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INTRODUCTION

Antigenic variation is a successful strategy employed by numerous pathogens to evade the host
immune system. It describes the frequent exchange of antigens, which prevents detection and
elimination by the host immune system. Strikingly, pathogens from diverse phyla undergo antigenic
variation, thereby underlining the efficiency of this strategy for pathogen survival (Deitsch et al.,
2009). While the underlying molecular mechanisms are most likely different for each pathogen
species, identifying the common principles of antigenic variation may open up new avenues to
combat infectious diseases.

African trypanosomes are commonly used model organisms to study antigenic variation due to their
large antigen repertoire of more than 2000 antigen-coding genes (Horn, 2014) as well as their great
compatibility with different experimental setups. It is important to note that trypanosomes are
evolutionarily distant from other commonly used eukaryotic model organisms and exhibit a
particular organization of transcription: Protein-coding genes are organized in long polycistronic
transcription units (PTUs), each containing hundreds of genes. Transcription initiation occurs in a
rather unregulated manner at transcription start sites of those PTUs and pre-mRNA maturation is
mediated by trans—splicing of a common spliced leader RNA to the 5’end of each mRNA. Due to the
unregulated nature of transcription, transcript levels are mainly regulated on the post-transcriptional
level in the parasite.

To establish long-lasting infections in the mammalian blood stream, two requirements have to
be met: (1) each trypanosome selectively expresses one antigen and only few different antigens are
expressed in the population at any time; (2) the expressed antigen is frequently exchanged. Notably,
antigen expression is governed in a specific manner which differs from other protein-coding genes
in the parasite: An antigen-coding gene can only be expressed when located in one of fifteen
polycistronic expression sites (ESs), of which only one is active in each cell. To ensure stable levels of
antigen mRNA, the active ES is expressed by highly processive RNA polymerase I (Pol I) within a
nuclear body referred to as expression site body (ESB) (Navarro and Gull, 2001). Trans-splicing
ensures maturation of the polycistronic pre-mRNA and mature antigen mRNA is additionally
stabilized by m®A RNA modifications in the poly-A tail (Viegas et al., 2022). Taken together,
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trypanosomes have evolved an entire ensemble of molecular
mechanisms that ensure extremely high levels of antigen mRNA,
organized in a multi-step expression process. However, it has
remained elusive how such multi-step expression process is
coordinated exclusively at one antigen expression sites, while
the other 14 expression sites remain silent.

Nuclear condensates define specific functional compartments
within the nucleoplasm and contain different macromolecules
such as DNA, RNA and proteins (Bhat et al., 2021)
(Figure 1A). Lacking a lipid membrane, condensates can
assemble and disassemble in a dynamic manner, thereby
creating specific environments on demand. Proteins involved in
condensate formation often harbor two different types of domains:
ordered and intrinsically disordered domains. Ordered domains
with a defined structure engage in strong interactions with a
certain stoichiometry, whereas intrinsically disordered domains
(IDRs) lack any defined structure and form multivalent
interactions with other macromolecules. Such weak multivalent
interactions allow supra-stochiometric recruitment of
macromolecules and can thereby enhance biological reactions
(Guo et al, 2019; Laflamme and Mekhail, 2020). Further,
multivalent interactions can enable the formation of biological
condensates, e.g. via a process referred to as liquid-liquid phase
separation, and thereby create subcellular environments with
specific functions (Bhat et al, 2021). Posttranslational protein
modifications (PTMs) as well as physical parameters such as
temperature or pH, modulate the strength of multivalent
interactions and condensate formation. Taken together,
condensates have been observed in various biological processes
in diverse species and we only begin to understand their regulatory
potential (Banani et al., 2017; Sabari et al., 2020; Lyon et al., 2021)

Interestingly, recent studies in trypanosomes revealed that an
entire ensemble of nuclear condensates plays a crucial role
during parasite immune evasion. Namely, the active antigen-
coding gene was found embedded within a nuclear multi-
condensate assembly (Faria et al, 2021; Budzak et al., 2022)
(Figure 1B). This finding provides an attractive model to explain
(1) how one antigen-coding gene is exclusively chosen to be
activated and (2) how the multi-step process of highly efficient
antigen expression is spatially coordinated.

