3 activation has been shown to require different signals for
activation in different host species. More specifically, human
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monocytic cells, such as THP1, are much more sensitive to
inflammasome activation and only require one signal such as
LPS to trigger potent IL-1b secretion (Netea et al., 2009; Wang
et al., 2013). As human monocytes can release ATP, it is
hypothesized that this ATP release could act as endogenous
signal 2, hence triggering proper NLRP3 activation (Netea et al.,
2009; Wang et al., 2013).

Leptospiral Activation of NLRP3
In the case of L. interrogans, our group published that NLRP3 is
activated upon infection of murine macrophages (Lacroix-
Lamande et al., 2012) (Figure 4). The priming signal is the
activation of TLR2/TLR4 by the leptospiral LPS and associated
lipoproteins, and signal 2 is the downregulation of the sodium/
potassium pump by the leptospiral glycolipoprotein (GLP),
provoking a potassium efflux, a classical trigger of the NLRP3
activation (Lacroix-Lamande et al., 2012). As a result of NLRP3
activation and caspase 1 cleavage, leptospires induce a TLR2-
TLR4-dependent production of IL-1b which was shown to be
independent of ROS production in murine cells (Lacroix-
Lamande et al., 2012). These results were confirmed by a study
showing a role of doxycycline in the reduction of IL-1b
production by the NLRP3 inflammasome (Zhang et al., 2017).
Consistent with IL-1b found in blood of leptospirosis patients
(Senavirathna et al., 2020), another study showed that IL-1b and
IL-18 were also produced in human cells through NLRP3
activation (Li et al., 2018). This study reported that NLRP3
activation in human cells occurs through the production of ROS,
suggesting different activation mechanisms in human and
murine cells (Li et al., 2018). However, it remains to be
confirmed since this study was recently brought into question
(Li et al., 2021). In addition, other studies reported IL-1b release
upon stimulation of canine whole blood and monocyte-derived
dendritic cells (moDCs) in response to Leptospira (Rajeev et al.,
2020; Novak et al., 2022), suggesting that functional
inflammasomes could also be triggered in dogs, although the
mechanism remains uncharacterized. Taken together, these data
suggest that leptospires could trigger NLRP3 inflammasome and
induce IL-1b secretion in different hosts.
EFFICIENT ESCAPE—WITH
STRENGTHENED MECHANISMS IN MICE

Leptospira interrogans are stealth pathogens that have been
shown to escape recognition by some innate immune
receptors. In the following section, we specifically discuss those
escape mechanisms that shield leptospires from detection via
TLR5 and NODs. Furthermore, we also discuss that the study of
the species-specificity of TLR5 and NOD responses highlights
the mechanism of escaping mouse receptors.

TLR5 and Leptospiral Endoflagella
TLR5 is the receptor responsible for the recognition of the
bacterial flagellin: the protein component of the flagella that is
essential for bacterial motility (Hayashi et al., 2001). Although
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the flagellin subunits are oligomerized in the bacteria, TLR5 is
only activated upon release of monomeric flagellin subunits
(Smith et al., 2003), specifically fliC.

TLR5 Activation Mechanism
FliC monomers (the globular proteins constituting the flagellum)
from Salmonella enterica are divided into four domains (D0, D1,
D2, and D3). The structure of the complex showed that TLR5
interacts with FliC in the D1 domain via the side of its LRR
domain at the interface between the N-terminal and the central
section (LRR-NT–LRR10) (Yoon et al., 2012). Previous
mutagenesis analyses in E. coli had already implicated the D1
domain in TLR5 activation (Donnelly and Steiner, 2002). Upon
ligand binding, two TLR5/FliC complexes then form an active
homodimer that get stabilized by the interaction of each FliC D0
domain with the convex side of the opposite TLR5 (Yoon
et al., 2012).

Host-Specificity of TLR5 Activation
The murine TLR5 is less stringent than its human counterpart,
and it accommodates more diverse substrates (Andersen-Nissen
et al., 2007; Forstnerič et al., 2016). Canine and avian TLR5 were
also reported to be functional and to respond to Salmonella
flagellin (Keestra and de Zoete, 2008; Zhu et al., 2020). On the
contrary, bovine and porcine TLR5 is much harder to activate
than human TLR5 and seems to have poor flagellin sensing
ability against the fliC components tested (Metcalfe et al., 2014).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Indeed, neither of them seem to recognize flagellin from
Salmonella (Metcalfe et al., 2014; Faber, 2018). A study
reported that replacement of two amino acids in the TIR
domain of the bovine TLR5 could be responsible for at least
the partial lack of responsiveness, compared to human TLR5
(Osvaldova et al., 2014).

