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Aeromonas salmonicida is a typical cold water bacterial pathogen that causes

furunculosis in many freshwater and marine fish species worldwide. In our

previous study, the pathogenic A. salmonicida (SRW-OG1) was isolated from a

warm water fish, Epinephelus coioides was genomics and transcriptomics

analyzed. Type II secretion system was found in the genome of A.

salmonicida SRW-OG1, while the expressions of tatA, tatB, and tatC were

significantly affected by temperature stress. Also, sequence alignment

analysis, homology analysis and protein secondary structure function analysis

showed that tatA, tatB, and tatC were highly conservative, indicating their

biological significance. In this study, by constructing the mutants of tatA, tatB,

and tatC, we investigated the mechanisms underlying temperature-dependent

virulence regulation in mesophilic A. salmonida SRW-OG1. According to our

results, tatA, tatB, and tatC mutants presented a distinct reduction in adhesion,

hemolysis, biofilm formation and motility. Compared to wild-type strain,

inhibition of the expression of tatA, tatB, and tatC resulted in a decrease in

biofilm formation by about 23.66%, 19.63% and 40.13%, and a decrease in

adhesion ability by approximately 77.69%, 80.41% and 62.14% compared with

that of the wild-type strain. Furthermore, tatA, tatB, and tatC mutants also

showed evidently reduced extracellular enzymatic activities, including amylase,

protease, lipase, hemolysis and lecithinase. The genes affecting amylase,

protease, lipase, hemolysis, and lecithinase of A. salmonicida SRW-OG1 were

identified as cyoE, ahhh1, lipA, lipB, pulA, HED66_RS01350, HED66_RS19960,

aspA, fabD, and gpsA, which were notably affected by temperature stress and

mutant of tatA, tatB, and tatC. All above, tatA, tatB and tatC regulate the

virulence of A. salmonicida SRW-OG1 by affecting biofilm formation,
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adhesion, and enzymatic activity of extracellular products, and are

simultaneously engaged in temperature-dependent pathogenicity.
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Introduction

Aeromonas salmonicida, which is distributed worldwide, is a

psychrophilic gram-negative bacterium and is one of the few

non-motile, facultatively anaerobic strains of the genus

Aeromonas. There are five accepted subspecies of A.

salmonicida: A. salmonicida subsp. Salmonicida (known as

typical), masoucida, achromogenes, pectinolytica, and smithia

(Austin et al., 2007; Merino and Tomás, 2016; He et al., 2022). A.

salmonicida has a wide range of hosts, infecting not only

infecting salmon and trout (Du et al., 2015), but also Cyprinus

carpio (Maurice and Tinman, 2000), Anoplopoma fimbria

(Vasquez et al., 2020), Gadusmorhua (Soto-Dávila et al., 2019),

Scophthalmus maximus (Xu et al., 2021), and Percafluviatilis

(Rupp et al., 2019). The symptoms of infection are mainly

“furunculosis” (skin ulcers) and ‘septicemia’ in salmons

(Salomón et al., 2021) and C. carpio (Bhat et al., 2021). A.

salmonicida SRW-OG1 was isolated in our laboratory from

Epinephelus coioides suffering from furunculosis in Dongshan

County, Zhangzhou City, Fujian Province (Zhong et al., 2021).

Surprisingly, the pathogen was isolated at 28°C. Through

temperature stress, we found that the bacterium is highly

mesophilic and can grow even at 37°C. That is contrary to the

conclusion of many scholars that A. salmonicida is a

psychrophilic bacteria (Meng et al., 2017).

Temperature is a pivotal environmental factor for fish

disease outbreaks. In response to temperature changes,

bacteria need to adjust their physiology to cope with the

stimuli and stresses brought about by environmental

changes (Huntingford et al., 2007). The outbreak of several

common fish diseases has an absolute relationship with water

temperature: with the decrease in water temperature, the

probability of cold water disease (Kobayashi et al., 2000),

cold water vibrosis, saprolegnia (Sformo et al., 2021), red

skin disease, and red mouth disease (Fernandez et al., 2003)

will increase significantly; conversely, elevated water

temperatures may lead to lactococcal disease, Edwards

disease , bacter ia l sepsis , and carp herpes disease .

