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Autoimmune hepatitis (AIH) is a chronic immune-mediated liver disease distributed
globally in all ethnicities with increasing prevalence. If left untreated, the disease will lead
to cirrhosis, liver failure, or death. The intestinal microbiota is a complex ecosystem
located in the human intestine, which extensively affects the human physiological and
pathological processes. With more and more in-depth understandings of intestinal
microbiota, a substantial body of studies have verified that the intestinal microbiota
plays a crucial role in a variety of digestive system diseases, including alcohol-
associated liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). However,
only a few studies have paid attention to evaluate the relationship between AIH and the
intestinal microbiota. While AIH pathogenesis is not fully elucidated yet, some studies have
indicated that intestinal microbiota putatively made significant contributions to the
occurrence and the development of AIH by triggering several specific signaling
pathways, altering the metabolism of intestinal microbiota, as well as modulating the
immune response in the intestine and liver. By collecting the latest related literatures, this
review summarized the increasing trend of the aerobic bacteria abundance in both AIH
patients and AIH mice models. Moreover, the combination of specific bacteria species
was found distinct to AIH patients, which could be a promising tool for diagnosing AIH. In
addition, there were alterations of luminal metabolites and immune responses, including
decreased short-chain fatty acids (SCFAs), increased pathogen associated molecular
patterns (PAMPs), imbalanced regulatory T (Treg)/Th17 cells, follicular regulatory T (TFR)/
follicular helper T (TFH) cells, and activated natural killer T (NKT) cells. These alterations
participate in the onset and the progression of AIH via multiple mechanisms. Therefore,
some therapeutic methods based on restoration of intestinal microbiota composition,
including probiotics and fecal microbiota transplantation (FMT), as well as targeted
intestinal microbiota-associated signaling pathways, confer novel insights into the
treatment for AIH patients.
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INTRODUCTION

Autoimmune hepatitis (AIH) is a chronic progressive immune-
mediated liver disease. It is predominantly characterized by the
presence of autoantibodies, elevated levels of serum transaminase
and immunoglobulin G, and liver histologic interface hepatitis
(Cowling et al., 1956; Manns et al., 2010). AIH affects the health
state of people in all age groups around the globe, with a female
propensity (Cowling et al., 1956). The incidence of AIH is estimated
at 4/100,000-24.5/100,000 per year in the Asia-pacific region, and it
also increases by years in China (Lee et al., 2001; Jalihal et al., 2009;
Haider et al., 2010; Ngu et al., 2010; Delgado et al., 2013; European
Association for the Study of the Liver, 2015; Kim et al., 2017). AIH is
a serious immune-mediated liver disease, which will lead to some
detrimental consequences, including cirrhosis and liver failure
(European Association for the Study of the Liver, 2015). Up to
date, AIH pathogenesis is not completely elucidated. Genetic
predisposition, environmental factors and immune tolerance
breakdown are identified as significant contributors to the
occurrence and the development of AIH (Wei et al., 2020).
Notably, some studies have reported that intestinal microbiota
dysbiosis had an intimate association with AIH (Yuksel et al.,
2015; Liwinski et al., 2020; Wei et al., 2020).

The intestinal microbiota inhabits the human gut tract, mainly
comprised of more than 100 trillion bacteria, and their genomes
contain 150-fold more genes than humans (Qin et al., 2010).The
intestinal microbiota is capable of coexisting with the host
harmoniously and exerting significant influence on its
pathological and physiological processes, such as assisting
digestion and absorption of nutrients, preventing the
colonization of pathobiont, and maintaining a steady immune
system (Nicholson et al., 2012). A substantial body of studies have
suggested that intestinal microbiota dysbiosis plays a significant
role in immune-mediated disorders (Liwinski et al., 2020; Wang
et al., 2021a), including AIH. It is commonly accepted that
Abbreviations: AIH, autoimmune hepatitis; FMT, fecal microbiota
transplantation; Con A, concanavalin A; TCE, trichloroethene; AUC, area under
curve; AST, aspartate aminotransferase; LPS, lipopolysaccharide; ALD, alcohol-
associated liver disease; NAFLD, non-alcohol fatty liver disease; SCFA, short-
chain fatty acid; B420, Bifidobacterium animal lactic acid 420; EAH, experimental
autoimmune hepatitis; IECs, intestinal epithelial cells; TNF-a, tumor necrosis
factor-a; IL, interleukin; GPBAR1, G-protein coupled bile acid receptor 1; NKT,
natural killer T; GPR, G protein-coupled receptor; TLR, Toll-like receptor; FAK,
adaptor protein focal adhesion kinase; MyD88, myeloid differentiation factor 88;
IRAK4, IL-1R–associated kinase 4; ERK, extracellular signal-related kinase;
MAPK, mitogen-activated protein kinase; AMPs, antimicrobial peptides;
STAT3, signal transducers and activator of transcription 3; mTOR, mammalian
target of rapamycin; NF-kB, nuclear factor kappa B; PPRs, pattern recognition
receptors; PAMPs, pathogen associated molecular patterns; NLRs, NOD-like
receptors; NLRP3, NOD-like receptor protein 3; TIR, Toll/interleukin-1
receptor; TRIF, TIR domain-containing adaptor inducing IFN-b; TRAM, TRIF-
related adapter molecule; HSCs, hepatic stellate cells; TFR, follicular regulatory T;
TFH, follicular helper T; Ah R, aryl hydrocarbon receptor; bHLH, basic region-
helix-loop-helix; XRE, xenobiotic-response element; ARNT, Ah R nuclear
translocator; CYP1A1, cytochrome P450 family 1A1; DCs, dendritic cells; PPs,
Peyer patches; MAMPs, microbiome related molecular patterns; IBD,
inflammatory bowel disease; UC, ulcerative colitis; ICAM1, intercellular
adhesion molecule-1; Caco-2, colorectal adenocarcinoma; IFN-g, interferon g.
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intestinal barrier destruction, intestinal microbiota translocation,
as well as immune homeostasis breakdown contribute to the onset
and progression of AIH (Yuksel et al., 2015; Wei et al., 2020; Yang
et al., 2021).

Currently, the therapeutic methods for AIH are glucocorticoid
or a combination with azathioprine (Mack et al., 2020). However,
glucocorticoid and azathioprine have many negative effects, such
as central obesity, osteoporosis, myelosuppression, and liver
function damage (Lee et al., 2014; Mack et al., 2020). The
therapeutic needs of patients not tolerating standard
management or not achieving remission remain unmet (Mack
et al., 2020). A number of researches associated with AIH animal
models and AIH patients highlight the importance of “intestinal
liver crosstalk” in AIH pathogenesis (Liang et al., 2021; Wang
et al., 2021b), which offers a promise of novel diagnostic and
therapeutic methods. Therefore, great significance should be
attached to deeply explore the specific impact of intestinal
microbiota on AIH and its associated mechanisms, and further
discuss the efficacy and safety of several potential therapies,
including probiotics, fecal microbiota transplantation (FMT), as
well as some pharmacological agents which target intestinal
microbiota-associated signaling pathways.
THE GUT-LIVER AXIS

The theory of the “the gut-liver axis” was initially raised by
Marshall (Volta et al., 1987), which refers to an intimate
anatomical, functional, and bidirectional interaction of the gut
and the liver, predominantly via the portal circulation (Abdel-
Misih and Bloomston, 2010). The gut-liver axis is identified as a
pivotal contributor to the occurrence and development of
multiple liver disease (Saffouri et al., 2019; Scorletti et al., 2020)
and autoimmune disease (Allegretti et al., 2019; Fretheim et al.,
2020; Wang et al., 2021a).

