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Failing upwards: Genetics-based
strategies to improve antibiotic
discovery and efficacy in
Mycobacterium tuberculosis

Francesca G. Tomasi and Eric J. Rubin*

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health,
Boston, MA, United States
Therapeutic advances in the 20th century significantly reduced tuberculosis (TB)

mortality. Nonetheless, TB still poses a massive global health challenge with

significant annual morbidity and mortality that has been amplified during the

COVID-19 pandemic. Unlike most common bacterial infectious diseases,

successful TB treatment requires months-long regimens, which complicates the

ability to treat all cases quickly and effectively. Improving TB chemotherapy by

reducing treatment duration and optimizing combinations of drugs is an important

step to reducing relapse. In this review, we outline the limitations of current

multidrug regimens against TB and have reviewed the genetic tools available to

improve the identification of drug targets. The rational design of regimens that

sterilize diverse phenotypic subpopulations will maximize bacterial killing while

minimizing both treatment duration and infection relapse. Importantly, the TB field

currently has all the necessary genetic and analytical tools to screen for and

prioritize drug targets in vitro based on the vulnerability of essential and non-

essential genes in theMtb genome and to translate these findings in in vivomodels.

Combining genetic methods with chemical screens offers a formidable strategy to

redefine the preclinical design of TB therapy by identifying powerful new targets

altogether, as well as targets that lend new efficacy to existing drugs.

KEYWORDS

antibiotic resistance, tuberculosis, bacterial genetics, chemical genetic profiling,
CRISPRi, TnSeq, drug discovery
Current challenges in
tuberculosis therapy

A persistent disease requires a persistent response. The 2021 Global Tuberculosis

Report published by the World Health Organization (WHO) estimates that 1.5 million

people died of TB in 2020 and that recent progress in reducing TB incidence has stalled

globally during the COVID-19 pandemic (W.H.O, 2021). The social, political, and
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economic challenges of TB control are exacerbated by the

months- long regimens current ly required to treat

Mycobacterium tuberculosis (Mtb). Strengthening research

programs to improve TB therapy will synergize with global

health efforts to increase access to, as well as success

of, treatment.

The first anti-tuberculous drug, streptomycin, was

discovered by Selman Waksman, Elizabeth Bugie, and Albert

Schatz in 1943. Patients who received streptomycin saw initial

clinical improvement but eventually developed resistance;

single-drug treatment did not significantly improve TB

mortality in the long term (Gernez et al., 1948; Regniers et al.,

1949; Tempel, 1949). These discoveries ushered in an era of

small-molecule discovery against Mtb and the development of a

multidrug therapy to minimize rates of acquired genetic

resistance (Connolly et al., 2007). This multidrug therapy is

administered for long periods of time (4–9 months with drug

susceptible TB) to circumvent Mtb’s ability to develop

phenotypic resistance, in which a subpopulation of

metabolically altered cells tolerates antibiotic exposure and

requires a longer time to eradicate (Connolly et al., 2007;

Hicks et al., 2018). Longer treatment times also cause more

frequent and serious side effects ranging from malaise to

neuropathy. Adverse events during long-course antibiotic

treatment have been major barriers to eliminating TB

worldwide. When a drug regimen is taken fully as prescribed,

relapse is still estimated to occur in about 5% of patients with
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drug-susceptible after 6 months of first-line treatment and in

about 20% of patients after 4 months (Colangeli et al., 2018).

Mtb is also intrinsically resistant to most of the antibiotics used

to treat other bacterial infections, which requires TB-specific

drug discovery programs and reduced overlap with other

antibiotic discovery programs.

The emergence and spread of multidrug-resistant (MDR)

TB pose an additional and massive medical and economic

burden. MDR TB is defined by Mtb that is resistant to at least

one first-line TB drug in addition to isoniazid or rifampicin

(W.H.O, 2021). Extensively drug-resistant (XDR) TB is resistant

to multiple first-line TB drugs and is even more complicated to

treat. Recent advances in MDR and XDR TB therapy have

significantly improved treatment outcomes and reflect ongoing

progress in anti-tubercular drug discovery, including the

discovery and implementation of pretomanid, bedaquiline, and

linezolid (Conradie et al., 2020).

