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Elizabethkingia anophelis has recently gained global attention and is emerging

as a cause of life-threatening nosocomial infections. The present study aimed

to investigate the association between antimicrobial resistance and the ability

to form biofilm among E. anophelis isolated from hospitalized patients in China.

Over 10 years, a total of 197 non-duplicate E. anophelis strains were collected.

Antibiotic susceptibility was determined by the standard agar dilution method

as a reference assay according to the Clinical and Laboratory Standards

Institute. The biofilm formation ability was assessed using a culture microtiter

plate method, which was determined using a crystal violet assay. Culture plate

results were cross-checked by scanning electron microscopy imaging analysis.

Among the 197 isolates, all were multidrug-resistant, and 20 were extensively

drug-resistant. Clinical E. anophelis showed high resistance to current

antibiotics, and 99% of the isolates were resistant to at least seven antibiotics.

The resistance rate for aztreonam, ceftazidime, imipenem, meropenem,

trimethoprim-sulfamethoxazole, cefepime, and tetracycline was high as

100%, 99%, 99%, 99%, 99%, 95%, and 90%, respectively. However, the

isolates exhibited the highest susceptibility to minocycline (100%),

doxycycline (96%), and rifampin (94%). The biofilm formation results revealed

that all strains could form biofilm. Among them, the proportions of strong,

medium, and weak biofilm-forming strains were 41%, 42%, and 17%,

respectively. Furthermore, the strains forming strong or moderate biofilm

presented a statistically significant higher resistance than the weak formers (p

< 0.05), especially for piperacillin, piperacillin-tazobactam, cefepime, amikacin,
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and ciprofloxacin. Although E. anophelis was notoriously resistant to large

antibiotics, minocycline, doxycycline, and rifampin showed potent activity

against this pathogen. The data in the present report revealed a positive

association between biofilm formation and antibiotic resistance, which will

provide a foundation for improved therapeutic strategies against E. anophelis

infections in the future.
KEYWORDS

Elizabethkingia anophelis, nosocomial infections, multidrug-resistant, biofilm
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Introduction

E. anophelis is an emerging pathogen that can pose a

significant threat to patients due to its unclear mechanism of

antibiotic resistance and high mortality rate among nosocomial

isolates (Janda and Lopez, 2017; Lin et al., 2019). E. anophelis is a

class of Gram-negative, non-fermenting bacillus that is

ubiquitously recovered from hospital environments (Kyritsi

et al., 2018; Nicholson et al., 2018; Choi et al., 2019; Lee et al.,

2021). Unexpectedly, it has been reported that the bacterium can

be isolated from contaminated corona virus disease 2019

(COVID-19) swab kits (Xu et al., 2022). Moreover, it is related

to mainly immunocompromised patients and has been clinically

identified as one of the most important opportunistic pathogens

responsible for nosocomial infections or healthcare-associated

infections (Janda and Lopez, 2017; Lin et al., 2019). Since the first

E. anophelis meningitis case was reported in 2012 (Frank et al.,

2013), an increasing number of infections have been reported

recently, including bacteremia, pneumonia, meningitis, catheter-

related bloodstream infections, skin and soft-tissue infections,

urinary tract infections, and eye infections (Lau et al., 2016; Hu

et al., 2017; Bulagonda et al., 2018; Chew et al., 2018; Nielsen

et al., 2018; Lin et al., 2018a; Auffret et al., 2021). In addition,

several life-threatening outbreaks of infections caused by E.

anophelis have successively been described in many regions

worldwide, including Singapore, the United States, Hong

Kong, Taiwan, and South Korea (Teo et al., 2013; Navon et al.,

2016; Perrin et al., 2017; Lin et al., 2018a; Choi et al., 2019). In

addition, in previous studies, it has been revealed that the

incidence of E. anophelis infection was highly underestimated

due to its frequent misidentification as Elizabethkingia

meningoseptica by conventional laboratory identification

methods (Lau et al., 2016; Lin et al., 2017; Kelly et al., 2019).