In healthy conditions, the intestinal epithelium constitutes a
natural barrier to confer adequate protection against the
intestinal microbiota as well as their metabolites through a
tight junction, antibacterial molecules and mucus layer (Beyaz
Cos ̧kun and Sağdiçoğlu Celep, 2021). The liver is widely thought
to be the first organ exposed to gut-derived harmful substances,
including bacteria and bacterial metabolites (Seki and Brenner,
2008), but only a small quantity of them can move to the liver,
where they are detoxified or diminished by the immune system
in a healthy status (Lin et al., 2015). Microbiota dysbiosis leads to
the destruction of intestinal barrier (Lin et al., 2015), which
further results in the translocation of intestinal microbiota from
the gut to the liver. The excessive gut-derived microbial toxins
may destroy liver homeostasis by aberrantly activating the innate
immune system and triggering signaling pathways related to liver
inflammatory responses (Pradere et al., 2010). With
compromised intestinal barrier and disrupted immune
homeostasis, the intestinal microbiota, which can be regarded
as a continuous source of antigens, initiates, maintains, and
perpetuates the autoimmune responses in AIH (Sánchez et al.,
2015; Van Praet et al., 2015; Ignacio et al., 2016).
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THE RELATIONSHIP BETWEEN AIH AND
INTESTINAL MICROBIOTA

Intestinal microbiota makes great contributions to the onset and
progression of AIH (Yuksel et al., 2015; Liwinski et al., 2020; Wei
et al., 2020). Germ-free mice had a fair resistance to fulminant
hepatitis induced by concanavalin A (Con A), which contrasted
sharply with specific pathogen free mice (Wei et al., 2016).
Moreover, gentamycin mitigated the liver injury induced by Con
A through depleting gut-derived gram-negative bacteria,
concomitantly with reduced liver immune cells infiltration,
whereas administration of exogenous pathogenic bacteria
aggravated Con A-induced acute hepatitis (Chen et al., 2014).
Furthermore, in a recent study, compared to the controls, the
antibiotic-treated mice exhibited AIH phenotypes after being
transplanted with fecal microbiota from mice exposed to
trichloroethene (TCE), accompanied by increased systematic
autoantibodies and aggravated hepatic inflammation (Wang et al.,
2021a). The afore-mentioned evidence supported an intimate
linkage between the etiology of AIH and intestinal microbiota.

Besides, intestinal microbiota has changed significantly in AIH
patients and animal models compared to the healthy group
(Table 1) (Yuksel et al., 2015; Elsherbiny et al., 2020; Lou et al.,
2020; Wei et al., 2020). Overall, the biodiversity of the intestinal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
microbiome has decreased remarkably, and the relative abundance
of aerobic or facultative anaerobic bacteria increased (Lin et al.,
2015; Yuksel et al., 2015; Elsherbiny et al., 2020; Wei et al., 2020).
The taxonomic analysis of fecal microbiome from the controls as
well as AIH patients showed that at the phylum level,
Verrucomicrobia abundance remarkably increased while
Synergistetes and Lentisphaerae abundance remarkably decreased
in patients with AIH compared to healthy communities (Elsherbiny
et al., 2020; Lou et al., 2020). Of note, Synergistetes and
Lentisphaerae belong to anaerobic bacteria (Limam et al., 2010;
Aoyagi et al., 2020), and Synergistetes have the capacity to
participate in the anaerobic dissimilation of acetate (Aoyagi et al.,
2020). However, the changes in Bacteroidetes, Firmicutes and
Proteobacteria were controversial in different studies (Elsherbiny
et al., 2020;Wei et al., 2020). At the genus level, compared to healthy
group, Veillonella, Streptococcus, Klebsiella, Akkermansia, Blautia,
Eubacterium, Butyricicoccus and Haemophilus were mainly
enriched in AIH patients while Bifidobacterium, Ruminococcus,
Clostridiales, Rikenellaceae, Oscillospira, Sutterella, Parabacteriods
and Coprococcus were retracted in such patients (Lin et al., 2015;
Elsherbiny et al., 2020; Liwinski et al., 2020; Lou et al., 2020; Wei
et al., 2020). Furthermore, there were different outcomes concerning
the abundance of Lactobacillus, Faecali bacterium and
Lachospiraceae (Liwinski et al., 2020; Lou et al., 2020; Wei et al.,
TABLE 1 | Changes of intestinal microbiota associated with AIH in feces.

Participants Comparison Change of intestinal microbiota Method Ref

Increased Decreased

AIH patients
(n=24)
Healthy
individuals (n=8)

AIH vs
Healthy

Bifidobacterium; Lactobacillus 16S rDNA
quantitative PCR

Lin et al. (2015)

HLA-DR3 NOD
mice
WT NOD
mice

AIH vs
Healthy

Proteobacteria; Bacteriodetes 16S rRNA
sequencing

Yuksel et al.
(2015)

AIH patients
(n=72)
Healthy
individuals (n=95)

AIH vs
Healthy

Streptococcus; Veillonella; Lactobacillus Faecalibacterium;
Bifidobacterium

16S rRNA
sequencing

Liwinski et al.
(2020)

AIH patients
(n=37)
Healthy
individuals (n=78)

AIH vs
Healthy

Verrucomicrobia;
Veillonella;
Faecalibacterium;
Akkermansia

Lentisphaerae;
Synergistetes;
Pseudobutyrivibrio;
Lachnospira;
Ruminococcaceae

16S rRNA
sequencing

Lou et al.
(2020)

AIH patients
(n=15)
Healthy
individuals (n=10)

AIH vs
Healthy

Firmicutes; Bacteroides;
Proteobacteria;
Faecalibacterium; Blautia; Streptococcus;
Haemophilus; Bacteroides; Veillonella;
Eubacterium; Lachnospiraceae;
Butyricicoccus

Prevotella; Parabacteroides; Dilaster 16S rRNA
sequencing

Elsherbiny et al.
(2020)

AIH patients
(n=91)
Healthy
individuals (n=98)

AIH vs
Healthy

Veillonella;
Klebsiella;
Streptococcus; Lactobacillus

Clostridiales; RF39;
Ruminococcaceae; Rikenellaceae;
Oscillospira; Parabacteroides;
Coprococcus