Leptospiral Escape from TLR5
A study from our group showed that live leptospires largely
escape TLR5 recognition through an efficient hiding of the
agonists, presumably due the peculiar structure and
localization of the leptospiral periplasmic flagella (Holzapfel
et al., 2020). This was further supported by the findings that
the course of leptospirosis is unaltered in TLR5-/- mice
(Holzapfel et al., 2020). Interestingly, it was shown that heat
treatment allowed triggering of TLR5 signaling by degraded
leptospires (Holzapfel et al., 2020) (Figure 5). Such findings
were very recently confirmed by another group (Novak et al.,
2022). Leptospiral flagellin monomers, supposedly TLR5
agonists, were unexpectedly released only after boiling for 30
min and have been shown to be unusually thermoresistant in
comparison to Salmonella FliC monomers (Holzapfel et al.,
2020). The study of the species-specificity of TLR5 requires
methodological caution as the heterologous expression in
HEK293T cells might be biased by the endogenous expression
of human TLR5 in these cells. A recent study performed in these
cells suggested no difference between human TLR5 and mouse
FIGURE 4 | Leptospiral activation of the murine NLRP3 canonical inflammasome. Adapted from Lacroix-Lamande et al. (2012).
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TLR5 activation by degraded leptospires (Novak et al., 2022),
whereas a heterologous expression of the different TLR5 vectors
in specific HEK293T-hTLR5 knockdown cells demonstrated
species-specificity (Holzapfel et al., 2020). Indeed, we found
that both human and bovine TLR5 recognize heat-killed
leptospires, although the mouse TLR5 did not sense the
Icterohaemorrhagiae and Manilae serovars but could scantily
recognize the Copenhageni serovar (Holzapfel et al., 2020).
These results were unexpected considering the low stringency
of the murine receptor and very interestingly showed that the
specificity of the leptospiral recognition by TLR5 is not the same
as for Salmonella. We hypothesize that the lack of D2/D3
domains in the leptospiral FlaB subunits could play a role in
the interaction with human and bovine TLR5. Although these
domains traditionally stabilize the murine TLR5 homodimer
(Yoon et al., 2012), they could play an opposite role with the
bovine TLR5 in which the ligand-binding region was shown to be
mutated (Tahoun et al., 2017). Importantly, our group also
showed that antimicrobial peptides were active against live
bacteria to allow for the signaling through human and bovine
TLR5 (Holzapfel et al., 2020), most probably through membrane
disruption. Overall, these data show that live leptospires escape
efficiently TLR5 recognition in human, bovine, and murine
hosts. Furthermore, an additional escape mechanism seems to
prevent the recognition of the released leptospiral TLR5 agonists
by the murine receptor, suggesting a strengthened escape
mechanism in mice.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
NOD1/NOD2 and Leptospiral
Peptidoglycan
NOD receptors, namely, NOD1 and NOD2, are cytosolic sensors
that become activated upon sensing of bacterial peptidoglycan
(PG) fragments, called muropeptides.

NOD Activation Mechanism
NOD1 recognize g-glutamyl diaminopimelic acid (iE-DAP), and
this recognition is increased when iE-DAP is linked to the sugar
part, forming muramyl tripeptide (MTP), a fragment mostly
present in Gram- bacteria. On the other hand, NOD2 recognizes
muramyl dipeptide (MDP) that is present in both Gram+ and
Gram- bacteria (Girardin et al., 2003) (Figure 5). The caspase
recruitment domain (CARD) of NODs functions like the TIR
domain of TLRs and leads to homotypic interactions between
NODs and their adaptor RIP2 that bridges downstream signaling
(Bertin et al., 1999; Kobayashi et al., 2002). RIP2 leads (via TAK1,
IKK kinases, and NEMO) to the degradation of IkB, hence
promoting NF-kB translocation in the nucleus, allowing
inflammatory responses.