TRANSCRIPTION AND SPLICING
CONDENSATES IN EUKARYOTIC GENE
EXPRESSION

The first nuclear condensate involved in trypanosome antigen
expression was described two decades ago as an extranucleolar
Pol I body associated with the actively expressed antigen-coding
gene and is commonly referred to as expression site body (ESB)
(Navarro and Gull, 2001). More recently, the active antigen-
coding gene was shown to interact with the SL-RNA array, a
genomic locus involved in mRNA maturation by encoding the
essential trans-splicing substrate (Faria et al., 2021), as well as
with the respective spliced leader array body (SLAB) comprised

of different splicing-related proteins (Budzak et al., 2022).
Surprisingly, even more nuclear condensates were found to be
associated: also the Cajal body, a highly SUMOylated condensate
and the newly identified NUFIP body are located adjacent to the
active antigen-coding gene (Budzak et al., 2022). Taken together,
these findings demonstrate that the active antigen-coding gene is
not only associated with a single nuclear condensate such as the
ESB, but that it is embedded in the context of multiple
condensates, which can be referred to as a multi-condensate
assembly (Figure 1B).

The specific function of each condensate in this assembly
remains to be experimentally characterized. However, the
molecular composition of two condensate groups allows
speculation about their function: (1) the ESB and the highly
SUMOylated condensate contain factors involved in antigen
transcription (potential transcriptional condensates) (Navarro
and Gull, 2001; Saura et al., 2019); (2) the SLAB, the NUFIP and
the Cajal body contain factors involved in mRNA processing
(potential splicing condensates) (Faria et al., 2021; Budzak et al.,
2022). In other eukaryotes, the formation of transcription and
splicing condensates is a transient process, with a life time of 5 to
11 seconds for transcriptional condensates (Cisse et al., 2013;
Cho et al., 2016), that is coordinated by phosphorylation of the
C-terminal domain (CTD) of Pol II (Guo et al., 2019; Bhat et al.,
2021). In trypanosomes, the active antigen is transcribed by Pol I,
which does not - to our knowledge - harbor a comparable CTD
that could coordinate co-transcriptional condensate formation.
Thus, arranging both antigen transcription condensates in close
proximity to three splicing condensates might reflect a CTD-
independent mechanism to coordinate both processes
co-transcriptionally.

In contrast to the transient transcription and splicing
condensates that form co-transcriptionally in other eukaryotes,
the multi-condensate assembly in trypanosomes seems rather
stable according to imaging data from fixed cells (Faria et al,
2021; Budzak et al., 2022). Therefore, a comparison to stable
condensates from other eukaryotes is appropriate, such as super-
enhancers or nuclear speckles, which mediate robustness in the
otherwise stochastic gene expression process. As an example,
super-enhancers are encoded by several sequence elements,
which serve as recruitment platforms to form stable
transcription-related condensates with a life time of several
minutes or even longer (Cho et al.,, 2018; Sabari et al., 2018).
Mainly lineage-specific genes are selectively regulated by the
interaction with super-enhancers, which require robust
transcription while cell identity is formed and maintained
(Hnisz et al.,, 2013; Monahan et al., 2019). As a second
example, nuclear speckles are stable condensates that contain
many splicing-related factors; they remain intact during
interphase and are only disassembled during cell division
(Galganski et al., 2017). Highly transcribed house-keeping
genes are located close to nuclear speckles in different cell
types (Galganski et al., 2017; Quinodoz et al., 2018; Zhang
et al,, 2020) and heat shock genes were observed to move
towards nuclear speckles upon activation (Kim et al., 2020).
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FIGURE 1 | Nuclear condensates in complex eukaryotes and in African trypanosomes. (A) Overview of nuclear condensates characterized in complex eukaryotes.
While some nuclear bodies are stable during G1 phase and have been described decades ago, other condensates form more dynamically and have been described
only recently. A brief description of the respective condensate function is provided (Spegg and Altmeyer, 2021). (B) lllustration of so far known nuclear condensates
in African trypanosomes. The active antigen gene is embedded within a multi-condensate assembly (Faria et al., 2021; Budzak et al., 2022). Spatial integration of
transcription and splicing condensates at the active antigen gene presumably coordinates the multi-step process of antigen expression. In contrast, inactive antigen
genes are located away from the multi-condensate assembly. Transcriptional silencing of antigen genes might be mediated by condensate formation. Repetitive
sequences are illustrated as striped boxes. ESB, expression site body; HSF, highly SUMOylated focus; SLAB, spliced leader array body; Cajal, Cajal body; NUFIP,
NUFIP body; SL, Spliced leader; 50 bp, 50 bp repeats; 70 bp, 70 bp repeats; telo, telomeres.
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Thus, it was suggested that nuclear speckles act as stable splicing
condensates mediating robust expression of genes located in
spatial proximity.