Undoubtedly, such a high underestimation and mortality rate of

E. anophelis infections cause a tremendous burden on a

country’s health system.

It has been documented that E. anophelis is notorious for its

high resistance to many antibacterial drugs, including
02
penicillins, cephalosporins, carbapenems, aminoglycosides,

tetracyclines, and b-lactamase inhibitors (Lin et al., 2018a; Lin

et al., 2018b; Wang et al., 2019; Chiu et al., 2021; Larkin et al.,

2021; Tang et al., 2021). Several investigations have revealed that

E. anophelis isolates usually express resistance to multiple

current commonly used antibiotics. In contrast, results from

other studies have indicated susceptibility to several antibacterial

agent s , such as ce r ta in b - l ac tams , ca rbapenems ,

aminoglycosides, fluoroquinolones, or sulfa antibiotics (Teo

et al., 2013; Navon et al., 2016; Han et al., 2017; Perrin et al.,

2017; Lin et al., 2018a; Choi et al., 2019; Wang et al., 2020; Chiu

et al., 2021). These inconsistent antimicrobial susceptibility

testing (AST) patterns may be attributed to an insufficient

sample size and the various origins of the strains in different

countries and regions. Limited drug susceptibility test data are

available for this bacterium, especially in mainland China.

Therefore, further thorough exploration of drug resistance in

E. anophelis from diverse sources is of utmost importance.

Biofilm is defined as the microbial population consisting of

groups of bacterial cells, which are adherent to a surface and are

comprised within a self-produced extracellular matrix, including

proteins, extracellular DNA, and polysaccharides (Harika et al.,

2020; Hashemzadeh et al., 2021). Bacterial cells within the

biofilm are highly coordinated and undergo phenotypic

switches to generate communities that are resistant to an

adverse external environment (Shenkutie et al., 2020). Such a

phenotype switch can also contribute to the emergence of

antibiotic resistance by encoding antibiotic resistance genes,

genetic mutation, restricting antibiotics, or counteracting host

immunity (Shenkutie et al., 2020). Nearly all multidrug-resistant

(MDR) Gram-negative bacteria and their virulence factors are

persistent problematic responses in hospitalized patients during

biofilm production (Husain et al., 2021). Among them, the

indwelling device is the most important in biofilm formation

and colonization (Karami et al., 2020). Biofilms protect bacteria

from the host immune system and antimicrobial agents. For

example, the formation of biofilms by P. mirabilis strengthens

the complexity of bacterial resistance, prolongs treatment time,
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and further intensifies the infection ability (Ranjbar-Omid et al.,

2015). The bacteria became very robust against all available

bacteriostatic agents, and the underlying mechanisms involved

were developed. Hence, it is important to create connections

between biofilm production and drug resistance in clinical

isolates of E. anophelis.

In recent years, the formation of biofilm by Elizabethkingia

species has been discussed in a few studies (Jacobs and Chenia,

2011; Tang et al., 2021). However, too little research data are

available, and no study has reported a correlation between

biofilm formation and antibiotic resistance in Elizabethkingia

species from humans. Therefore, the association between the

biofilm formation capability and antibiotic resistance in clinical

E. anophelis isolates is unknown. Here, we used the Clinical and

Laboratory Standards Institute (CLSI)–recommended standard

agar dilution method as a reference assay and examined the

antimicrobial susceptibility results for 197 clinical E. anophelis

isolates to fill those research gaps. The present study aimed to

study biofilm formation and different antibiotic sensitivity in E.

anophelis strains that cause nosocomial infections in China and

present any possible link between the ability to form biofilm and

MDR. To the best of our knowledge, this is the first study that

investigated biofilm formation and a correlation between

antibiotic resistance in E. anophelis isolates. Data on the

phenotypic characterization of the biofilm-forming capacity

and the correlation between antibiotic susceptibility may offer

valuable insights into the development of medication and

preventive strategies for E. anophelis nosocomial infections.
Materials and methods