Host-Specificity of NOD Activation
Study of the species-specificity of NOD1 has demonstrated that
human and mouse NOD1 do not respond to the same fragments
of bacterial peptidoglycan. Indeed, mouse NOD1 recognizes
mainly muramyl tetra-peptide whereas human NOD1
preferentially senses muramyl tri-peptide (Magalhaes et al.,
FIGURE 5 | Recognition of degraded leptospires only by human/bovine TLR5 and human NOD1. Adapted from Ratet et al. (2017) and Holzapfel et al. (2020).
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2005). This host-specificity is most likely attributable to different
key residues (around amino acids 816 and 844) in the ligand-
binding LRR domain of NOD1 (Girardin et al., 2005). To the
best of our knowledge, no host-specificity has been shown
for NOD2.

Leptospiral Escape from NODs
In contrast to other bacteria in which structural modifications of
muropeptides impair recognition through NOD1 and NOD2,
our group found that Leptospira escape both receptors by a novel
mechanism. Indeed, LipL21, one of the major leptospiral
lipoproteins, tightly binds to the leptospiral PG, thus
preventing muropeptide release and recognition (Ratet et al.,
2017). Therefore, NOD1 and NOD2 play no role in controlling
Leptospira dissemination in vivo. However, upon bacterial
degradation and extensive purification of the leptospiral PG (4-
h boiling protocol to remove LipL21), an agonist stimulating
human NOD1 but barely human NOD2 was released (Figure 5).
Consistently, it was further shown that muramyl tri-peptide, the
agonist of human NOD1, is present in the purified leptospiral PG
(Ratet et al., 2017). Interestingly, the purified leptospiral PG is
devoid of muramyl tetra-peptides, usually found in Gram-
bacteria, and can therefore not be sensed by mouse NOD1,
even after extensive purification (Ratet et al., 2017). Overall, the
leptospiral PG, in the context of live bacteria, is not recognized by
the NOD receptors in either human or murine host, thanks to its
tight association with LipL21. Furthermore, in the murine host,
leptospires have redundant mechanisms with both the LipL21
phenotype and the absence of the NOD1 ligand (Ratet et al.,
2017), suggesting again a reinforced escape mechanism
in mouse.
SPECIES-SPECIFIC RECOGNITION

TLR4 and Leptospiral LPS
TLR4 was the first TLR to be identified in mammals and was
described as the receptor of bacterial lipopolysaccharides (LPS)
(Medzhitov et al., 1997; Poltorak, 1998). Contrary to other TLRs,
TLR4 activation involves numerous cofactors that participate in
LPS recognition, including CD14, LBP, and MD2.

TLR4 Activation Mechanism
TLR4 is activated upon binding with the lipid A moiety of the
LPS. However, the accommodation of the LPS requires several
steps and cofactors before ligand-induced dimerization of TLR4,
allowing downstream signaling. First, in the circulation,
aggregated LPS molecules bind to a protein called LPS-binding
protein (LBP). One LBP molecule can interact with LPS micelles
through its N-terminal domain to transfer individual molecules
of LPS to the next partner, CD14 (Wright et al., 1990; Hailman
et al., 1994; Ryu et al., 2017). CD14 then binds transiently to the
LPS/LBP complexes to receive one LPS molecule (Wright et al.,
1990; Frey, 1992; Hailman et al., 1994; Ryu et al., 2017). Finally,
CD14 transfers the LPS to the myeloid differentiation factor 2
(MD2)/TLR4 complex that is the final receptor of LPS. Upon
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
activation, TLR4 triggers the activation of both adaptors MyD88
at the plasma membrane and TRIF upon internalization
in endosomes.

Host-Specificity of TLR4 Activation
The affinity of the MD2/TLR4 complex for lipid A directly
determines the activation level in different host species (Anwar
et al., 2015). Two main features of lipid A have been described to
alter the affinity for the MD2/TLR4 complex. First, the number
of acyl chains on lipid A is important. Indeed, the complex is
most efficient when dealing with hexa-acylated lipid A such as
the one from E. coli. Penta-acylated lipid A is poorly recognized,
and tetra-acylated lipid A can even act as an antagonistic
molecule of the human complex (Rietschel et al., 1994;
Teghanemt et al., 2005). Second, lipid A usually presents two
phosphoryl groups on its disaccharide (positions 1 and 4′) that
increase affinity with the MD2/TLR4 complex by interacting
with positively charged residues on TLR4 (Rietschel et al., 1994;
Park et al., 2009). Interestingly, human, equine, and canine TLR4
have partial charges in the binding sites for the lipid A phosphate
groups, whereas murine TLR4 has full charges, allowing easier
ligand accommodation (Lozano-Aponte et al., 2020). Overall, the
murine TLR4 seems to be less stringent that its counterparts
from other species.