Interestingly, some bacterial diseases occur at temperatures

far below the temperature at which bacteria reach their fastest

growth rate, known as the optimal bacterial growth

temperature. The optimal growth temperature of Escherichia
02
coli is 37°C, but the lethality of fish and mice is higher at 20°C

(Wu et al., 2010). Studies have shown that the effect of

temperature on bacterial metabolism is mainly manifested in

changing the activity of enzymes. However, the temperature

accommodation immune disease prevention mechanism of

bacteria is not only the acceleration-deceleration regulation of

enzymatic activity, but also affects the expression of genes in

respond through a variety of biological functions (Guijarro

et al., 2015). In the expression study of Yersinia ruckeri specific

secretory genes, it was found that the expression level of the

type IV secretory system encoded by the traHIJKCLMN

operon at the optimal growth temperature was 64% lower

than that at 18°C (Méndez and Guijarro, 2013). Similarly, the

Yrp1 protease and YhlA hemolysin of Y. ruckeri showed three

folds the gene expression at 18°C than at 28°C. To investigate

the mechanism underlying the virulence regulation at different

temperatures, the genomics and transcriptomics analysis on

A. salmonicida SRW-OG1 have been carried out. Type II

secretion system was found in the genome of A. salmonicida

SRW-OG1 (Huang et al., 2020a), while the expressions of

tatA, tatB, and tatC, which belong to Type II secretion system

(T2SS), were greatly affected by temperature stress.

T2SS is a multi-protein secretion system widely present in

Gram-negative bacteria and plays an essential role in

pathogenic mechanisms. Most of the enzymes secreted by

T2SS have degradative functions, increasing the destructive

effect of bacteria on host cells and tissues. The twin-arginine

translocation (Tat) system is a classic transmembrane

transport system of the type II secretion system. It is an

important part of the bacterial secretion system, but it is

absent in Mycoplasma, Methanogens, and Borrel ia

burgdorferi (Palmer and Berks, 2012). In Pseudomonas

aeruginosa, the Tat system mediates the first step in the

secretion of the exoproteins PlcH and PlcN (Voulhoux et al.,

2001). While Salmonella lacks the Tat system, the cell wall is

destroyed, making it more sensitive to EDTA and SDS, and the

morphology of the bacteria will become longer or chain-like

(Stanley et al., 2001). The absence of the Tat system in

Ralstonia solanacearum will seriously affect its physiological

functions, such as a severe reduction in the ability of nitrate

utilization, cell division, biofilm stabilization, and growth

tendency (González et al., 2007). Legionella pneumophila
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tatB and tatC mutants have significantly reduced ability to

form biofilms compared to wild type, resulting from a

combination of outer membrane and flagella defects (Buck

et al., 2006). The P. aeruginosa tatC mutant also showed a

conspicuously reduced biofilm formation ability due to the

weakened bacterial motility. However, the relationship

between the Tat system of many pathogenic bacteria and the

ability to form biofilms has not been studied. Moreover, some

pathogens have proved that the Tat system has no obvious

relationship with the formation of biofilms, such as

Agrobacterium tumefaciens, etc. (Ding and Christie, 2003).

In a rat model to simulate chronic lung infection with P.

aeruginosa, it was found that tatC mutants failed to cause lung

damage, indicating that the Tat system plays a crucial role in

the regulation of bacterial virulence factors (Ochsner et al.,

2002). Our previous transcriptomics analysis speculated that

the Tat system was closely related to the temperature-

dependent regulation in A. salmonicida SRW-OG1.

The genes (tatA, tatB, and tatC) knockout strains of A.

salmonicida were constructed in our studies. Meanwhile, we

extracted extracellular products at different temperatures and

used enzyme activity plates and bioinformatics analysis

to identify genes, and the expression was affected by

temperature. It was found that 18°C, 28°C, and 37°C played

various regulatory roles in extracellular proteases (ECP)

production and movement. The band with a molecular

weight of 35KDa was an ordinary band of ECP extracted at

three different temperatures. We further elucidated the

virulence regulation mechanism of the Tat system through

various physiological changes and direct regulation of the

expression of synthetase or secretase encoding genes. To

determine how these genes regulate adhesion and biofilm

formation under natural conditions and thus affect protein

output. It is helpful to understand further the role of the

secretion system in the pathogenesis of A. salmonicida, and

provide new targets and ideas for the treatment and

prevention of A. salmonicida.
Materials and methods

Bacterial strains and culture conditions

A. salmonicida (SRW-OG1) was isolated from naturally

infected Epinephelus coioides in our laboratory (Huang et al.,

2020a). After artificial infection, the strain was identified as a

pathogenic strain and confirmed as A. salmonicida by

biochemical identification and 16S rRNA sequencing. It was

stored at -80°C in the refrigerator. A. salmonicida were grown

in LB broth or agar at 18°C (pH=7, 2% NaCl, 220 r.p.m.). The

pKD46 plasmid was purchased from the BioVector plasmid

carrier strain cell gene storage center, and we previously

modified it and replaced the Amp resistance gene with the
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Escherichia coli containing pKD46-Cm plasmid was

cultured in LB broth or agar at 37°C. E. coli containing

pACYC184 plasmid was stored in our laboratory and

cultured in LB broth containing 1% (w/v) NaCl and

appropriate antibiotics at 37°C. Antibiotics used were 50

mg/ml tetracycline (Tet) and 34 mg/ml chloramphenicol

(Cm) (Holden et al., 2001).
Construction of tatA, tatB, tatC mutants
of A. salmonicida