16S rRNA
sequencing

Wei et al.10

TCE-treated
mice
Control mice

AIH vs
Healthy

Akkermansiaceae;Lachnospiraceae Lactobacillaceae; Rikenellaceae;
Bifidobacteriaceae

16S rRNA
sequencing

Wang et al15
July
 2022 | Volume 12
Comparison of condition A vs condition B: ↑signifies an increase in condition A relative to condition B. ↓signifies a decrease in condition A relative to condition B.
AIH, autoimmune hepatitis; HLA, human leukocyte antigen; NOD, nonobese-diabetic; WT, wild type; TCE, Trichloroethene.
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2020). Some researches established AIH mouse model that virtually
mimicked the condition of AIH patients, and analyzed the fecal
microbiome of these models. The results suggested that at the
phylum level, compared to the controls, Proteobacteria and
Bacteroidetes abundance were increased, and the increment of
Proteobacteria (facultative anaerobic bacteria) was thought to
correlate with inflammation, epithelial dysfunction, as well as the
breakdown of host-microbiota homeostasis (Litvak et al., 2017). At
the genus level, compared to healthy community, Akkermansiaceae
and Lachospiraceae abundance were increased while Lactobacillus,
Bifidobacterium and Rikenellaceae abundance were decreased
(Yuksel et al., 2015; Wang et al., 2021a). Besides the afore-
mentioned alterations of intestinal microbiota from fecal samples,
Enterococcus gallinarum was remarkably enriched in the liver of
AIH patients (Manfredo Vieira et al., 2018). The combination of
Lactobacillus, Veillonella, Clostridiales andOscillospira was regarded
as a potent biomarker to make a distinction between healthy
individuals and AIH patients with an area under curve (AUC)
value of 78% (Wei et al., 2020), and another five genera including
Veillonella, Lachnospiraceae, Roseburia, Ruminococcaceae and
Bacteroides were able to discriminate AIH patients from healthy
individuals, which were confirmed to achieve an AUC of 83.25%
(Lou et al., 2020). These results suggested that the specific alterations
of intestinal microbiota could be used as potent biomarkers to
distinguish AIH patients from healthy communities.

Some specific microbiome is also confirmed to correlate with
the severity of AIH (Lin et al., 2015), such as Veillonella, as it
exhibits the strongest relativity to AIH (Wei et al., 2020). The
abundance of Veillonella shows a positive correlation with
the level of serum aspartate aminotransferase (AST), as well as
the inflammation grades of the liver (Wei et al., 2020). A decline
of Bifidobacterium is also related to the increased disease activity
and failure to achieve remission (Liwinski et al., 2020). Moreover,
the increment of plasma lipopolysaccharide (LPS) induced by
dysbiosis in AIH is confirmed to correlate with advanced stages
of the disease (Lin et al., 2015). These biomarkers can be used as
noninvasive hallmarks to assist the diagnosis of AIH as well as
the evaluation of the disease severity, which needs rigorous
evaluation and further investigation.

Furthermore, with the increment of researches associated
with non-bacterial communities in the gut, including fungi,
viruses, and archaea, a number of literatures have reported the
alterations of fungi, viruses, and archaea in some chronic liver
diseases, including alcohol-associated liver disease (ALD) (Yang
et al., 2017; Lang et al., 2020; Hartmann et al., 2021) and non-
alcohol fatty liver disease (NAFLD) (You et al., 2021). It appears
plausible to speculate that these non-bacterial communities also
contribute to the progression of AIH despite the lack of reported
relevant literatures, which warrants the emergence of
new evidence.

In summary, intestinal microbiota in AIH patients and
animal models has changed remarkably, with a decreased
biodiversity and a conversion to aerobic or facultative
anaerobic microorganisms (Lin et al., 2015; Yuksel et al., 2015;
Elsherbiny et al., 2020; Wei et al., 2020). The specific alterations
of the intestinal microbiota are conducive to making a distinction
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
between AIH patients and healthy individuals (Lou et al., 2020;
Wei et al., 2020). Moreover, some species of intestinal
microbiota, such as Veillonella and Bifidobacterium, as well as
bacterial products like LPS, are closely related to the disease
severity (Lin et al., 2015; Liwinski et al., 2020; Wei et al., 2020),
which are likely to be adjuvant to evaluate the progression of
AIH. With a more in-depth understanding of non-bacterial
communities, it is reasonable to speculate that they putatively
take part in the progression of AIH, which warrants the
emergence of new evidence.
THE INFLUENTIAL MECHANISMS OF
ALTERED INTESTINAL MICROBIOTA
IN AIH

Metabolite Pathway
The alterations of the intestinal microbiota in AIH disease model
exert impact on the metabolism of luminal contents, including
short-chain fatty acid (SCFA) (Liwinski et al., 2020; Lou et al.,
2020), amino acid (Elsherbiny et al., 2020; Wei et al., 2020) as
well as bile acid (Kayama et al., 2020; Wei et al., 2020), which
affect the integrity and permeability of intestinal barrier and
immune homeostasis.

SCFAs consist of acetic acids, propionic acids, and butyric
acids, which belong to organic acids produced from undigested
dietary fibers fermentation by intestinal bacteria (Bergman, 1990;
Rıós-Covián et al., 2016; Martin-Gallausiaux et al., 2021). Their
quantity and relative abundance are regarded as one of the
biomarkers of health status (Rıós-Covián et al., 2016; Blaak
et al., 2020). In the AIH disease model, the decrease of
anaerobic bacteria, such as Ruminococcus (Lou et al., 2020),
leads to the decrease of SCFAs (Liwinski et al., 2020; Lou et al.,
2020), which exacerbates the inflammation response in AIH
(Lou et al. , 2020). Moreover, the administration of
Bifidobacterium animal lactic acid 420 (B420) in experimental
autoimmune hepatitis (EAH) mice increased the abundance of
Clostridium, which had a correlation with the production of
SCFAs, mitigating autoimmune hepatitis and intestinal barrier
injury (Zhang et al., 2020). Therefore, it appears plausible that
the altered intestinal microbiota in AIH causes the decrease of
SCFAs, exacerbating the disease’s progression. Putative
mechanisms are described as follows. First of all, the
production of SCFAs is accompanied by the decrease of
luminal pH, which is not conducive to the growth of intestinal
pathobiont, thus contributing to the restoration of altered
intestinal microbiota in AIH (Perman et al., 1981). Moreover,
several studies have shown that the administration of SCFAs
alleviated inflammatory responses of systematic autoimmune
diseases mediated by lymphocytes through increasing Tregs
cells and reducing Th1 cells (Mizuno et al., 2017), which
indicated that SCFAs might be able to mitigate the
inflammatory injury in AIH. Furthermore, butyric acids, as the
most significant constituent of SCFAs, can stimulate intestinal
epithelial cells (IECs) so as to induce mucin expression, resulting
July 2022 | Volume 12 | Article 947382
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in the alteration of bacterial adhesion (Jung et al., 2015) and the
improvement of the integrity of tight junction (Peng et al., 2009).
In the meanwhile, the pretreatment of butyric acid can reduce
the elevated level of proinflammatory factors induced by LPS,
including tumor necrosis factor-a (TNF-a), interleukin (IL)-1b
and IL-6, which also can stimulate anti-inflammatory factor
secretion, like IL-10 (Wang et al., 2017). Therefore, it seems
that the decrease of SCFAs is associated with intestinal barrier
destruction and immune homeostasis breakdown, thus
exacerbating the progression of AIH.