Long-term relapse-based experiments in mice established

shorter and more effective regimens by combining pretomanid

and bedaquiline with linezolid or moxifloxacin and

pyrazinamide (Tasneen et al., 2011; Li et al., 2017; Xu et al.,

2019). The Nix-TB trial on humans (ClinicalTrials.gov

#NCT02333799) found that combining bedaquiline,

pretomanid, and linezolid could treat patients with highly

drug-resistant TB in 6 months (compared to traditional 20-

month regimens), although not without significant adverse

events (Conradie et al., 2020). The shift to an all-oral, more
GRAPHICAL ABSTRACT

Existing chemical and genetic tools can be used to improve antibiotic discovery against tuberculosis. Left: High-throughput screening of
chemical libraries derived from natural products (such as soil and fungal extracts), as well as from synthetical small-molecule collections, can
identify anti-tubercular compounds for further development into clinically available drugs. Right: Genetic tools including transposon sequencing
(TnSeq; top), proteolytic degradation (bottom left), and CRISPR interference (CRISPRi; bottom right) can be used to identify and characterize
genes whose products are required in relevant laboratory growth conditions (such as macrophage models) for target discovery and
prioritization. Importantly, chemical and genetic tools can also be combined to validate drug targets, identify synergistic activities between
existing molecules and hypothetical drug targets, and gain valuable insights while designing combination antibiotic therapies. Figure created on
BioRender.com
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effective, and shorter regimen for drug-resistant TB is a major

success. Nonetheless, its duration and side effects warrant

continued research, as access to simpler therapies remains a

priority for drug susceptible, MDR, and XDR TB. Recent clinical

trials have also seen promise in shorting treatment times for

drug-susceptible TB (ClinicalTrials.gov #NCT02410772): a 4-

month rifapentine-based regimen including moxifloxacin was

determined to be non-inferior to the current standard 6-month

regimen (Dorman et al., 2021). How can we continue to drive

down treatment times?

In this review, we examine the tools available to identify new

antibiotic targets in whole cells, to discover compound

mechanisms of action, to search for off-target effects, and to

use existing drugs in new ways. Identifying new antibiotic targets

can be accomplished through high-throughput small-molecule

screens against whole cells as well as target-based discovery

using genetic tools. We can also apply these strategies to lend

efficacy to existing drugs and quantify combinatorial effects

between different experimental treatments. Historically,

maximizing synergy between antibiotic targets was not a

priority when establishing TB regimens. Here, we encourage a

synergy-focused framework for designing new treatment courses

that focus on well-tolerated combination antibiotics that

maximize bacterial killing. This strategy is uniquely poised

uniquely poised to improve both antibiotic discovery and

efficacy of candidate treatments.
Identifying new antibiotic targets

Chemical screens

Systematic screens of soil, bacterial, or fungal extracts as well

as synthetic chemical libraries have seen the most translational

success so far in antibiotic discovery (Tommasi et al., 2015). A

benefit to a chemical screen approach is the convenience of

starting with small molecules with promising physiochemical

properties that can be further modified. A major barrier to TB

drug development is cell wall penetration, and chemical screens

select for compounds that can already enter Mtb cells. Many

first- and second-line TB drugs are derived from natural

products including rifampicin and aminoglycosides such as

streptomycin (Mdluli et al., 2015). These approaches work by

testing compound libraries for their ability to block bacterial

growth in vitro, usually under standardized aerobic growth

conditions, and has enabled the identification of particularly

accessible bacterial targets and pathways that are susceptible to

existing compounds.

While historically effective, chemical library screening in

vitro using standard laboratory growth conditions has now led to

recurring targets (such as MmpL3) and redundancies in hits,

with similar small molecules repeatedly being discovered in
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different libraries. In fact, the most-used antibiotics across

bacterial infections block the same small subset of targets

(Payne et al., 2007). This is also a reflection of library screen

design: the same approaches to identifying compounds will yield

the same results. In the era of antibiotic resistance, diversity of

mechanism is crucial to bypass existing resistance mechanisms.

Indeed, more recent chemical screens have been conducted in

host-relevant growth conditions including low pH, different

carbon sources, nitric oxide stress, hypoxia, and granuloma

assays (Cho et al., 2007; Huang et al., 2018; Early et al., 2019).