Based on the A. salmonicida tatA, tatB, and tatC gene

sequences of A. salmonicida, primers with homologous arms

were designed with SnapGene and synthesized (primer

sequences were shown in Table S1). The 5’ termini of the

primers were homologous to the 10-bp upstream and

downstream flanking regions of the knocked-out gene. The

3’ termini of the primers were homologous to the end of the

Tet resistance gene. PCR amplification was performed using

2×Pfu PCR MasterMix kit. After PCR amplification, the target

fragments (with Tet resistance) of tatA, tatB, and tatC

were respectively constructed. Plasmid pKD46-Cm was

transformed into A. salmonicida by electroporation and

cultured to OD600 = 0.3. After adding 30 mmol/L L-

arabinose, the recombinant enzymes Exo, Bet, and Gam

of pKD46-Cm were ful ly expressed. The target ing

fragments were then transformed into A. salmonicida by

electroporation. Positive clones were screened with Tet, and

positive colonies were selected for PCR analysis and gene

sequencing verification (Murphy, 1998; Datsenko and

Wanner, 2000). Primers used for PCR amplification and

sequencing were shown in Table S2. In the same way, DtatB
and DtatC mutants were constructed from wild-type

A. salmonicida.
qRT-PCR

qRT-PCR was performed using a QuantStudio 6 Flex real-

time PCR system (Life Technologies Inc., Carlsbad, CA, U.S.A)

(Rodriguez et al., 2013). The 16S rRNA gene was selected as the

reference gene (primer sequences were shown in Table S3). Each

group was subjected to 3 biological replicates. The relative

expression level of genes was calculated with the 2−DDCt

method (Zuo et al., 2019; Huang et al., 2020b).
Growth curve test

According to the previous description (He et al., 2022), we

adjusted the concentration of bacterial solution to OD600 = 0.1,
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then took 10 mL of bacterial suspension and 190 mL of sterile LB

liquid medium, mixed them, and dispensed into 96-well cell

culture plates. Eight parallel experiments were set up for each

strain. The 96-well cell culture plate was placed in a 28°C

incubator, and the OD600 was measured and recorded every

half an hour until the stable growth phase was reached, and the

growth curve was drawn according to the obtained results.
Soft agar plate exercise test

According to the previous description (Qi et al., 2022), the

concentration of the bacterial solution from wild type and three

mutant strains was adjusted to OD600 = 0.2, and 1mL of the

bacterial suspension was taken to measure the motility of A.

salmonicida by the semi-solid agar method. Colony diameters

were measured after overnight incubation at 28°C (Li

et al., 2022).
Biofilm formation test

The bacteria were cultured on LB overnight and then

suspended in 0.01M phosphate buffered saline (PBS, pH =

7.2). The bacterial suspension was adjusted to OD600 = 0.2

(2.0×108 CFU/mL) in 0.01M PBS (pH = 7.2). 200 mL
suspension was added to 96-well microporous plate

(polystyrene). Biofilm production was analyzed by incubating

96-well cell culture plates with 0.1% crystal violet solution

(Merck KGaA, Germany) for 15 minutes as previously

described (Xu et al., 2022). The stained biofilm was recorded

with a multifunctional microplate detector after dissolving 200ml
of 33% acetic acid measured by OD590 nm.
Hemolysis test

Hemolysis analysis was performed as previously described

(He et al., 2020). We adjusted the bacterial solution to the same

concentration, and used a multifunctional microplate detector to

record the OD540 nm to detect the released hemoglobin. The

total hemolysis rate was calculated by comparing the OD540 nm

of the negative control (PBS) and positive (ddH2O) samples, and

eight parallel experiments were set up for each strain.
In Vitro adhesion test

Bacterial adhesion assays were performed as previously

described (Huang et al., 2021a). 20 mL mucus of E. coioides

was evenly added onto a 22 mm × 22 mm glass slide, then placed

overnight, and fixed with methanol for 20 minutes at room

temperature. The bacterial suspension was adjusted to a final
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concentration of OD600 = 0.2 (2.0×108 CFU/mL) with PBS. 200

ml bacterial suspension was spread evenly on the glass slide

containing mucus, incubated at 28°C for 2 hours, and washed 4

times with PBS (Li et al., 2019). The bacteria were fixed in 4%

methanol for 30 minutes and stained with 0.1% crystal violet for

3 minutes. The slides were observed under a light microscope

(×1000), and 15 microscope fields were selected for bacterial

counts. Sterile PBS was used as a negative control. Three trials

were performed for each group.
Preparation of extracellular products

According to the description by (Austin and Rodgers, 1980;

Zhang and Austin, 2000), the extracellular products of A.

salmonicida cultured at different temperatures were prepared

by glass paper-covered plate technology. Briefly, 0.2ml overnight

culture (OD600 = 0.4) was applied to each TSA plate covered

with sterile glass paper. After incubation at 28°C for 48 h, the

cover was transferred to the empty culture dish cover. The

bacterial cells were scraped in 4.0 ml phosphate buffered saline

(PBS), centrifuged at pH = 7.4 (13 000 g for 30 min at 4°C).