The altered arginine metabolism in AIH induced by the
intestinal microbiota could decrease the serum polyamine level
(Tabor and Tabor, 1985; Wei et al., 2020). Such a decrease is
unfavorable for the differentiation and maturation of intestinal
resident immune cells (Löser et al., 1999), thereby impacting the
intestinal immune responses in AIH patients. Besides, the
increase of branched-chain amino acids in AIH patients
(Elsherbiny et al., 2020), including Leucine, Valine as well as
Isoleucine, are conducive to upregulating innate and adaptive
immune responses and modulating intestinal barrier function
via multiple key signaling pathways (Negro et al., 2008;
Nakamura, 2014)., thus participating in the development of
the disease.

The secondary bile acid is thought to be a ligand for G-protein
coupled bile acid receptor 1(GPBAR1) expressed on natural
killer T (NKT) cell (Maruyama et al., 2002; Kawamata et al.,
2003). The decreased abundance of Clostridium in AIH brings
about the decrease of secondary bile acid (Kayama et al., 2020),
which inhibits the polarization of NKT 10 cells from NKT cells
and the secretion of anti-inflammatory cytokines IL-10 via the
inactivation of GPBAR1, thereby alleviating liver injury in Con
A-induced hepatitis (Biagioli et al., 2019).

In summary, dysbiosis in AIH disease models exerted
influence on the metabolism of intestinal microbiota, and with
it the altered concentrations of various intestinal metabolites,
including the decrease of SCFAs, polyamine, and secondary bile
acids, and the increase of branched-chain amino acids
(Elsherbiny et al., 2020; Kayama et al., 2020; Liwinski et al.,
2020; Lou et al., 2020; Wei et al., 2020). These alterations are
identified as great contributors to intestinal barrier destruction,
immune homeostasis breakdown, and inflammatory injury
aggravation, thus giving impetus to the progression of AIH.
Receptor Pathway
Intestinal microbiota and their metabolites are identified as great
contributors to the occurrence and the development of AIH by
activating multiple signaling pathways through binding to
different receptors distributed in the liver and the intestine.
Principal receptors implicated in the associated signaling
pathways in the intestine consist of Toll-like receptor 4 (TLR4)
(Guo et al., 2015) and G protein-coupled receptors (GPR41/
GPR43, GPR109a) (Thangaraju et al., 2009; Kim et al., 2013;
Zhao et al., 2018) (Figure 1), while in the liver, NLRs (Luan et al.,
2018), TLRs (TLR4, TLR9) (Zhang et al., 2018; Liu et al., 2021a),
Ah R (Manfredo Vieira et al., 2018) and GPBAR1 (Biagioli et al.,
2019) take part in the progression of AIH (Figure 2).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
In the Intestine
TLR4 is able to sense various exogenous and endogenous ligands,
including LPS, hyaluronic acid, fatty acid and so on (Pradere
et al., 2010). Recent studies have indicated that TLR4 plays a
significant role in liver diseases in both humans and animals
(Seki and Brenner, 2008; Pradere et al., 2010; Yang and Seki,
2012). The altered intestinal microbiota in AIH leads to the
increase of LPS, which activates TLR4 expressed on IECs. The
activated TLR4 results in the phosphorylation and activation of
adaptor protein focal adhesion kinase (FAK) in IECs, which then
modulates the activation of myeloid differentiation factor 88
(MyD88) and IL-1R–associated kinase 4 (IRAK4), ultimately
leading to intestinal barrier destruction and increased intestinal
permeability (Guo et al., 2015). With a compromised intestinal
barrier, gut-derived bacteria and metabolites are transferred
from the intestine to mesenteric lymph nodes, systematic
circulation, and the extraintestinal organs (Lin et al., 2015).
FIGURE 1 | The receptor pathways in the intestine. High dose LPS induced
by the increased abundance of Veillonella in AIH activates TLR4 expressed on
IECs, then leads to the phosphorylation and activation of FAK, which
regulates the activation of MyD88 and IRAK4, ultimately disrupting the
intestinal TJ barrier. GPR41/43 on IECs activates ERK1/2 and p38MPAK
signaling pathways by SCFAs, contributing to cytokines and chemokines
secretion, which mediate protective immunity. Moreover, the activation of
GPR43 by butyrate induces AMPs production by activating mTOR and
STAT3. Furthermore, GPR109a promotes the expression of IL-18, which
confers protection against intestinal inflammation. Herein, the reduction of
Ruminococcus, Clostridium and Bifidobacterium in AIH, which results in the
decrease of SCFAs, inhibits the afore-mentioned signaling pathways activated
by SCFAs, thus contributing to intestinal barrier disruption. AIH, autoimmune
hepatitis; IECs, intestinal epithelial cells; LPS, lipopolysaccharide; TLR4, Toll-
like receptor 4; FAK, focal adhesion kinase; MyD88, myeloid differentiation
factor 88; IRAK4, IL-1R–associated kinase 4; NF-kB, nuclear factor kappa B;
TJ, tight junction; SCFAs, short-chain fatty acids; GPR41/43/109a, G-protein-
coupled receptors 41/43/109a; ERK1/2, extracellular signal-related kinase 1/
2; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of
rapamycin; STAT3, signal transducers and activator of transcription 3; AMPs,
antimicrobial peptides; IL-18, interleukin 18.
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When the gut-derived bacteria and their metabolites are
translocated to the liver, they initiate a host of inflammation
and immune responses, participating in the occurrence and
progression of AIH (Luan et al., 2018; Manfredo Vieira et al.,
2018; Zhang et al., 2018; Biagioli et al., 2019; Liu et al., 2021a).

GPRs are identified as the most diverse and largest membrane
protein families, suggesting a conserved mechanism for
extracellular signal perception in eukaryotic organisms (Pierce
et al., 2002). SCFAs act as ligands for GPRs distributed on IECs
to maintain intestinal barrier as well as immune homeostasis via
the activation of a variety of signaling pathways in healthy
conditions, including GPR41, GPR43 and GPR109a
(Thangaraju et al., 2009; Kim et al., 2013; Zhao et al., 2018).
To be more specific, the SCFA-dependent activation of GPR41/
GPR43 distributed on IECs promotes cytokines and chemokines
production by activating the p38 mitogen-activated protein
kinase (MAPK) signaling pathway and the extracellular signal-
related kinase (ERK)1/2 signaling pathway, which mediated
protective immunity in mice (Kim et al., 2013). Moreover, by
activating the signal transducers and activator of transcription 3
(STAT3), and mammalian target of rapamycin (mTOR) in a
GPR43-dependent way, butyrate upregulates antimicrobial
peptides (AMPs) secretion in IECs and regulates the
interaction of intestinal bacteria (Zhao et al., 2018). Butyrate is
also regarded as a critical mediator in anti-inflammatory
responses, which inhibits nuclear factor kappa B (NF-kB)
activation induced by LPS, and induces IL-18 secretion in IECs
via the activation of GPR109a, thus protecting the intestine
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
against inflammation (Thangaraju et al., 2009; Dupaul-
Chicoine et al., 2010). Herein, the decrease of SCFAs caused by
dysbiosis in AIH exacerbates the disruption of intestinal barrier
and inflammation responses in the intestine, contributing to the
translocation of gut-derived bacteria and their metabolites from
the intestine to the liver.