Collectively, the comparison of antigen transcription and
splicing condensates in trypanosomes to the respective
condensates from other eukaryotes allows a careful first
interpretation: the stable association of several nuclear
condensates with specific functions at the active antigen-coding
gene might spatially coordinate the multi-step-process of antigen

expression and confer robustness to it. The ESB Pol I reservoir
and the highly SUMOylated body most probably mediate high
and robust antigen transcription rates. Further, the three splicing
condensates, SLAB, NUFIP and Cajal body, fulfill the high
demand for efficient antigen mRNA processing, which is
required for successful antigen expression. It remains to be
shown which specific function each condensate possesses and
which additional processes, such as e.g. m°A modification, are
coordinated within the multi-condensate assembly.
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POTENTIAL CONDENSATE SEED
FACTORS INVOLVED IN PARASITE
IMMUNE EVASION

Seeding of nuclear condensates is thought to be mediated by
spatially restrained chromatin elements such as DNA, histones
or RNA, which recruit freely diffusible proteins to a given locus
(Bhat et al., 2021). Repetitive DNA sequences contain a
multitude of potential binding sites and can thereby serve as
especially efficient recruitment platforms, as well as the arising
repetitive transcripts (Frank and Rippe, 2020; Bhat et al., 2021).

Interestingly, several repetitive DNA sequences are implicated
in antigen expression in trypanosomes, indicating a potential
role as seed structures (Figure 1B). On the one hand, each
antigen expression site harbors three repetitive DNA elements:
(1) 50 bp repeats are located upstream of the expression site
promoter; (2) 70 bp repeats are located upstream of the antigen-
coding gene at the end of each expression site; (3) telomeric
repeats start downstream of the antigen coding gene (Hertz-
Fowler et al., 2008). The role of the trypanosome-specific 50 bp
and 70 bp repeats has remained unclear, though their presence in
each of the 15 antigen expression sites suggests an important
regulatory role. Notably, nuclear condensates can not only
enhance biological reactions but also fulfill an inhibitory or
silencing function by excluding specific molecules from a
certain nuclear region. In this context, the 50 bp, 70 bp or
telomeric repeats could serve as condensate seed structures that
establish stable silencing of inactive expression sites.
Alternatively, transcripts from the 70 bp repeats, which are
transcribed in the active expression site, could play a role
during the multi-condensate assembly to ensure robust
expression of this particular antigen expression site. On the
other hand, the SL-RNA array is a repetitive genomic locus
(Sutton and Boothroyd, 1986) and is part of the splicing-related
SLAB condensate in the multi-condensate assembly (Budzak
et al.,, 2022). High levels of SL-RNA transcripts most probably
recruit splicing factors to this condensate and thereby create an
active splicing condensate.

RNA plays a crucial role in condensate formation (Garcia-Jove
Navarro et al., 2019; Quinodoz et al., 2021; Bhat et al., 2021) and it
remains to be shown which specific role RNA plays for the multi-
condensate formation in trypanosomes. Interestingly, experimental
evidence suggests that both RNA-related processes, expression site
transcription and trans-splicing, are required for intact multi-
condensate formation. Inhibition of Pol I transcription caused
VEX1 and VEX2, two proteins that are part of the multi-
condensate assembly, to distribute within the nucleus (Faria et al,,
2019). Further, inhibition of trans-splicing caused a disruption of
the ESB-SLAB assembly (Faria et al., 2021) and resulted in the
inhibition of expression site transcription by Pol I (Budzak et al.,
2022). Taken together, these experiments suggest that formation of
the multi-condensate is functionally linked to the processes of
efficient expression site transcription and antigen mRNA
processing. In addition, m°A RNA modifications were recently
detected in the Poly-A tail of the active antigen transcript (Viegas
et al., 2022), which are responsible for increased antigen mRNA

stability. m°A modifications have been implicated in condensate
formation (Ries et al., 2019) and it remains to be shown if such RNA
modifications play a role in the multi-condensate formation process.