Then, the supernatant comprising the ECPs was filtered

successively through 0.45- and 0.22-mm pore-size Millipore

Millex porosity filters and stored at −80°C until required.

According to the manufacturer’s instructions, 5mg/ml bovine

serum albumin (BSA) was used as the standard. Protein

concentration of ECP was determined by Bradford protein

assay (Kumar et al., 2019).
Extracellular enzymatic activity assay

Using the agar plate punching method, sterile casein (0.4%),

skimmed milk powder (0.4%), egg yolk (2.5%), soluble starch

(0.2%), gelatin (0.4%), blood plate (containing 5% defibrillated

sheep blood), urea (2.0%), and Tween-80 (1.0%) agar plate were

prepared with ddH2O, respectively (Denkin and Nelson, 1999;

Liu et al., 2012). The above materials were purchased from

Lambolide Biotechnology Co., Ltd. At 28°C, the wild and

knockout strains had the same activity of caseinase, protease,

lecithinase, amylase, gelatinase, urease, and lipase. At the same

time, the hemolytic activity of their extracellular products and

the amount of protein were utterly consistent. A total of 10 mL
sterile PBS (negative control) and the prepared extracellular

products were added to the corresponding wells.
Sequence alignment and
homology analysis

Amino acid sequence alignment and homology analysis of

tatA, tatB, and tatC from A. salmonicida SRW-OG1 were
frontiersin.org
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performed using NCBI database and biological software

Clustalx 1.8. Then, A phylogenetic tree was constructed

with neighbor-joining method using MEGA7.0 (XIAO

et al., 2020).
Prediction of protein secondary
structure models

The virulence gene sequences were obtained from the A.

salmonicida SRW-OG1 genome. With the I-TASSER, the

protein secondary structure model was finally established and

matched with all structures in the PDB library. A protein with

the closest structural similarity was screened, which had the

highest protein TM score (Yang and Zhang, 2015; Zhang

et al., 2017).
Statistical analysis

The expression quantitative software RSEM was used to

analyze the gene expression level, calculate the correlation
Frontiers in Cellular and Infection Microbiology 05
coefficient between each sample, and ensure the rationality of

the experimental design. DESeq2 (http://bioconductor.org/

packages/stats/bioc/DESeq2/) was used to detect the differential

genes (DEGs) between the two samples, and use |log2FC|≥1 and q

value<0.05 as the screening conditions. Statistical analysis was

performed by one-way analysis of variance with Dunnett’s test

using SPSS 22.0 software (Chicago, IL, USA). P < 0.05 was

considered statistically significant.
Results

qRT-PCR validation of transcriptome
data of A. salmonicida under different
temperatures

Based on the KEGG pathway enrichment analysis of the

differentially expressed genes under 18 and 28°C (Figure 1A),

the down-regulated genes under 28°C were assigned to 16

different KEGG pathways, among which the protein export

signaling pathway has been confirmed to be involved in the

regulation of various virulence factors of pathogenic bacteria.
A

B

FIGURE 1

(A) Scatter plot of KEGG annotation distribution of differential genes; (B) Relative expression of tatA, tatB and tatC under different temperature
stress, *P < 0.05, **P < 0.01.
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In addition, the protein export signaling pathway is also a

complex network regulation system. 15 differentially

expressed genes enriched in this signaling pathway,

including tatA, tatB, and tatC. They were significantly

down-regulated under 28°C and slightly up-regulated under

37°C. The expression levels of tatA, tatB and tatC were verified

by qRT-PCR (Figure 1B). The trend of gene expression level

was consistent with the result of RNA-seq, indicating the

reliability of RNA-seq.
Amino acid sequence homology analysis
of virulence genes

To study the similarity of T2SS virulence genes among

species, the amino acid sequences of TatA, TatB and TatC

were analyzed. A total of 11 TatA sequences from Aeromonas,

Vibrio, Streptococcus and Pseudomonas were selected to

construct a phylogenetic tree by neighbor-joining method (N-J

method). The results of multiple sequence alignment showed

that the TatA in A. salmonicida SRW-OG1 was most similar to

the A. veronii protein in the database, including the amino acid

sequence of A. dhakensis from the same genus Aeromonas

clustered into a branch; the amino acid sequences of TatA in

Aliarcobacter cryaerophilus ATCC 4315 and Helicobacter felis

ATCC 49179 are increasingly distant (Figure 2).