In summary, the increment of LPS, induced by dysbiosis in
AIH, activates the TLR4/FAK/MyD88 signaling pathway in
IECs, leads to intestinal barrier destruction, and increases
intestinal permeability (Guo et al., 2015). Similarly, the
reduction of SCFAs in AIH exacerbates the intestinal barrier
disruption and inflammatory injury via the inactivation of
GPR41/43 and GPR109a expressed on IECs (Thangaraju et al.,
2009; Kim et al., 2013; Zhao et al., 2018). The compromised
intestinal barrier results in the translocation of gut-derived
bacteria and intestinal metabolites from the intestine to the
liver, where the translocated material activate multiple
inflammation and immune responses, thus taking part in the
initiation and progression of AIH (Luan et al., 2018; Manfredo
Vieira et al., 2018; Zhang et al., 2018; Biagioli et al., 2019; Liu
et al., 2021a).

In the Liver
Pattern recognition receptors (PRRs) in the liver can sense
translocated pathogen associated molecular patterns (PAMPs),
including NOD-like receptors (NLRs) and TLRs. NLRs have the
capacity to sense various ligands within the cytoplasm. In
general, NLRs can upregulate inflammatory cytokines secretion
FIGURE 2 | The receptor pathways in the liver. The activation of NLRs by PAMPs activates NLRP3 inflammasome, thus promoting caspase-1 cleavage as well as
IL-1b secretion. TLR4 expressed on HSCs, Kupffer cells and hepatocytes enhances inflammatory chemokines and cytokines secretion by activating IRF3, MAPK and
NF-kB. Moreover, LPS also stimulates TLR4 on macrophages to initiate RIP3 signaling pathway, thus mediating macrophage/monocyte activation, and promoting
the secretion of IL-6. Furthermore, the activation of TLR9 in immune cells by bacterial DNA activates NF-kB/MAPK signaling axis, and with it the secretion of IL-12
and TNF-a. Ah R ligand, derived from translocated Enterococcus gallinarum, activates AhR-CYP1A1 signaling pathway, thus inducing the production of Th17 cells
and TFH cells. The decrease of secondary bile acids attenuates GPBAR1-IL10 axis, and with it, the decrease of NKT10 cells and IL10. PAMPs, pathogen associated
molecular patterns; NLRs, NOD-like receptors; NLRP3, NOD-like receptor protein 3; IL-1b, interleukin-1b; LPS, lipopolysaccharide; TLR4/9, Toll-like receptor 4/9;
MyD88, myeloid differentiation factor 88; IRAK4, IL-1R–associated kinase 4; NF-kB, nuclear factor kappa B; MAPK, mitogen-activated protein kinase; TRAM, TRIF-
related adapter molecule; TRIF, TIR domain-containing adaptor inducing IFN-b; RIP3, receptor-interacting protein kinase 3; TNF-a, tumor necrosis factor-a; Ah R,
aryl hydrocarbon receptor; CYP1A1, cytochrome P450 family 1A1; GPBAR1, G-protein coupled bile acid receptor 1; NKT cells, natural killer T cells; TFH, follicular
helper T; HSC, hepatic stellate cell.
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by activating MAPK, inflammasome or NF-kB by the
recognition of PAMPs (Kumar et al., 2011). In an AIH mouse
model induced by Con A, NOD-like receptor protein 3 (NLRP3)
inflammasome activated by NLRs is identified as a critical
mediator in the progression of Con A induced-hepatitis (Luan
et al., 2018). To be more specific, the activated NLRP3 in
macrophages contributes to the cleavage of caspase-1and the
secretion of IL-1b, which then induces Th17 cells differentiation
and recruits inflammatory cells. Therefore, the activated NLRP3
participates in various immune disease progression (Lasigliè
et al., 2011; Pathak et al., 2011). Moreover, the secretion of IL-
1b remarkably increased in AIH patients and was related to the
aggravation of hepatitis in recent clinical studies (Longhi et al.,
2012). To sum up, NLRs putatively exacerbate the progression of
AIH mainly by activating NLRP3 inflammasome and its
significant downstream molecules.

TLRs, the most extensively studied PRRs, recruit different
adaptor molecules containing Toll/interleukin-1 receptor (TIR)
domain, including TIR domain-containing adaptor inducing IFN-
b (TRIF), TRIF-related adapter molecule (TRAM), and MyD88, to
initiate different transcription factors including MAPK, IRF3/7 and
NF-kB, thus inducing the secretion of proinflammatory cytokines
(Kumar et al., 2011). In humans, ten TLR family members are
identified, whereas there are twelve identified TLR family members
that are extensively distributed in different cells in mice (Kumar
et al., 2011). Dysbiosis in AIH patients leads to increment of PAMPs
in the liver, such as LPS and bacterial DNA, which can bind to TLRs
distributed in the liver and initiate a series of signaling pathways.
Specifically, in hepatic stellate cells (HSCs), Kupffer cells, and
hepatocytes, the activation of TLR4 by LPS contributes to
proinflammatory chemokines and cytokines secretion by
activating MAPK, IRF3, and NF-KB, which results in hepatic
injury and fibrotic progression in AIH (Liu et al., 2021a).
Moreover, the activation of TLR4 on macrophages initiates
receptor-interacting protein kinase3 (RIP3) signaling pathway,
thus mediating the activation of macrophage/monocyte in the
liver, and promoting the secretion of IL-6 (Zhang et al., 2018). IL-
6 can not only stimulate B cells to drive the production of IgG
(Kishimoto, 1989), but also switch Tregs to Th17 cells in other
autoimmune diseases (Bettelli et al., 2006; Mangan et al., 2006;
Veldhoen et al., 2006). Therefore, it appears plausible to speculate
that IL-6 contributes significantly to the initiation and the
progression of AIH. In addition, the activated TLR4/MyD88
signaling pathway in immune cells induced by LPS also
contributes to the imbalance of follicular regulatory T (TFR)/
follicular helper T (TFH) cells (Levy et al., 2017). Such imbalance
ultimately results in immune homeostasis breakdown and excessive
autoantibodies production (Liang et al., 2020), thus playing a
significant role in the pathogenesis of AIH (Liang et al., 2021).
Furthermore, the activation of TLR9 by bacterial DNA initiates the
NF-kB/MAPK signaling pathway in immune cells, and with it the
secretion of IL-12 and TNF-a, which can exacerbate hepatic
inflammatory injury in AIH (Liu et al., 2021a).