Leptospiral Escape from TLR4 Recognition
The first peculiarity of the leptospiral lipid A is that it is
recognized by the murine TLR4 but not by the human TLR4
(Nahori et al., 2005) (Figure 6). It is hypothesized that the
methylated 1-phosphate and missing 4′-phosphate groups are
the cause of the lack of recognition by human TLR4. Likewise,
the leptospiral LPS reacts poorly to the traditional endotoxin
quantification limulus amebocyte lysate (LAL) test (Nahori et al.,
2005). The very low endotoxicity of the leptospiral LPS makes
studies on reporter systems very sensitive to any other endotoxin
contaminations, for instance from bacterial culture medium
EMJH or cell culture products that are often contaminated
with residual endotoxin. Such problems could account for the
discrepant results in the literature that artefactually suggest that
the leptospiral LPS could activate human TLR4 (Novak
et al., 2022).

Interestingly, data from our group have shown that the
leptospiral LPS remains poorly endotoxic, even on murine
TLR4, compared with classical LPS from E. coli or S. enterica
(Nahori et al., 2005). We recently published a study showing that
the leptospiral LPS escapes the internalization of TLR4 in murine
macrophages (Bonhomme et al., 2020), consequently avoiding
the activation of TRIF-dependent responses such as NO, IFN-g,
and RANTES (Bonhomme et al., 2020) (Figure 6). The
phenotype was shown to be dependent on the leptospiral O
antigen and the presence of copurifying lipoproteins
(Bonhomme et al., 2020). More interestingly however is the
fact that leptospiral LPS escapes human TLR4 completely,
whereas it only partially escapes murine TLR4 recognition/
activation, consistent with the lower stringency of the
mouse receptor.
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Finally, the last particularity of the leptospiral LPS is its ability
to activate TLR2 in both human and murine cells (Werts et al.,
2001) (Figure 6). Although it was initially believed that the
observed TLR2 activity could be linked to the LPS itself, it is in
fact independent of the leptospiral lipid A and rather due to
contaminating lipoproteins, consistent with the TLR2/TLR1
response (Nahori et al., 2005). As TLR2 responses to
leptospiral lipoproteins are not species-specific, the
contaminating TLR2 activity of the leptospiral is conserved in
different hosts (Werts et al., 2001).
DISCUSSION

As mentioned previously, leptospires can infect all mammals, but
leptospirosis symptoms vary according to the hosts. They are
therefore classified as either resistant or susceptible, depending
on whether they might present acute symptoms of leptospirosis.
However, to date, the innate immune mechanisms underlying
such resistance or susceptibility remain unknown. In this review,
we have summarized the current knowledge on leptospiral
recognit ion by PRRs of the TLR, NOD, and NLR
families (Figure 7).

Leptospires are potent TLR2 agonists, through the
recognition of their tri-acylated lipoproteins by TLR1/TLR2,
which was shown to be conserved in both humans and mice
(Werts et al., 2001; Nahori et al., 2005). Similarly, leptospires
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activate NLRP3 in different hosts (Lacroix-Lamande et al., 2012;
Li et al., 2018). Given these results, although they are essential for
the proper recognition of the leptospires, it is unlikely that TLR2
and NLRP3 could mediate the species-specificity of the
leptospiral recognition. Second, live leptospires escape TLR5
and NODs in different hosts, both susceptible and resistant,
suggesting that there is no major species-specificity for these
responses. It was further demonstrated that, despite efficient
escape mechanisms, artificial release of the agonists revealed
human/bovine TLR5 and human NOD1 activities, but not
murine TLR5 nor murine NOD1 activities (Ratet et al., 2017;
Holzapfel et al., 2020). Human/bovine TLR5 and human NOD1
might therefore play a specific role during acute leptospirosis in a
susceptible host, considering that they can sense released
agonists upon bacterial degradation. Whether their
contribution could be beneficial to human and bovine hosts,
potentially to compensate for the lack of TLR4 activation in these
hosts, remains to be addressed.