The Neighbor-Joining method in Mega7.0 software was

used for phylogenetic analysis of TatB amino acid sequences of
Frontiers in Cellular and Infection Microbiology 06
the above different genera, and the default Poisson model was

used. The results showed that the amino acid sequences in this

study were clustered into a single branch, which had the

closest genetic relationship with Aeromonas hydrophila

(strain: OnP3.1) and Aeromonas dhakensis (strain: KOR1)

with high conservation. Streptomyces rimosus subsp. rimosus

ATCC 10970 and other sequences are obviously located in

different branches (Figure 3).

10 TatC sequences from the genus Monascus, E. coli, and

Vibrio parahaemolyticus were selected to construct an

evolutionary tree. It can be seen from the phylogenetic tree:

the amino acid sequence of TatC in this study and the

sequence of A. dhakensis (strain: KOR1) belonging to the

same family in the database were the most conserved and

clustered together; while the Helicobacter suis HS1 sequence

and the Aliarcobacter cryaerophilus ATCC 43158 sequence

clustered into one branch and were far less conserved than the

amino acid sequence from SRW-OG1;Bacillus subtilis subsp.

spizizenii ATCC 6633 JCM 2499 was obviously located on a

different branch from the sequences of E. coli, Vibrio, and

Salmonella (Figure 4).
Prediction of secondary structures of
TatA, TatB, and TatC

Consensus-constrained and optimized I-TASSER used the

SPICKER program to cluster all the decoys by pairwise
FIGURE 2

Phylogenetic tree of TatA amino acid sequence of type II
secretion system.
FIGURE 3

Phylogenetic tree of TatB amino acid sequence of type II
secretion system.
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structural similarity. They predicted protein structural models

corresponding to the five most significant clusters. The

confidence of each model was quantitatively measured by

the C-score, which was calculated from the importance of

thread template alignment and the convergence parameters of

the structural assembly simulation (Li et al., 2022). The

models were ranked from high C-score to low C-score, and

the values were in the range [-5, 2]. The structural cluster

protein structural model with the highest C-score value had

the highest confidence, and vice versa. The highest C-scores of

TatA, TatB, and TatC were -1.27, -1.27and 0.11, respectively

(Figure 5A). The cluster protein structure model with the

highest C-score value was matched with all structures in the

PDB library, and the top 10 proteins whose structures were

most similar were obtained, and they were arranged in

descending order of TM-score. The protein with the highest

TM score usually has a similar function to the target due to

structural similarity, from which the biological function of the

target gene can be predicted. The highest C-scores of TatA,

TatB, and TatC were 0.673, 0.502and 0.865 (Figure 5B). While

TM-align can derive functional annotations of the gene

interested from global structural comparisons, analysis of

ligand-binding sites using COFACTOR and COACH can

better derive their biological functions from the multiplicity

of sequence and structural features. The scores for the ligand-

binding sites of TatA, TatB, and TatC were 0.13, 0.19and 0.09,

respectively (Figure 5C).
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The tatA of A. salmonis was most similar to the 2LZR

protein Solution structure of the E. coli TatA protein in DPC

micelles. 2LZRis an 89-residue monotopic integral membrane

protein including a N-terminal transmembrane helix (TMH;

corresponding to residue 5 - 20 in E. coli TatA), followed by a

amphiphilic helix (APH; corresponding to residue 22 - 45 in E.

coli TatA) and an unstructured and hydrophilic cytoplasm tail.

TMH and APH form a right angle to each other, forming an

“L” shape. The connection between the two helixes is centered

on Gly21 (the “hinge brace”) (Rodriguez et al., 2013). The

helix angle is the structural conservatism maintained by filling

interaction (“hinge support”). The TatB of A. salmonicida

were most similar in structure to the 2MI2 protein of E. coli

(Solution structure of the E. coli TatB protein in DPC

micelles). The structure of the 2MI2 protein is an extended

“L-shape” cons is t ing of four hel ica l s tructures : a

transmembrane helix (TMH) a1, an amphiphilic helix

(APH) a2, and two solvent-exposed helices a3 and a4. The
higher mobility of helices a3 and a4 makes them structurally

conserved. TatC was most similar in structure to the 4B4A

protein of E. coli (Structure of the TatC core of the twin

arginine protein translocation system). The total structural

weight of 4B4A protein is 29.43 kDa, which consists of 1873

atoms, its Length (Å) is a = 123.52, b = 123.52, c = 216.41,

angle (°) a = 90, b = 90, g = 120. The TatC exists as an integral

membrane and does not allow significant ion leakage across

the membrane, thus achieving the purpose of transporting

only folded proteins to ensure the structural conservation of

the Tat system.
Enzymatic activity analysis of
extracellular products under different
culture temperatures

In this study, three culture temperatures of 18°C, 28°C,

and 37°C were selected to determine the enzymatic activity of

the extracellular products of A. salmonicida SRW-OG1

(Figure 6A). The results showed that obvious activities of

casease, amylase, lipase and lecithinase could be detected in

the extracellular products of A. salmonicida SRW-OG1 under

the three culture temperatures, but the activities of urease and

gelatinase could not be detected. In addition, obvious

transparent circles were observed at 18°C and 28°C,

indicating that the extracellular products of A. salmonicida

SRW-OG1 had hemolytic effect on sterile defibrillated sheep

erythrocytes (Table S4).