The aryl hydrocarbon receptor (Ah R) belongs to one kind of
ligand-activated transcription factors and the basic region-helix-
loop-helix (bHLH) superfamily of DNA binding proteins
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Burbach et al., 1992), which is extensively distributed at
barrier sites, including the skin, lung, gut and so on (Metidji
et al., 2018). Substantial low-molecular-weight substances, such
as tryptophan metabolites and indoles, act as ligands for Ah R
(Denison and Nagy, 2003; Nguyen and Bradfield, 2008). Upon
the recognition of Ah R ligands, Ah R is translocated from
cytoplasmic to nucleus where it induces the transcription of
target genes with the promoter. The promoter contains the
xenobiot ic-response element (XRE) sequence after
dimerization with Ah R nuclear translocator (ARNT),
including Ah R-cytochrome P450 family 1A1 (CYP1A1)
(Sogawa and Fujii-Kuriyama, 1997). Enterococcus gallinarum,
which is translocated to the liver from the intestine induced by
disrupted intestinal barrier in AIH, encodes shikimic acid
pathway, produces Ah R ligand, and activates AhR-CYP1A1
signaling pathway, ultimately promoting the transcription of
CYP1A1 (Manfredo Vieira et al., 2018). The activated AhR-
CYP1A1 pathway induces the production of TFH cells and Th17
cells (Veldhoen et al., 2008; Moura-Alves et al., 2014; Schiering
et al., 2017), which is conducive to the secretion of systematic
autoantibodies, thus putatively participating in the initiation of
AIH (Manfredo Vieira et al., 2018).

GPBAR1 belongs to one kind of GPRs, which is extensively
distributed in hepatic nonparenchymal cells, including
cholangiocytes, activated HSCs, sinusoidal endothelial cells, as
well as Kupffer cells (Keitel and Häussinger, 2012; Sawitza et al.,
2015). Secondary bile acids are identified as ligands for GPBAR1
(Maruyama et al., 2002; Kawamata et al., 2003). In a recent study,
GPBAR1-IL10 axis was reported to serve as a great contributor to
the progression of Con A-induced hepatitis in a mouse model
(Biagioli et al., 2019). To be more specific, GPBAR1 modulates the
differentiation of type I and type II NKT cells in hepatic immune
systems, and polarizes NKT cells to NKT 10 cells, which stimulates
the secretion of anti-inflammatory cytokines IL10, thereby
remarkably mitigating immune-mediated hepatitis induced by
Con A (Biagioli et al., 2019). Therefore, the decrease of secondary
bile acids owing to the reduced abundance of Colstridium in AIH
(Kayama et al., 2020), exacerbates hepatic inflammatory injury via
the inhibition of GPBAR1-IL10 axis.

In summary, dysbiosis in AIH results in the translocation of
intestinal bacteria together with their products from the intestine to
liver. NLRs recognize translocated PAMPs in the liver, which
enhances the secretion of proinflammatory cytokines, thus
aggravating hepatic inflammatory injury in AIH (Kumar et al.,
2011; Luan et al., 2018). TLRs, specifically TLR4 and TLR9, are
activated by LPS and bacterial DNA, respectively. The activated
TLRs contribute to the breakdown of hepatic immune homeostasis,
the excessive secretion of autoantibodies, as well as the production
of proinflammatory chemokines and cytokines, thereby
participating in the occurrence and development of AIH (Zhang
et al., 2018; Liu et al., 2021a). Moreover, translocated Enterococcus
gallinarum in the liver activates AhR-CYP1A1 signaling pathway to
promote the production of systematic autoantibodies, which is likely
to take part in the initiation of the disease (Manfredo Vieira et al.,
2018). Additionally, the decrease of secondary bile acids represses
GPBAR1-IL10 axis, thus aggravating hepatic inflammatory injury in
July 2022 | Volume 12 | Article 947382
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AIH (Biagioli et al., 2019). Herein, the afore-mentioned signaling
pathways activated by different receptors distributed in the liver
make great contributions to the onset and progression of AIH.

Immune Pathway
As a chronic immune-mediated inflammatory liver disorder,
great significance should be attached to unravel the critical role
of immune responses in AIH. Some studies have suggested that
the dysregulation between Tregs and Th17 cells (Liu et al.,
2021b), the activation of NKT cells (Diao et al., 2004; Liu
et al., 2021a), and the imbalance of TFR/TFH cells induced by
altered intestinal microbiota, presumably participated in the
initiation and the progression of AIH (Liang et al., 2021).

The alterations of intestinal microbiota in AIH patients
reduce the proportion of Tregs as well as raise the proportion
of Th17 cells through exerting influence on the metabolism of
luminal contents (Mizuno et al., 2017; Lou et al., 2020). Th17
cells promote proinflammatory cytokines secretion, including
TNF-a, IL-22 and so on, which aggravates immune attack and
inflammatory injury in the liver (de Oliveira et al., 2017). In
contrast, Tregs release TGF-b and IL10 to repress the immune
effector cells’ activation, or restrain their function by interacting
with dendritic cells (DCs), thereby regulating immune
homeostasis (Chen et al., 2019; Wang et al., 2020). Herein, the
increased Th17 cells and decreased Tregs induced by altered
intestinal microbiota in AIH disrupt immune homeostasis and
exacerbate inflammatory injury, putatively contributing to the
progression of the disease. Moreover, the evidence that the Treg/
Th17 cells ratio had an intimate association with the disease
severity (Liu et al., 2021b) further supported the linkage between
imbalanced Treg/Th17 cells and the progression of AIH.

In Con A-induced fulminant hepatitis, a condition similar to
AIH patients, NKT cells in the liver can be activated by intestinal
pathogens through two pathways. One pathway may be that
intestinal pathogens initiate the activation of intestinal DCs. The
intestinal DCs then migrate to the liver through Peyer patches
(PPs), contributing to the activation of hepatic NKT cells. The
other pathway is likely to be that a great host of translocated
intestinal antigens first move to the liver, activate liver DCs, and
subsequently activate NKT cells (Chen et al., 2014). The
activation of NKT cells further activates Kupffer cells and
recruits macrophages to secrete numerous inflammatory
cytokines, which initiates the repairing responses including
hepatocyte regeneration as well as fibrosis through activated
HSCs (Diao et al., 2004; Liu et al., 2021a). Together, they
contribute to the aggravation of hepatic inflammatory injury
and fibrotic progression in AIH.