The most interesting mechanism in the species-specific
recognition of Leptospira is the peculiar sensing of its LPS by
TLR4. The role of TLR4 in the resistance of the mouse model has
been extensively addressed: C3H/HeJ and TLR4-/- mice are
sensitive to leptospirosis (Pereira et al., 1998; Nally et al., 2005;
Viriyakosol et al., 2006; Chassin et al., 2009). Our results further
showed that the recognition by the murine TLR4 was only
partial, because of the escape of TLR4 internalization and
subsequent TLR4-TRIF escape (Bonhomme et al., 2020),
FIGURE 6 | Escape and partial recognition of the leptospiral LPS by human and mouse TLR4. Adapted from Werts et al. (2001), Nahori et al. (2005), Bonhomme
et al. (2020).
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potentially contributing to the chronicity of the infection in mice.
TLR4-MyD88 activation by the leptospiral LPS therefore
remains the best candidate to explain the species-specificity of
the immune response to Leptospira. However, a recent study
demonstrated that transgenic mice expressing human TLR4/
MD2 are not more susceptible to leptospirosis than WT mice
(Nair et al., 2021). This study concludes that the presence of a
functional TLR4 gene, whether murine or human, is the
prerequisite for resistance to acute leptospirosis (Nair et al.,
2021). Of note, this study did not use mice transgenic for
human CD14, most probably because very little species-
specificity has been described for CD14 (Delude et al., 1995).
Unexpectedly, these findings could shed light on the fact that
most hosts from susceptible species, such as 90% of humans, do
not develop symptoms of acute illness (Costa et al., 2015). It is
therefore proposed that TLR4 is essential to the resistance of the
murine model, but the lack of recognition by human TLR4 is not
the main reason for the enhanced human susceptibility to
leptospirosis. Hence, the precise mechanisms by which TLR4
confers the resistance to the mouse model remain to be
determined. TLR4 therefore plays an unequivocal role in the
response to leptospirosis. However, host species-specificity seems
more complex than the straightforward hypotheses we initially
favored. Conciliating all the results of the current literature
inevitably requires the involvement of other species-specific
mechanisms that are still to be identified. Indeed, the role of
TLR4 is not limited to LPS sensing. For instance, TLR4 is known
to play an important role in homeostatic immunity and has been
shown to be instrumental for the constitutive production by B1
cells of natural IgM, which recognize varied phospholipid and
carbohydrate motifs (Panda and Ding, 2015; Dyevoich et al.,
2020). Interestingly, such B1-produced antibodies were shown to
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be essential to the control of relapsing borreliosis, caused by
spirochetes Borrelia (Belperron and Bockenstedt, 2001; Malkiel
et al., 2009). Our group showed in the murine model of
leptospirosis that TLR4-dependent IgM produced as early as 3
days postinfection was partially protective (Chassin et al., 2009).
Overall, further investigation will be necessary to clarify the role
of TLR4 in controlling leptospirosis.

The relative expression of different TLRs in various organs of
different host species could also contribute to the species-
specificity of the response to Leptospira. For instance, it was
shown that TLR5 is not expressed in the proximal tubules of
mice (Bens et al., 2014), where leptospires chronically reside,
hence adding another escape mechanism for the bacteria.
Another example is TLR2/TLR1 expression in sheep that
seems to be very low in different organs (lung, kidneys, skin)
and that could contribute to the species sensitivity (Nalubamba
et al., 2007). Another study on female rabbits reported many
differences in TLR expression in various organs and reported
that TLR expression was low in spleen compared to other organs
(Chen et al., 2014). Finally, the cellular composition may also
vary from one host to the next. For instance, cattle have a specific
subset of macrophages that can produce extracellular traps
(bMETs) in response to Leptospira (Nagel et al., 2019), a
feature that is traditionally associated with neutrophils. Overall,
although the cellular composition and differential expression of
PRRs are not exhaustively presented in this review, it must be
considered when studying immune responses to leptospires.

Finally, the specificities of the numerous leptospiral serovars
could also play a role in the species-specificity of the host
response, favoring a coevolution of host and pathogen. Indeed,
a specific L. interrogans serovar Autumnalis strain, in which LPS
is deprived of contaminating TLR2 activity, induces self-
FIGURE 7 | Overview of the species-specificity of PRR recognition of leptospires.
July 2022 | Volume 12 | Article 932137

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Bonhomme and Werts Host-Specific PRRs Recognition of Leptospira interrogans
resolving leptospirosis in mice (Xia et al., 2017). This illustrates
that the structural peculiarities of the different serovars,
especially on the LPS, might affect greatly the course of the
infection. Furthermore, some serovars are strongly associated
with hosts, such as serovar Hardjo-Bovis and Pomona that are
mostly found in cattle (Adler, 2015; Nagel et al., 2019) and
serovar Canicola that is often isolated from dogs (Adler, 2015).
Similarly, organ tropisms of the different strains could contribute
to the species-specificity of the innate responses to leptospires.