It can be seen from (Figure 6B) that the ECP enzyme

activity of A. salmonicida was significantly affected by

temperature as follows: the activities of casein and protease

at 18°C were significantly higher than those at 28°C (P< 0.05)

and 37°C (P< 0.01). In addition, the amylase activity of A.

salmonicida ECP at 18°C, 28°C, and 37°C was significantly
FIGURE 4

Phylogenetic tree of TatC amino acid sequence of type II
secretion system.
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different (P< 0. 05), which was the lowest at 28°C and the

highest at 18°C. The lipase activity at 37°C was significantly

higher than that at 18°C (P < 0.05); although the lipase

activity measured at 28°C was slightly higher than that at

18°C, there was no significant difference between the two. The

lecithinase activity measured at 37°C was significantly

(P<0.05) lower than that at 18°C and 28°C; while at 18°C

and 28°C, there was no significant difference between the two

groups (P>0.05).

The difference in extracellular enzyme activity may be

caused by two reasons: (1) temperature affects the expression

of genes related to the synthesis of extracellular enzymes; (2)

temperature affects the secretion of extracellular enzymes.

Analysis of the transcriptome of A. salmonicida under

different temperatures showed that the expression levels of

T2SS-related genes and some extracellular enzyme synthesis-
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related genes were significantly affected by temperature. To

illustrate this, we detected the expression levels of genes

regulating extracellular product-related enzyme activities by

qRT-PCR. The experimental results showed that temperature

stress had a significant effect on the expression of extracellular

enzyme encoding genes in A. salmonicida. According to our

results of enzyme activity analysis, we speculated that

protease might be directly regulated by aspA (Figure 7A);

HED66 _ RS19960 played a major role in promoting the

synthesis and secretion of amylase compared with HED66 _

RS01350; fabD and gpsA may be genes that directly synthesize

lecithinase; hemolysis might be directly combined or co-

regulated by cyoE and ahh1, so that A. salmonicidal cannot

express hemolytic properties at 37°C; lipase might be

promoted by lipA and lipB, resulting in low lipase secretion

at 37°C (Figure 7B).
A

B

C

FIGURE 5

(A) Cluster protein structure model with the highest C-score value; (B) Proteins structurally close to the target in the PDB (as identified by TM-
align); (C) COFACTOR and COACH analysis the ligand-binding site; The thin lines represent the backbone of the experimental structures, and
the thick lines are the threading templates or the final models. Blue to red runs from N- to C-terminals.
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Electrophoretic analysis of
extracellular products

After the extracellular product (ECP) was extracted and

confirmed to be free of bacteria, it was analyzed by SDS-PAGE

electrophoresis. The Bradford protein concentration was

determined by the known standard protein molecular mass

(5mg/ml BSA) and its ECP, and the linear regression was

performed to obtain the linear relationship equation

(y=0.6995x+0.5958, R2 = 0.9912). The ECP protein

concentration was adjusted to 1.2 mg/mL by PBS dilution. The

results showed that the extracellular protein secretion of A.

salmonicida was the lowest at 18°C, and the molecular weight

of the product was 10-40 KDa. At 28°C, the extracellular protein

secretion was more than that at 18°C, and the molecular weight

of the product was 20-55 KDa. Extracellular protein secretion

was the highest at 37°C, and its molecular weight was 15 ~ 90

KDa. The number and abundance of electrophoresis bands of A.

salmonicida ECP extracted under different temperature stresses

were quite different. However, the band with a molecular weight
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of 35KDa was a common band of ECP extracted at three

different temperatures (Figure 8). Research about the specific

differences through proteomics analysis was still necessary for

future studies.
Construction and identification of tatA,
tatB, tatC mutants

As described above, DtatA, DtatB, and DtatC were

constructed. PCR amplification of SRW-OG1 was carried out

with the identification primers on both sides of the target genes

tatA, tatB, and tatC, and the sizes were 246 bp, 447 bp and 756 bp,

respectively. PCR amplification of the respective gene in DtatA,
DtatB, and DtatC obtained a fragment about 1200 bp. The growth

curves of wild type and mutant strains were shown (Figure 9).