The elevated LPS in AIH disease model inhibited TFR cells
and activated TFH cells by activating TLR4/MyD88 signaling
pathway (Levy et al., 2017). The excessively activated TFH cells
are intimately related to hypergammaglobulinemia, which
accelerates the immunopathological process of AIH (Liang
et al., 2020). TFR cell indirectly inhibits the activation of TFH
cells upon the recognition of the coreceptor CLTA4, thus
reducing the production of autoantibody (Liang et al., 2021).
Therefore, the imbalance of TFR/TFH cells led to the destruction
of immune homeostasis and the excess autoantibodies secretion,
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therefore taking part in the immunopathological process in AIH
(Liang et al., 2021). Moreover, in a recent study, the
dysregulation between TFH and TFR cells was augmented in
EAH model mice after administration with broad-spectrum
antibiotics (Liang et al., 2021), further supporting the intimate
linkage between imbalanced TFR/TFH cells and AIH
immunopathological process.

In summary, dysregulation between Tregs and Th17 cells
leads to proinflammatory cytokines secretion and immune
responses aggravation, and contributes to the progression of
AIH (Liu et al., 2021b). The activated NKT cells are conducive to
initiating repairing responses in the liver, as well as the
production of proinflammatory cytokines (Diao et al., 2004;
Chen et al., 2014; Liu et al., 2021a), which aggravate hepatic
inflammatory injury and fibrotic progression in AIH. Moreover,
the imbalance of TFR/TFH cells accelerates the pathological
process of AIH by upregulating the secretion of autoantibodies
(Liang et al., 2020; Liang et al., 2021). Therefore, the afore-
mentioned alterations of immune cells or responses induced by
dysbiosis in AIH give impetus to the progression of the disease.
NOVEL METHODS TARGETING FOR
MICROBIOTA TO ATTENUATE AIH

Currently, the primary therapeutic methods for AIH are
glucocorticoid or a combination with azathioprine, which
effectively alleviate symptoms and prolong life in the majority of
patients with AIH (Mack et al., 2020). However, some patients are
still not tolerating standard management or not achieving
remission. In addition, some detrimental effects of glucocorticoid
and azathioprine cannot be ignored, such as central obesity,
osteoporosis, myelosuppression, and liver function damage (Lee
et al., 2014; Mack et al., 2020). Given that altered intestinal
microbiota contributes greatly to the onset and progression of
AIH, restoring intestinal microbiota putatively represents a new
revenue for treating AIH. To date, probiotics (Lou et al., 2020;
Zhang et al., 2020; Liu et al., 2021b), fecal microbiota
transplantation (FMT) (Liang et al., 2021; Wang et al., 2021a),
and some pharmacological agents targeted intestinal microbiota-
associated signaling pathways (Frasca et al., 2012; Scaldaferri et al.,
2014; Telesford et al., 2015; Hsu et al., 2017) have been confirmed to
attenuate autoimmune hepatitis in AIH model mice, which
putatively constitute a promising therapy for patients with AIH.

Probiotics and its Therapeutic
Mechanisms
Probiotics
The international society of probiotics and prebiotics defines
probiotics as “living microorganisms which are conducive to the
health state of the host if administered in sufficient quantities”
(Beyaz Cos ̧kun and Sağdiçoğlu Celep, 2021). Currently, the most
frequently used species are Lactobacillus and Bifidobacterium,
and they have been evaluated as a useful therapy for the
prevention or treatment of gastrointestinal infections,
urogenital infections, periodontal diseases, as well as dental
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caries (Caglar et al., 2005; White et al., 2017; Scorletti et al., 2020).
In addition, probiotics are also conducive to treating immune-
mediated diseases by regulating systematic immune responses
(Vleggaar et al., 2008; De Filippis et al., 2021; Wang et al., 2022).

Liu et al. (2021b) have administered compound probiotics through
gavage and dexamethasone through intraperitoneal injection to the
AIH model mice for 42 days. The result suggested that the afore-
mentioned interventions ameliorated liver inflammatory responses,
and decreased the level of Th1 and Th17 cells, and serum
aminotransferase. In addition, Tregs increased just in the probiotic
group, indicating that compound probiotics have immunomodulatory
effects. Zhang et al. (2020) found that B420 could revert the altered
intestinal microbiota in the EAH model mice induced by S100 to
normal, strengthen the function of the intestinal barrier, and alleviate
inflammatory injury in the liver, thereby remarkably mitigating EAH
induced by S100. Lou et al. (2020) illustrated that Ruminococcus
decreased the frequency of Th1 and Th17 cells, inhibited the activation
of effector T cells, and induced IL10 expression, further modulating
intestinal homeostasis. These studies indicated that probiotics offered
the promise of novel therapy in AIH.

The Associated Mechanisms of Probiotics in the
Treatment of AIH
Probiotics make contributions to the treatment of AIH via multiple
mechanisms. Firstly, probiotics compete with pathogenic bacteria for
necessary nutrients and common adhesion receptors, thus affecting
their survival and colonization (Bron et al., 2017). Herein, compound
probiotic treatment is of great benefit to reduce harmful bacteria
abundance and increase beneficial bacteria abundance in the
intestine (Liu et al., 2021b). Secondly, microbiome related
molecular patterns (MAMPs) from probiotics can activate PRRs
expressed on the intestinal mucosa, thus enhancing intestinal barrier
function mainly by upregulating the synthesis of tight junction
proteins and enhancing their function (Bron et al., 2017). The
integral intestinal barrier blocks the translocation of gut-derived
pathogenic microorganisms as well as their metabolites. This
blockage can inhibit the RIP3 signaling pathway in liver
macrophages (Zhang et al., 2020), and repress TLR4/NF-kB
signaling pathway in the liver and the intestine (Liu et al., 2021b),
which conspicuously alleviates hepatitis induced by immune factors.

In addition, probiotics such as Lactobacillus can promote the
production of SCFAs (Zhang et al., 2020), which are capable of
triggering a variety of signaling pathways to modulate intestinal
barrier function as well as immune homeostasis by binding to
GPR41/43 and GPR109a (Thangaraju et al., 2009; Kim et al.,
2013; Zhao et al., 2018). Besides SCFAs, lactic acid from
probiotics also makes contributions to maintain intestinal
barrier integrity. On the one hand, lactate induces Wnt3
expression in Paneth cells and stromal cells by binding to the
lactate specific receptor GPR81, enhancing the proliferation of
epithelial stem cells, thus preventing intestinal damage. On the
other hand, lactic acid modulates immune responses by affecting
CX3CR1+ phagocytes in the lamina propria, which enter the
lumen to absorb luminal harmful bacteria by expanding
dendrites (Kayama et al., 2020). Furthermore, the activation of
NF-kB (MyD88) via TLR signaling pathway by probiotics
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triggers the expression of antimicrobial factors and intestinal
epithelial defensins in Paneth cells, thus promoting the
production of AMPs (Bron et al., 2017), and inhibiting the
survival and colonization of intestinal pathobiont. In
conclusion, probiotics can ameliorate the adverse condition of
AIH by regulating intestinal microbiota composition and
maintaining intestinal barrier and immune homeostasis.