Silencing nuclear condensates are for example observed as
heterochromatin condensates in different eukaryotes, which
exclude the transcription machinery and thereby ensure
transcriptional silencing of genomic sites within the condensate
(Bhat et al., 2021). In this context, the kinetoplastid-specific DNA
modification Base J could play a role as silencing condensate seed
structure, since it is enriched at inactive antigen expression sites
(van Leeuwen et al., 1997). Further, two histone variants, H3.V
and H4.V, are enriched at inactive antigen expression sites and
upon deletion of both variants, silent antigen expression sites are
activated (Miiller et al., 2018). However, it remains to be
shown if such activation is the consequence of disrupting a
silencing condensate.

Taken together, there are several potential seed structures for
nuclear condensates involved in immune evasion of trypanosomes
- some might contribute to condensates involved in active antigen
expression, whereas others might regulate condensate-mediated
silencing of the remaining antigen expression sites. One possible
way to determine which of these factors are indeed capable of
inducing condensate formation, is the performance of in vitro
experiments, as done for other organisms (Alberti et al., 2019;
Zamudio et al., 2019). Trypanosome nuclear extracts could be
used, which are depleted of endogenous DNA and/or RNA, and in
vitro generated and fluorescently labeled seed structure molecules
could be added - such as repeat-encoding or BaseJ-modified DNA
fragments and in vitro transcribed RNAs. Condensate formation
can be observed under a microscope and the fluorescent label
would verify that the seed structure is a component of the
formed condensates.

POTENTIAL REGULATORY COMPONENTS
OF NUCLEAR CONDENSATES IN
TRYPANOSOMES

Numerous proteins are enriched in the nuclear condensates
around the active antigen-coding gene (Budzak et al., 2022). As
a first example of a protein with a specific function in
trypanosome condensate biology, the RNA helicase VEX2 was
shown to actively exclude all but one antigen expression site from
interacting with the SLAB splicing body (Faria et al., 2021). Upon
VEX2 depletion, several silent antigen expression sites started to
interact with the SLAB body and were activated. Future studies
will decipher the specific role of other condensate proteins in
selective antigen expression.

Of all protein PTMs, SUMOylation seems to be the most
prominent modification with a role in selective antigen expression,
since a highly SUMOylated body is located close to the active
antigen-coding gene (Lopez-Farfan et al., 2014; Budzak et al,
2022). Previous studies have shown that TbSIZ1/PIASI is the
SUMO E3 ligase that is responsible for the strong SUMOylation
signal and that SUMOylation is required for high antigen
expression levels (Lopez-Farfan et al., 2014; Saura et al, 2019).
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Interestingly, the largest subunit of Pol I is one of the SUMOylated
proteins. A study in yeast has shown that, in the context of IDNA
repair, SUMOylation serves as a signal to exclude modified
proteins from the nucleolar condensate (Capella et al., 2021).
The formation of an additional extranucleolar Pol I focus in
trypanosomes is a highly unusual phenomenon, since Pol I is
usually exclusively localized in nucleoli. Thus, SUMOylation of the
largest Pol I subunit in trypanosomes might be critical for Pol I
release from the nucleolus and subsequent ESB formation.

Another means of condensate regulation can arise from
physical parameters such as temperature. In this context, it is a
striking observation that expression site transcription is activated
upon a temperature shift from 28°C to 37°C (Kolev et al., 2018).
Such temperature shift mimics the conditions when the parasite
enters the mammalian blood stream and therefore the time point
when antigen expression becomes critical for parasite survival. It
is an intriguing possibility that the multi-condensate assembly is
temperature sensitive and therefore is induced at 37°C when the
parasite enters the host bloodstream. Further, it remains to be
shown if changes to higher temperatures than 37°C, such as a
fever in the host organism during infection, influence parasite
antigen expression or antigen switching.

NUCLEAR CONDENSATES AS POTENTIAL
TARGETS TO MANIPULATE PARASITE
IMMUNE EVASION

The different factors discussed above with a potential role in
trypanosome condensate formation are well-known in the field
of parasite immune evasion. It is not the aim of this article to
identify previously unknown regulators, but rather to allow the
reader to think about known factors in a different context - in the
context of condensate biology. The multi-condensate assembly
around the active antigen-coding gene in trypanosomes seems
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