Compared with that of wild type, the growth rate of mutants in

the early stage was consistent with that of wild type, while the

growth rate in the later stage was slightly lower than that of wild

type, but there was no significant difference between the two.
A

B

FIGURE 6

(A) Agar plate punching method to detect extracellular protease activity; (B) After the extracellular products were cultured on the agar plate for
24 hours, the b Shineso automatic colony counter was used for the transparent circle photographing test; The values marked by a express the
mean of three independent experiments, and error bars represent standard deviation. Double and single asterisks indicate significant differences
between wild strains at different temperatures (**P < 0.05 and ***P < 0.01), respectively.
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Effects of tatA, tatB, and tatC
on virulence

By comparing the adhesion (Figure 10A), hemolysis

(Figure 10B), motility (Figure 10C), and biofilm formation

(Figure 10D) of wild-type and tatA, tatB, and tatC mutant

strains, the results showed that the number of adherent

bacteria of the wild type, DtatA, DtatB, and DtatC strains were

429 ± 32, 95 ± 4, 84 ± 7 and 162 ± 48 cells/field (Figure 10E), we

suggested that tatA, tatB, and tatC were involved in bacterial

adhesion. The measurement results of the hemolytic ability

showed that the hemolytic ability of the mutant strains

decreased compared with the wild strain. In addition, when

cultured on semi-solid agar for 12 hours, the colony diameter of

A. salmonicidal mutant strains was markedly lower than that of
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wild strain. The average movement diameter of the wild type was

10.889 mm, the average movement diameter of the DtatA strain

was 9.185 mm, the average movement diameter of the DtatB
strain was 9.764 mm, and the average movement diameter of the

DtatC strain was 9.490 mm, suggesting that these genes were

associated with bacterial motility (Figure 10F). Compared with

the wild-type strain, the mutant strains had insufficient bacterial

biofilm formation ability during the entire biofilm formation

process, especially the DtatA and DtatC showed significant

reduction of biofilm formation (Figure 10G). Therefore, the

tatA, tatB, and tatC genes had a significant positive effect on

all four virulence phenotypes in A. salmonicida. In addition, the

extracellular enzyme activities of wild type, DtatA, DtatB, and
DtatC mutants were measured (Figure 11). The results showed

that the extracellular products of wild type, DtatA, DtatB, and
A

B

FIGURE 7

(A) Relative expression of extracellular product enzyme activity genes of A. salmonicida at 18°C - 28°C; (B) Relative expression of extracellular
product enzyme activity genes of A. salmonicida at 18°C - 37°C, *P<0.05, **P<0.01.
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DtatC had obvious lecithinase, amylase, caseinase, lipase,

protease and hemolysis activities, but the activities of urease

and gelatinase could not be detected.
Discussion

In our laboratory, A. salmonicida (SRW-OG1) was isolated

from Larimichthys Crocea cultured at 28°C in Dongshan County,

Zhangzhou City, Fujian Province. Most A. salmonicida are

psychrophilic, but SRW-OG1 is mesophilic (Colquhoun and

Sørum, 2001). As far as we know, temperature plays an

important role in regulating secretion and activity of

extracellular products of pathogenic bacteria, but some details

remain unclear (Mateos et al., 1993; Khalil and Mansour, 1997;

Ma et al., 2009). Studies on the extracellular products of

pathogenic bacteria such as Vibrio alginolyticus, Edwardsiella

lentus, Aeromonas vermidis, and Aeromonas hydrophila have

discussed the influence of environmental factors on the

enzymatic activity of extracellular products (Rojas et al., 2015).

There is increasing evidence that the extracellular protease of

fish-derivedVibrio alginolyticus has an optimum temperature of 50°

C, an optimum pH of 8.0, and poor thermal stability, indicating that

the enzyme activity level of extracellular products secreted by

pathogenic bacteria is affected by environmental factors, and the

optimal reaction temperature is mainly in the range of 50-60°C
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(ZUO et al., 2006). Since the studies on extracellular products in

these literatures are beyond the water temperature range of

aquaculture, the stress temperature in this paper is set as

pathogenic low temperature of 18°C, pathogenic high

temperature of 28°C, and in virulent high temperature of 37°C.

The results of this study showed that: (1) the activity of caseinase

and protease at 18°C was significantly higher than that at 37°C; (2)

The amylase activity was the lowest at 28°C and the highest at 18°C;

(3) the lipase activity of ECP at 28°C and 37°C was significantly

higher than that at 18°C; (4) the lipase activity measured at 28°C

was slightly higher than that at 18°C, but there was no significant

difference between the two; (5) the lecithinase activity measured at

37°C was significantly lower than that at 18°C and 28°C, but the

difference in enzyme activity between the two at 18°C and 28°C was

not significant. A. salmonicida ECP had a variety of enzyme

activities, and most of the enzymes showed similar activities at

37°C, which was not pathogenic at high temperature, and 18°C,

which was highly pathogenic at low temperature. Temperature

affects the secretion of hemolytic enzyme through cyoE and ahhh1,

thereby affecting the expression of extracellular hemolytic enzyme

activity. HED66_RS01350 and HED66_RS19960 affect the synthesis

of amylase, thereby affecting the expression of amylase activity. And

lipA and lipB affect the synthesis of lipase, thereby affecting the

expression of extracellular lipase activity. FabD and gpsA affect the

secretion of lecithinase, thereby affecting the expression of

lecithinase activity. It is revealed that the pathogenesis of boil
FIGURE 8

Lane 2: Protein marker; Lanel 3 - 5: Extracellular proteins of 18°Cˎ28°Cˎ3001;37°C, respectively; Lane 6: LB medium (negative control).
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disease in Epinephelus coioides is not limited to the expression of

ECP enzyme activity, which provides a new idea for the treatment

of A. salmonicida.