Overall, the species-specificity of the host immune responses
to L. interrogans remains enigmatic. Studies on TLR2, NLRP3,
TLR5, and NODs did not evidence major species-specific
responses, at least in responses to live bacteria, reinforcing the
hypothesis that TLR4 plays a complex yet instrumental role in
host specific responses to L. interrogans. However, we believe
that the complexity of host specificities in leptospirosis results
from the integration of several innate immune mechanisms,
which may explain the vast diversity of leptospirosis diseases
in different host species.
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Nahori, M.-A., Fournié-Amazouz, E., Que-Gewirth, N. S., Balloy, V., Chignard,
M., Raetz, C. R. H., et al. (2005). Differential TLR Recognition of Leptospiral
Lipid A and Lipopolysaccharide in Murine and Human Nells. J. Immunol. 175,
6022. doi: 10.4049/jimmunol.175.9.6022

Nair, N., Guedes, M. S., Hajjar, A. M., Werts, C., and Gomes-Solecki, M. (2021).
Role of TLR4 in Persistent Leptospira Interrogans Infection: A Comparative In
Vivo Study in Mice. Front. Immunol. 11. doi: 10.3389/fimmu.2020.572999

Nally, J. E., Fishbein, M. C., Blanco, D. R., and Lovett, M. A. (2005). Lethal
Infection of C3H/HeJ and C3H/SCID Mice With an Isolate of Leptospira
Interrogans Serovar Copenhageni. Infect. Immun. 73, 7014–7017. doi: 10.1128/
IAI.73.10.7014-7017.2005

Nalubamba, K. S., Gossner, A. G., Dalziel, R. G., and Hopkins, J. (2007).
Differential Expression of Pattern Recognition Receptors in Sheep Tissues
and Leukocyte Subsets. Vet Immunol. Immunopathol. 118, 252–262.
doi: 10.1016/j.vetimm.2007.05.018

Netea, M. G., Nold-Petry, C. A., Nold, M. F., Joosten, L. A., Opitz, B., van de Meer,
J. H., et al (2009). Differential Requirement for the Activation of the
Inflammasome for Processing and Release of IL-1␤ in Monocytes and
Macrophages. Blood 113 (10), 2324–2335. doi: 10.1182/blood-2008-03-146720

Novak, A., Pupo, E., van’t Veld, E., Rutten, V. P. M. G., Broere, F., and Sloots, A.
(2022). Activation of Canine, Mouse and Human TLR2 and TLR4 by
Inactivated Leptospira Vaccine Strains. Front. Immunol. 13. doi: 10.3389/
fimmu.2022.823058

Osvaldova, A., Woodman, S., Patterson, N., Offord, V., Mwangi, D., Gibson, A. J.,
et al. (2014). Replacement of Two Aminoacids in the Bovine Toll-Like
Receptor 5 TIR Domain With Their Human Counterparts Partially Restores
Functional Response to Flagellin. Dev. Comp. Immunol. 47, 90–94.
doi: 10.1016/j.dci.2014.07.002

Paiva-Cardoso M das, N., Arent, Z., Gilmore, C., Hartskeerl, R., and Ellis, W. A.
(2013). Altodouro, a New Leptospira Serovar of the Pomona Serogroup
Isolated From Rodents in Northern Portugal. Infect Genet. Evolution. 13,
211–217. doi: 10.1016/j.meegid.2012.09.013
July 2022 | Volume 12 | Article 932137