Sampling and bacterial isolation

The database of the Clinical Strain Library of the First

Affiliated Hospital of Zhejiang University School of Medicine

was searched from January 2010 to April 2019 for microbial

cultures that yielded E. anophelis. The collected isolates were

kept in brain-heart infusion broth (Oxoid, UK) containing 20%

glycerol at −80°C until use. All 197 isolates used in this study

were routinely collected from patients according to their clinical

requirements. All used strains of E. anophelis species that were

previously collected from blood, sputum, abdominal fluid,

cerebrospinal fluid (CSF), bronchoalveolar fluid (BAL), urine,

other soft tissue, etc. Samples were mainly collected from

patients in the intensive care unit, hematology department,

infectious disease department, and surgical ward. Of these

patients, 76.4% (149 of 195) were men and 23.6% (46 of 195)

were women. Detailed data for two isolates were unavailable.

The mean age of the patients was 61 ± 18 years. Among them,

except for two babies, none of the patients were under 18 years of

age, and 76 patients were over 50 years of age. Isolates were

incubated at 37°C for 24 h from the −80°C stock in Mueller–
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Hinton Agar (MHA) (Oxoid, UK) without antibiotics in

aerophilic conditions. Microbial isolates derived from patients

were initially identified using conventional tests by a matrix-

assisted laser desorption ionization time-of-flight mass

spectrometry (Bruker Daltonics, USA) and were verified by

genomic average nucleotide identity analysis.
Antimicrobial susceptibility testing

Agar dilution techniques determined antimicrobial

sensitivity testing according to the procedures described in the

CLSI guidelines (2020). The antimicrobial resistance of the

isolates to 19 antibiotics (Meilunbio, China), including

piperacillin, piperacillin-tazobactam, ceftazidime, cefepime,

imipenem, meropenem, aztreonam, gentamicin, amikacin,

minocycl ine, doxycycl ine, tetracycl ine, t igecycl ine,

ciprofloxacin, levofloxacin, trimethoprim-sulfamethoxazole,

rifampin, vancomycin, and chloramphenicol, was investigated.

Susceptible, intermediate, and resistant interpretation was based

on the CLSI guidelines for “other non-Enterobacteriaceae”. The

susceptibility criteria for tigecycline were interpreted according

to “Enterobacteriaceae breakpoints” (susceptible, ≤ 2 mg/L;

intermediate, = 4 mg/L; resistant, ≥ 8 mg/L), provided by the

US Food and Drug Administration (Chiu et al., 2021).

Moreover, for rifampin and vancomycin, the susceptibility

testing results and minimum inhibitory concentration (MICs)

were interpreted according to the “Enterococcus species” of the

CLSI standards for rifampin and vancomycin. Bacteria E. coli

ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and

Staphylococcus aureus ATCC 29213 were used as quality

control strains. The standardized definition of MDR,

extensively drug-resistant (XDR), and pan-drug-resistant

(PDR) bacteria has been well studied. MDR strains were

defined as strains that acquired non-susceptibility to at least

one agent per three or more antimicrobial categories, XDR

strains were defined as non-susceptible to at least one agent in

all but two or fewer antimicrobial classes, and PDR strains were

defined as non-susceptible to all agents in all antimicrobial

categories (Magiorakos et al., 2012).
Biofilm formation and quantification assay

Biofilm-forming capacities of the isolates were evaluated in

triplicate using the crystal violet method for Elizabethkingia

species as previously described with modifications (Jacobs and

Chenia, 2011; Tang et al., 2021). Briefly, overnight grown E.