Pyrazinamide is a breakthrough TB drug that underscores

the value of testing multiple growth conditions and mimicking

the host environment. On its own in a standard broth

microdilution assay, pyrazinamide does not have appreciable

growth-inhibiting effects on Mtb. However, when added under

hypoxic conditions, pyrazinamide becomes highly sterilizing

and has been critical to reducing TB treatment times from

multiple years to several months (Wade and Zhang, 2004).

This example shows the importance of evolving chemical

screens to identify critical compounds that may not otherwise

be uncovered using standard laboratory growth conditions.

Despite substantial efforts in systematic chemical library

screens, treatment of drug-susceptible TB has remained largely

unchanged since the mid-20th century, highlighting the need for

creative new approaches. One such approach involves re-

sensitization studies, in which compounds are screened for

inhibition of stress responses instead of direct killing of

bacterial cells. In one study, a small molecule was identified

that inhibited Mtb tolerance to oxidative stress, acid stress, and

isoniazid by inhibiting respiration (Flentie et al., 2019). In this

case, use of this molecule with current TB treatment regimens

could potentially reverse isoniazid resistance.

Library screens using specialized strains and other growth

conditions described above such as macrophage screens, hypoxic

media, or caseum-like environments are likely to improve

translation from in vitro hits to in vivo success [reviewed in

(Dartois and Barry, 2013)]. In 2009, Christophe et al., published

a cell-based assay that used confocal fluorescence microscopy to

screen for compounds that blocked Mtb replication within

macrophages . Through this screen, they identified

dinitrobenzamide derivatives with potent anti-tubercular

activity and showed that these compounds inhibited the

essential cell wall synthesis enzyme DprE1 (Christophe et al.,

2009). At the same time, a study was published on the synthesis

of benzothiazinones with anti-TB activity that used reverse

genetics reveal that DprE1 is also the target of this compound

(Makarov et al., 2009). Since these findings, DprE1 inhibitors

with different types of chemical scaffolds have been developed

and are being investigated as potential TB therapeutics [reviewed

in (Chikhale et al., 2018)]. In subsequent sections of this review,

we will highlight advances in maximizing the utility of

compounds identified in chemical screens.
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Genetic tools

Starting with a small-molecule and identifying the target for

promising hits is the empirical, top-down approach to drug

discovery. Recent progress in bacterial genetics, high-throughput

sequencing, and medicinal chemistry such as fragment-based

drug discovery (Scott et al., 2009) offers promise to dedicating

increased efforts to the bottom-up approach of target-based drug

development. In this strategy, a single-gene product or

mechanism is identified as an effective drug target based on

biological studies. Inhibition of this target is shown in vitro to be

sufficient to confer a meaningful therapeutic effect. The

identification of new targets and mechanisms of bacterial

killing will also likely circumvent pre-existing resistance

mechanisms and thus be applicable to drug susceptible, MDR,

and XDR TB.

In the past, functional deletions such as genetic knockouts

have been used to validate hits but with two major drawbacks.

First, targets that are essential for bacterial viability cannot be

knocked out; second, antibiotics do not always fully inhibit their

targets. Instead, genetic knockdowns—titrating levels of gene

expression or gene products—offer a more realistic simulation

for potential inhibitors of essential and non-essential genes and

offer insight on the “vulnerability” of a target: how much (or how

little) target inhibition is required for a therapeutic effect. Three

primary genetic approaches have been used in TB research to

study individual targets and their vulnerability: transposon

sequencing (TnSeq), proteolytic degradation systems, and

CRISPR interference (CRISPRi).
TnSeq

TnSeq works by mapping random transposon integration

sites in saturated mutant libraries: the ability or inability of a

locus to sustain transposon insertion is indicative of that gene’s

requirement for growth in the condition tested. The predecessor

to TnSeq, transposon site hybridization (TraSH), first identified

the complete set of Mtb genes required for growth under

different conditions. This tool combined high-density

insertional mutagenesis using phage containing a mariner-

based transposon with microarrays to map pools of mutants

(Sassetti et al., 2001). It has since been replaced with TnSeq,

which uses next-generation sequencing to quantify marked

transposon insertions across the genome (Zhang et al., 2012;

van Opijnen and Camilli, 2013; DeJesus et al., 2017).