https://doi.org/10.1016/j.molimm.2007.09.013
https://doi.org/10.1016/j.molimm.2007.09.013
https://doi.org/10.4049/jimmunol.178.11.7110
https://doi.org/10.1038/416194a
https://doi.org/10.1038/416194a
https://doi.org/10.1038/nrmicro2208
https://doi.org/10.4049/jimmunol.1101987
https://doi.org/10.1016/j.bbagen.2013.08.014
https://doi.org/10.1016/0147-9571(87)90009-9
https://doi.org/10.1016/j.theriogenology.2007.10.027
https://doi.org/10.1016/j.micinf.2018.01.010
https://doi.org/10.1016/j.micinf.2020.09.002
https://doi.org/10.1016/j.micinf.2020.09.002
https://doi.org/10.1074/jbc.M112.418699
https://doi.org/10.1099/jmm.0.008169-0
https://doi.org/10.1177/1753425919894628
https://doi.org/10.1038/sj.embor.7400552
https://doi.org/10.4049/jimmunol.182.1.498
https://doi.org/10.4049/jimmunol.182.1.498
https://doi.org/10.1038/nature08184
https://doi.org/10.1371/journal.pone.0156084
https://doi.org/10.1038/41131
https://doi.org/10.1074/jbc.M110.134668
https://doi.org/10.1074/jbc.M110.134668
https://doi.org/10.1016/j.vetimm.2013.12.006
https://doi.org/10.1016/S0021-9258(17)46811-6
https://doi.org/10.3390/tropicalmed6040189
https://doi.org/10.1016/j.actatropica.2013.02.009
https://doi.org/10.3201/eid1203.050809
https://doi.org/10.1016/j.immuni.2013.05.016
https://doi.org/10.1016/j.vetmic.2019.04.033
https://doi.org/10.4049/jimmunol.175.9.6022
https://doi.org/10.3389/fimmu.2020.572999
https://doi.org/10.1128/IAI.73.10.7014-7017.2005
https://doi.org/10.1128/IAI.73.10.7014-7017.2005
https://doi.org/10.1016/j.vetimm.2007.05.018
https://doi.org/10.1182/blood-2008-03-146720
https://doi.org/10.3389/fimmu.2022.823058
https://doi.org/10.3389/fimmu.2022.823058
https://doi.org/10.1016/j.dci.2014.07.002
https://doi.org/10.1016/j.meegid.2012.09.013
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Bonhomme and Werts Host-Specific PRRs Recognition of Leptospira interrogans
Panda, S., and Ding, J. L. (2015). Natural Antibodies Bridge Innate and Adaptive
Immunity. JI. 194, 13–20. doi: 10.4049/jimmunol.1400844

Park, B. S., Song, D. H., Kim, H. M., Choi, B.-S., Lee, H., and Lee, J.-O. (2009). The
Structural Basis of Lipopolysaccharide Recognition by the TLR4–MD-2
Complex. Nat 458, 1191–1195. doi: 10.1038/nature07830

Patra, K. P., Choudhury, B., Matthias, M. M., Baga, S., Bandyopadhya, K., and
Vinetz, J. M. (2015). Comparative Analysis of Lipopolysaccharides of
Pathogenic and Intermediately Pathogenic Leptospira Species. BMC
Microbiol. 15, 244. doi: 10.1186/s12866-015-0581-7

Pena-Moctezuma, A., Bulach, D. M., Kalambaheti, T., and Adler, B. (1999).
Comparative Analysis of the LPS Biosynthetic Loci of the Genetic Subtypes
of Serovar Hardjo: Leptospira Interrogans Subtype Hardjoprajitno and
Leptospira Borgpetersenii Subtype Hardjobovis. FEMS Microbiol. Lett. 177,
319–326. doi: 10.1111/j.1574-6968.1999.tb13749.x

Pereira, M. M., Andrade, J., Marchevsky, R. S., and Ribeiro dos Santos, R. (1998).
Morphological Characterization of Lung and Kidney Lesions Inc3h/HeJ Mice
Infected With Leptospira Interrogans Serovar Icterohaemorrhagiae: Defect of
CD4+ and CD8+ T-Cells are Prognosticators of the Disease Progression. Exp.
Toxicol Pathol. 50, 191–198. doi: 10.1016/S0940-2993(98)80083-3

Poltorak, A. (1998). Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice:
Mutat ions in Tlr4 Gene . Sci . 282, 2085–2088. doi : 10 .1126/
science.282.5396.2085

Que-Gewirth, N. L. S., Ribeiro, A. A., Kalb, S. R., Cotter, R. J., Bulach, D. M., Adler,
B., et al. (2004). A Methylated Phosphate Group and Four Amide-Linked Acyl
Chains in Leptospira Interrogans Lipid A: The Membrane Anchor of an
Unusual Lipopolysaccharide That Activates TLR2. J. Biol. Chem. 279, 25420–
25429. doi: 10.1074/jbc.M400598200