Fecal Microbiota Transplantation
An introduction of the functional microbiota from the feces of
healthy donors into the gut tract of patients is termed FMT
(Milosevic et al., 2019), which aims at the reconstruction of new
intestinal microbiota, and to exhibit potential efficacy against
gastrointestinal and extra-gastrointestinal diseases (Beyaz
Cos ̧kun and Sağdiçoğlu Celep, 2021). Owing to the successful
C. difficile fecal transplantation, more and more patients have
registered for fecal transplantation, especially those with
gastrointestinal diseases such as metabolic syndrome or
inflammatory bowel disease (IBD) (Bron et al., 2017). Indeed,
some studies with regard to metabolic syndrome (Vrieze et al.,
2012) and ulcerative colitis (UC) (Borody et al., 2003) delineated
that FMT ameliorated insulin resistance or prolonged the length
of remission period, respectively, shedding light on the potential
of FMT to treat microbiota-related diseases. Furthermore, some
studies indicated that FMT had the capacity to effectively
ameliorate hepatitis in EAH model mice putatively by
restoring the composition of intestinal microbiota and
rectifying the imbalance of TFR/TFH cells (Liang et al., 2021).
Moreover, in a recent study, the antibiotic-treated mice exhibited
AIH phenotypes after being transplanted with fecal microbiota
from mice exposed to TCE, concomitantly with increased
systematic autoantibodies and aggravated hepatic inflammation
compared to the controls (Wang et al., 2021a). The afore-
mentioned evidence verified the underlying therapeutic
function of FMT in immune-mediated diseases.

Pharmacological Agents Targeted
Intestinal Microbiota-Associated Pathways
Gelatin Tannate
The integrity of intestinal barrier is destructed by high dose LPS
induced by the alterations of intestinal microbiota in AIH, and
the resulting increased intestinal permeability (Guo et al., 2015;
Lin et al., 2015). Restoring the compromised intestinal barrier
blocks the translocation of intestinal bacteria and their
metabolites from the gut to the liver (Lopetuso et al., 2015),
thereby attenuating hepatic injury and fibrotic progression.
Gelatin tannate constitutes a “mucus-like” shield for
compromised intestinal mucosa, promoting the intestinal
mucosal healing process and reducing intestinal leakage. The
decreased blood LPS level in groups treated with gelatin tannate
compared to controls further confirms its ability to restore shield
activity of mucus layer (Scaldaferri et al., 2014). Moreover,
gelatin tannate shows potent anti-inflammatory properties by
inhibiting inflammatory biomarkers, such as TNF-a, IL-8, and
intercellular adhesion molecule-1 (ICAM-1) in human epithelial
colorectal adenocarcinoma (Caco-2) cells (Frasca et al., 2012).
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JKB-122
TLR4, a significant cell surface receptor, takes part in the
progression of AIH through activating multiple intracellular
signaling pathways, which further bring about intestinal barrier
destruction (Guo et al., 2015), promoting the production of
proinflammatory cytokines (Liu et al., 2021a), and disrupting
immune homeostasis (Zhang et al., 2018). JKB-122, as a TLR4
antagonist, conferred protection against Con A-induced hepatitis
in mice, and exhibited anti-inflammatory properties mainly
through suppressing proinflammatory cytokines production in
both serum and liver, such as TNF-a, interferon g (IFN-g), IL5,
IL6, as well as IL17 in a dose-dependent way (Hsu et al., 2017).
Moreover, in a translational model of AIH, JKB-122 was proved
to be effective alone or with prednisolone, which requires
rigorous evaluation and further investigation (Hsu et al., 2017).

Polysaccharide A
The imbalance of Th17/Treg cells significantly contributes to
the development of AIH (Liu et al., 2021b). Polysaccharide A,
as a symbiosis factor derived from human commensal
Bacteroides fragilis , could promote the immunologic
development of mammalian hosts. It has been reported to
induce Foxp3+ Tregs production in mice, which inhibited the
activity of Th17 cells, thereby rectifying imbalanced Th17/Treg
cells (Telesford et al., 2015). Therefore, it is reasonable to
speculate polysaccharide A offers the promise of a novel
therapy for patients with AIH.

BAR 501
GPBAR1-IL10 axis has been confirmed to make contributions to
the progression of AIH (Biagioli et al., 2019). BAR 501, as a
potent agonist of GPBAR1, polarized NKT cells to NKT10 cells,
and enhanced IL-10 secretion, which almost completely reversed
inflammatory injury in the liver induced by Con A at a dose of
30-mg/kg in some preliminary experiments (Biagioli et al., 2019).
Herein, BAR 501 putatively represents a novel therapy for
patients with AIH.
CONCLUSION

AIH is a chronic immune-mediated inflammatory liver disease
with obscure etiology (Cowling et al., 1956; Manns et al., 2010).
An accumulating body of evidence highlights the importance of
“intestinal liver crosstalk” in AIH pathogenesis (Lin et al.,
2015). Many studies delineated the alterations of the
intestinal microbiome in AIH disease model (Lin et al., 2015;
Yuksel et al., 2015; Wei et al., 2020). The transformation of
intestinal microbiota from anaerobic to aerobic (Wei et al.,
2020) altered the immune responses and the metabolism of
luminal contents (Lin et al., 2015), including the imbalance of
Treg/Th17 cells and TFR/TFH cells, the activation of NKT cells,
the increase of PAMPs, and the decrease of SCFAs and
secondary bile acids, which subsequently lead to the
destruction of the intestinal barrier, breakdown of immune
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
homeostasis, augmentation of inflammatory injury and
progression of fibrosis via multiple mechanisms, including
receptor, immune and metabolites pathway. For patients not
tolerating standard management or not achieving remission,
probiotics, FMT, as well as some pharmacological agents
targeted intestinal microbiota-associated pathways seem to
represent new avenues for treatments for patients with AIH
by restoring intestinal microbiota composition and modulating
immune responses.

However, some knowledge gaps concerning AIH and
intestinal microbiota still exist. For instance, predominant
analyses of the composition and diversity of intestinal
microbiota mainly depend on fecal samples from patients
with AIH or AIH animal models, which are not able to
completely reflect the abundance and composition of mucosal
communities. Therefore, there is an urgent need to pay more
attention to investigate mucosal microbiota, which is conducive
to clarifying the alterations of intestinal microbiota in AIH. In
addition, some studies have controversial results concerning
the alterations of some specific species of intestinal microbiota,
which warrant further investigation. Furthermore, with the
complexity of microbial communities, the safety of FMT
cannot be fully evaluated. Lack of evidence from clinical
patients and a high rate of misdiagnosis and missed diagnosis
in clinical practice are also problems to be solved. Herein, large
scale patient follow-up and controlled prospective studies are
still warranted to unravel the relationship between AIH and
intestinal microbiota. More understanding regarding this
relationship could provide direct evidence for the underlying
mechanism of intestinal microbiota in AIH, offer favorable
guidance for the treatment which targets intestinal microbiota,
and supply the theoretical basis for the formulation of diagnosis
and treatment guidelines for AIH.
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