In addition to providing insight on gene essentiality, TnSeq

has been a powerful tool to identify drug targets, mechanisms of

action, or antibiotic resistance and to characterize so-called

“conditional essentiality”. Although some genes may not be

required for growth in standard laboratory media, they may

no longer sustain transposon insertions in other conditions.
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Recent work has shed light on genes required for host-relevant

conditions such as cholesterol catabolism (Griffin et al., 2011)

and different genetic backgrounds in vivo using collaborative

cross mouse panels (Smith et al., 2022). TnSeq has also been

used to investigate phenotypic variation in clinical Mtb strains:

certain genes are differentially required across clinical strains,

including katG, which activate the pro-drug isoniazid, a first-line

TB drug (Carey et al., 2018). This finding shows the ability for

TnSeq to predict resistance mechanisms to antibiotics: a loss-of-

function mutation in katG would confer isoniazid resistance by

failing to activate this drug in cells.

Studies on the conditional essentiality of Mtb genes across

strains and growth conditions have produced extensive amounts

of data on the “druggable” genome in Mtb: genes that could be

further explored as putative drug targets because they are

indispensable for growth or confer increased susceptibility to

antibiotics when inactivated (discussed below). Following up on

hits of interest and transforming findings into phenotypic assays

for both chemical screening and medicinal chemistry can help

establish more productive strategies for TB drug discovery.
Genetic knockdowns

Proteolytic degradation systems and CRISPRi allow us to

study essential genes by providing titratable ways to reduce their

abundance in bacterial cells. Proteolytic degradation works by

tagging a gene of interest with a degradation signal: inducible

expression of an accessory molecule then shuttles tagged

proteins to endogenous proteases (Kim et al., 2011). Different

expression levels of this accessory molecule allow for a range of

protein knockdown. CRISPRi instead uses targeted

transcriptional repression. An inducible nuclease deactivated

Cas9 (dCas9) is guided to a target gene by a single-guide RNA

(sgRNA) molecule with complementarity to the target DNA

sequence (Rock et al., 2017). The sgRNA molecule also contains

a short protospacer-adjacent motif (PAM) for initial dCas9

recognition, which disrupts the target DNA and facilitates

binding of sgRNA to its complement (Rock et al., 2017). This

interaction physically blocks RNA polymerase from being able

to initiate transcription or fully elongate mRNA. Different PAM

sequences confer a range of dCas9 binding, which, in turn,

modulates the level of knockdown (Rock et al., 2017).

Both tools facilitate target-based drug discovery by allowing

researchers to define the vulnerability of specific genes or

pathways. Chemicals can also be screened against hypomorph

libraries to analyze potential off-target effects and to validate

mechanisms of action. For instance, proteolytic degradation

systems were recently used in a large chemical-genetic screen

to combine small molecules with a pool of Mtb strains depleted

in essential genes (Johnson et al., 2020). Because these

hypomorphs are hypersensitive, this approach was found to
frontiersin.org
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yield more hit compounds of interest than whole-cell chemical

screens alone, and their effects on different strains shed light on

compound mechanisms of action. More than 40 new

compounds were found to target previously established Mtb

targets including DNA gyrase, cell wall biosynthesis, and RNA

polymerase. An inhibitor of a new target was also identified,

which interfered with the essential Mtb efflux pump EfpA. This

inhibitor, which was effective against an EfpA hypomorph, was

then chemically modified for increased potency against a wild-

type Mtb strain (Johnson et al., 2020). This example shows the

utility of combining genetic knockdowns with whole-cell

chemical screens to identify small molecules that would not be

unearthed by exclusively screening wild-type cells.

Recently, a large-scale CRISPRi screen quantified the

vulnerability of essential genes and pathways to predict Mtb’s

susceptibility to an antibiotic targeting that gene or pathway

(Bosch et al., 2021). A considerable challenge in target-based

drug discovery is the development of a selective drug from

scratch with suitable pharmacokinetic and toxicological profiles.

Identifying highly vulnerable targets that require only small

levels of inhibition for a clinically relevant phenotype would

maximize the likelihood of success, because lower levels of target

engagement would need to be achieved for compound efficacy.

Advances in medicinal chemistry such as fragment-based drug

design and dynamic combinatorial chemistry have the potential

to further increase the likelihood of success for compound

development (Scott et al., 2009) [reviewed in (Ladame, 2008)].