Raddi, G., Morado, D. R., Yan, J., Haake, D. A., Yang, X. F., and Liu, J. (2012).
Three-Dimensional Structures of Pathogenic and Saprophytic Leptospira
Species Revealed by Cryo-Electron Tomography. J. Bacteriol. 194, 1299–
1306. doi: 10.1128/JB.06474-11

Rajeev, S., Toka, F. N., and Shiokawa, K. (2020). Potential Use of a Canine Whole
Blood Culture System to Evaluate the Immune Response to Leptospira. Comp.
Immunol Microbiol. Infect. Diseases. 73, 101546. doi: 10.1016/
j.cimid.2020.101546

Ranoa, D. R. E., Kelley, S. L., and Tapping, R. I. (2013). Human
Lipopolysaccharide-Binding Protein (LBP) and CD14 Independently Deliver
Triacylated Lipoproteins to Toll-Like Receptor 1 (TLR1) and TLR2 and
Enhance Formation of the Ternary Signaling Complex. J. Biol. Chem. 288,
9729. doi: 10.1074/jbc.M113.453266

Ratet, G., Santecchia, I., Fanton d’Andon, M., Vernel-Pauillac, F., Wheeler, R.,
Lenormand, P., et al. (2017). LipL21 Lipoprotein Binding to Peptidoglycan
Enables Leptospira Interrogans to Escape NOD1 and NOD2 Recognition. PloS
Pathogens. 13, e1006725. doi: 10.1371/journal.ppat.1006725

Ratet, G., Veyrier, F. J., Fanton d’Andon, M., Kammerscheit, X., Nicola, M.-A.,
Picardeau, M., et al. (2014). Live Imaging of Bioluminescent Leptospira
Interrogans in Mice Reveals Renal Colonization as a Stealth Escape From
the Blood Defenses and Antibiotics. PloS Negl. Trop. Diseases. 8, e3359.
doi: 10.1371/journal.pntd.0003359

Ren, S.-X., Fu, G., Jiang, X.-G., Zeng, R., Miao, Y.-G., Xu, H., et al. (2003). Unique
Physiological and Pathogenic Features of Leptospira Interrogans Revealed by
Whole-Genome Sequencing. Nat 422, 888–893. doi: 10.1038/nature01597

Rietschel, E. T., Kirikae, T., Schade, F. U., Mamat, U., Schmidt, G., Loppnow, H.,
et al. (1994). Bacterial Endotoxin: Molecular Relationships of Structure to
Activity and Function. FASEB J. 8, 217–225. doi: 10.1096/fasebj.8.2.8119492

Rigby, C. (1976). Natural Infections of Guinea-Pigs. Lab. Anim. 10, 119–142.
doi: 10.1258/002367776781071503

Ristow, P., Bourhy, P., McBride FW da, C., Figueira, C. P., Huerre, M., Ave, P.,
et al. (2007). The OmpA-Like Protein Loa22 is Rssential for Leptospiral
Virulence. PloS Pathogens. 3, e97. doi: 10.1371/journal.ppat.0030097

Ritter, J. M., Lau, C., Craig, S. B., Goarant, C., Nilles, E. J., Ko, A. I., et al. (2018). A
Large Leptospirosis Outbreak Following Successive Severe Floods in Fij. Am. J.
Trop. Med. Hygiene. 99, 849–851. doi: 10.4269/ajtmh.18-0335

Ryu, J.-K., Kim, S. J., Rah, S.-H., Kang, J. I., Jung, H. E., Lee, D., et al. (2017).
Reconstruction of LPS Transfer Cascade Reveals Structural Determinants
Within LBP, CD14, and TLR4-MD2 for Efficient LPS Recognition and
Transfer. Immun. 46, 38–50. doi: 10.1016/j.immuni.2016.11.007
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
Sansonetti, P. J., Phalipon, A., Arondel, J., Thirumalai, K., Banerjee, S., Akira, S.,
et al. (2000). Caspase-1 Activation of IL-1␤ and IL-18 Are Essential for
Shigella Flexneri–Induced Inflammation. Immunity 12 (5), 581–590. doi:
10.1016/S1074-7613(00)80209-5

Sebek, Z., Grulich, I., and Valova, M. (1987). To the Knowledge of the Common
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