The Tat system were located in the protein secretion system of

T2SS and function by secreting a fully folded protein that

specifically recognizes a twin-arginine signal peptide (Wu et al.,

2000). Meanwhile, the twin-arginine protein transport system

(Tat), as a protein transport secretion system independent of the

Sec system, is distributed on the inner membrane, and is closely

related to many physiological functions of bacteria (Bogsch et al.,
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1998). Therefore, to further reveal the mechanism of Tat system

affecting bacterial protein secretion, we constructed three mutants

of Tat system. By analyzing the physiological phenotypes of A.

salmonicida tatA, tatB and tatCmutant strains, combined with the

results of bacterial virulence-related phenotypes and responses to

temperature environmental stress, the intrinsic functional

mechanisms of its transcriptional regulators were explored.

Studies once suggested that the Tat system has an essential

effect on virulence in pathogenic bacteria such as Salmonella (Craig

et al., 2013), Yersinia pseudotuberculosis (Avican et al., 2016),
A

B

C

FIGURE 9

Construction and growth curve of DtatA, DtatB, and DtatC strains of A. salmonicida, Lane M: DNA molecular weight markers; Lanel 1: PCR
products of wild strain; Lane 2 - 4: PCR products of tatA mutant (A), PCR products of tatB mutant (B), PCR products of tatC mutant (C).
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Brucella melitensis (Yan et al., 2020) and so on. In Burkholderia

thailandensis, research has shown that the Tat system is vital for

aerobic but not anaerobic growth (Wagley et al., 2014). However,

in this study, the gene knockout of tatA, tatB and tatC did not

affect the virulence ofA. salmonicida by affecting the growth ability.

The growth tolerance of mutant strains was consistent with the

growing trend of wild strains. Furthermore, this study proved that

after the deletion of the tatA, tatB and tatC genes, the number of

the mutant strains in the mucus of the grouper was significantly

lower than that of the wild strain. The relative reduction of tatA

was 77.69%, tatB was 80.41%and tatC was 62.14%. These results

indicated that the tatA, tatB and tatC genes in the type II secretion

system of A. salmonicida played important roles in the regulatory

network in response to changes in environmental factors under

different environmental conditions (Cléon et al., 2015).

In addition, in Dickeya zeae, otatA, otatB and otatE mutants

significantly reduced motility and failed to form biofilms, while
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the otatCmutant did not show a significant reduction in motility

and biofilm formation (Zhang et al., 2018). We determined the

swarming motility, biofilm formation, and hemolytic capacity of

the mutant strains. The results showed no significant change in

the motility compared with the wild type; however, the biofilm

formation ability was weakened, which indicated that tatA, tatB,

and tatC were involved in the biofilm formation process of A.

salmonicida. Meanwhile, when we compared the difference in

hemolytic ability between the wild-type and mutant strains, we

found that the hemolytic activity of the tatC mutant strain was

the most reduced by 23.41%. Several genes regulate the

expression of virulence factor-related proteins and lead to

changes in bacterial hemolysis, thereby participating in the

regulation of bacterial virulence (Armbruster et al., 2019).

In conclusion, this study reported for the first time the

expression mode of tatA, tatB, and tatC genes in T2SS of A.

salmonicida under different temperatures. It preliminarily
A B

D

E

F

G

C

FIGURE 10

Characteristics of wild type, DtatA, DtatB, and DtatC mutants. Adhesion capacity (A), hemolytic capacity (B), motility (C), and biofilm formation
(D), The effect on the adhesion ability of grouper mucus (E), Motion phenotype (F), biomembrane phenotype (G) were measured. Data are
presented as mean ± SD. Three independent biological replicates were performed for each group. *P < 0.05, **P < 0.01.
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confirmed their essential roles in virulence regulation. The genes

affecting A. salmonicida amylase, protease, lipase, hemolytic

ability, and lecithinase were also identified as cyoE, ahh1, lipA,

lipB, pulA, HED66_RS01350, HED66_RS19960, aspA, fabD, and

gpsA. The results of this study could provide a new theoretical

reference for the study of the pathogenesis of A. salmonicida and

the formulation of prevention and treatment strategies.
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