Multiple highly vulnerable targets have been identified that

do not yet have inhibitors against them. Several promising

pathways have emerged from recent work that were even more

vulnerable than the targets of current TB antibiotics, such as

protein folding and secretion, metabolism, DNA replication, cell

division, and tRNA synthetases (Bosch et al., 2021). The latter

group—aminoacyl tRNA synthetases (aaRS)—was found to be

highly vulnerable regardless of the Mtb strain tested. Because

aaRS have conserved active sites, compounds designed to target

them could target multiple synthetases and reduce rates of

antibiotic resistance (Kovalenko et al., 2019). Efforts are

already underway to develop aaRS inhibitors against Mtb

(Gudzera et al., 2016; Li et al., 2017; Soto et al., 2018;

Kovalenko et al., 2019) [reviewed in (Kim et al., 2020)]. These

enzymes are already the targets of the anti-malarial drug

halofuginone and the antibiotic mupirocin.

These approaches have two other uses. One is that they can

be used for validating chemical-genetic interactions. For

compounds that have putative mechanisms of action, often

based on in vitro biochemical assays, strains with depletions of

possible targets or potential activators can be constructed using

either targeted protein degradation or CRISPRi. This permits

mapping to the true target in whole cells, as discussed below.

Conversely, specifically constructed strains can aid in targeted

drug discovery using a whole-cell approach. For example, Evans

et a l . used a complementary genet ic approach to
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transcriptionally silence multiple genes in the panthothenate

and coenzyme A biosynthesis pathways (Evans et al., 2016).

These strains were then used with chemical screening to discover

whole cell-active inhibitors.
Synergy: Using existing drugs
in new ways

Target-based discovery has already offered new and

promising insights to help simplify TB therapy and reduce

treatment duration. By studying the interplay of drugs and

specific targets, we can design more deliberate regimens with a

focus on synergistic interactions. Synergy refers to a combined

effect of multiple drugs that is greater than the sum of their

individual effects. Although TB combination therapy was

developed for several important reasons, synergy was not front

of mind when designing current regimens. How can we

incorporate a synergy-focused framework in the design of new

TB treatments?

One way to do this is by screening genetic libraries against

existing antibiotics to find genes whose depletion hypersensitizes

Mtb to existing drugs that are either already used or currently

ineffective against TB. Both deletion and depletion mutants can

phenocopy antibiotics targeting the mutated protein, allowing us

to screen for synergistic “drugs” without yet having a molecule in

hand. In a recent TnSeq screen, transposon mutant libraries

were screened in the presence of different antibiotics with diverse

mechanisms of action (Xu et al., 2017). Multiple genetic

determinants of antibiotic susceptibility were involved in

synthesis and maintenance of Mtb’s cell envelope. For

instance, deletion of the gene fecB, which mediates cell wall

integrity, conferred susceptibility to every antibiotic tested.

Findings like this suggest that efforts directed toward

increasing permeability of Mtb cells would expand the arsenal

of antibiotics that could potentially be used to treat TB by

exploiting synergy between cell wall inhibitors and

intracellular antibiotics. Similarly, another TnSeq screen

performed in mice treated with the first-line TB drugs

rifampicin, isoniazid, ethambutol, and pyrazinamide found

that the bottleneck for rifampicin efficacy is permeability to

the drug, whereas isoniazid susceptibility is predominantly

affected by replication rates (Bellerose et al., 2020). These

findings were also recently corroborated by observations that

growth on cholesterol—a host-relevant carbon source—

decreased susceptibility to rifampicin by causing lipid

composition changes on Mtb’s cell envelope: efforts targeting

cell wall synthesis pathways would enhance killing by rifampicin

during infection (Koh et al., 2022).

Another chemical-genetic screen was recently performed

using CRISPRi libraries. Expression levels of most Mtb genes

were titrated and bacterial fitness quantified in the presence of
frontiersin.org
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different antibiotics (Li et al., 2021). A putative aminoglycoside

transporter was identified when decreased levels of Rv1819c

(bacA, an ABC importer of hydrophilic solutes) conferred

resistance to streptomycin, showing once again the importance

of understanding determinants of drug resistance and the

promise of increasing cell wall permeability to improving Mtb

susceptibility to antibiotics.

In addition to chemical-genetic screens to identify

mechanisms of synergy between putative drug targets and

existing antibiotics, combinatorial drug screening offers an

approach to quantify synergy and prioritize drug combinations

to test in vivo. New experimental and analytical methodologies

have strengthened our ability to measure drug interactions.

Checkerboard assays have historically been the gold standard

for measuring pairwise drug interactions. These assays test

antibiotics in double serial dilutions and compare their

combined effect with each drug’s individual effect in a

microtiter plate. The recent development of the more efficient

and less expensive DiaMOND (Diagonal Measurement Of N-

way Drug interactions) offers a relatively simple way to measure

interactions between any number of drugs (Cokol et al., 2017).

This technique compares dose responses for mixtures of drugs

with dose responses of each individual drug using a Loewe

additivity model. DiaMOND’s efficiency comes from applying

geometric models to factor high-order drug interactions into

lower-order components, creating a framework to predict

higher-order interactions. Synergy studies in vitro have been

extended to prioritize experimental drug combinations in vivo.

Recent work by Larkins-Ford et al. identified signatures of drug

potency and interactions in in vitro models that were predictive

of efficacy in preclinical mouse models of TB (Larkins-Ford

et al., 2021). The ability to identify synergy and antagonism

between different drugs in vitro will be extremely helpful in

designing future combination drug regimens against TB,

especially as more drug targets enter the discovery pipeline.

Drugs that bolster each other in combination will likely be more

effective in clearing infections and have fewer side effects in

patients due to reducing both dosage and treatment time.
Prioritizing candidate regimens

An obvious limitation to the design of new combination

therapies is the financial and time cost of large-scale clinical

trials to assess their efficacy. Thus, preclinical testing of TB

therapies will need to address multiple important factors to

prioritize regimens for clinical assessment: (1) in vitro efficacy on

total killing in different bacterial subpopulations and growth

conditions and (2) their efficacy in animal models of TB relapse.

A major challenge to TB treatment is the heterogeneity of

bacterial populations within a host and host environments. As

described above, TB therapy is administered for several months

because Mtb creates phenotypically diverse subpopulations with
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varying levels of drug tolerance. This is a result both of Mtb’s

metabolic adaptation to different microenvironments within a

host such as different carbon sources and other changes between

granulomas, as well as Mtb’s asymmetric growth and division

pattern [reviewed in (Chung et al., 2022)]. For instance, genetic

knockdown of lamA, which influences cell size variation in

mycobacteria, increases Mtb susceptibility to rifampicin and

vancomycin (Rego et al., 2017). Assays that measure total

bacterial killing or the rate of bacterial killing—as opposed to

minimal inhibitory concentrations, the concentration at which

>90% of bacterial growth is inhibited in a broth microdilution

assay—might be more informative about the bactericidal

dynamics of small molecules. Recent progress with animal

models has also increased our ability to assess applicability of

in vitro findings to in vivo models. Infection relapse models, in

which mice are monitored for culturable bacteria after stopping

drug treatment, are an important way to test the total sterilizing

activity of a potential therapy (Larkins-Ford et al., 2021). Work

on understanding the metabolic changes that Mtb undergoes in

different microenvironments demonstrates the importance of

testing compounds in different growth conditions including

various carbon sources, pH, and hypoxia (Hicks et al., 2018;

Gouzy et al., 2021). Future work continuing to understand how

these subpopulations form will facilitate the discovery of

putative drug targets that synergize to fully sterilize all

infected microenvironments.
Conclusion

In this review, we have outlined the limitations of current

multidrug regimens against tuberculosis in the era of antibiotic

resistance and the genetic tools available to improve the

identification of drug targets and assess their vulnerability in

Mtb. The rational design of regimens that sterilize diverse

phenotypic subpopulations will maximize bacterial killing

while minimizing both treatment duration and infection

relapse. Importantly, the TB field currently has all the

necessary genetic and analytical tools to screen for and

prioritize drug targets in vitro based on the vulnerability of

essential and non-essential genes in the Mtb genome and to

translate these findings in in vivo models. Combining genetic

methods with chemical screens offers a formidable strategy to

redefine the preclinical design of TB therapy by identifying

powerful new targets altogether, as well as targets that lend

new efficacy to existing drugs.
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