anophelis [cultured at 37°C in 2 ml of Mueller–Hinton Broth

(MHB) (Oxoid, UK)] was harvested. Then, the cultures were

diluted in MHB medium adjusted approximately to 0.5

McFarland. A 20-ml aliquot of each suspension was then

diluted 1:10 in 180 ml of MHB in a 96-well cell culture-treated
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polystyrene plate (Corning Incorporated, USA). Following 24 h

of growth at 37°C overnight, plates were washed three times with

200 ml of phosphate-buffered saline (PBS; 0.01mol/L) to remove

unattached bacteria. After air drying, adherent cells were fixed

with 200 ml of methanol for 15 min and stained with 200 ml of
1% crystal violet (Beyotime, China) for 15 min at room

temperature. The staining solution was removed, and the plate

was washed three times with 200 ml of PBS (0.01mol/L). After

removing the washing solution, 150 ml of 33% acetic acid was

added to each well to dissolve the biofilm-bound crystal violet

and incubated for 5 min on a shaking table. The optical density

(OD) of each well was measured at 595 nm using a microtiter

plate reader Epoch2 (BioTek, USA). The OD at 595 nm was

obtained as an index of adherent bacteria and biofilm formation.

The OD value of sterile medium with fixative and dye was

recorded and subtracted from the results to determine the

background OD. All strains were classified into the following

four categories: the first category comprised those not

considered biofilm producers when OD595 ≤ ODc (the mean

OD of the negative control). The other three were weak biofilm

formation, OD595 >ODc-2XODc; moderate biofilm formation,

OD595 >2XODc–4XODc; and strong biofilm formation,

OD595 >4XODc.
Scanning electron microscopy analysis

Scanning electron microscopy imaging (SEM) analysis was

performed in the State Key Laboratory of Rice Biology of

Zhejiang University, using a Scanning Electron Microscope

(TM 4000 PLUS, HITACHI, Tokyo, Japan). Bacteria were

incubated for 24 h at 37°C with 15 ml of MHB under shaking

conditions. After centrifugation, the precipitated bacteria were

immediately fixed in 2.5% fresh glutaraldehyde and fixed for 2 h.

Next, bacteria were rinsed three times with distilled water

(centrifugal discard supernatant at each step, distilled water

was added, and clots were blown with a straw). Then,

dehydration was performed with increasing concentration of

ethanol: 20 min at 50%, 20 min at 75%, 20 min at 85%, 20 min at

95%, and two times for 20 min in 100% ethanol prior to crucial

point drying. Subsequently, critical point drying, ion sputtering,

and microscope observation were carried out successively.
Statistical analysis

Statistical analyses were performed using SPSS version 23.0

software (IBM, Armonk, NY, USA). To examine the effect of

biofilm production on the susceptibility of the strains, data

normality of continuous variables was initially verified using

the Shapiro–Wilk test. The t-test and Mann–Whitney U test

were used to compare the differences between the two groups.
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The Kruskal–Wallis test was employed for multiple

comparisons. The statistical significance was set at P < 0.05.
Results

Antimicrobial susceptibility patterns

The susceptibility to 19 antimicrobials of human clinical

significance was investigated in all 197 clinical E. anophelis

isolates. According to the CLSI-recommended agar dilution

method, drug susceptibilities of the E. anophelis isolates and

MIC ranges for all 19 tested antimicrobials are presented in

Table 1 and Table S1. MDR was observed in all 197 E. anophelis

isolates (Table 1). Ten percent of pan-resistant strains (XDR)

was detected among them. All strains presented intermediate

susceptibility to six antibiotics and presented no susceptibility to

at least four antibiotics. Of the tested antibiotics, E. anophelis

isolates showed low varying degrees of MDR. However, none of

the strains of E. anophelis investigated was pan-susceptible

(susceptible to all antimicrobials tested), whereas two isolates

(1% of the isolates; one strain from sputum and one from fluid)

were resistant to only four antibiotics.

Furthermore, on the basis of the acquired antibiotic

resistance pattern, 177 (89.9%) isolates were resistant to at

least nine antibiotics, and 195 (99%) isolates were resistant to

at least seven antibiotics. All isolates were resistant to b-lactams,

including piperacillin, piperacillin-tazobactam, ceftazidime,

cefepime, meropenem, and imipenem. High resistance rates

were observed for piperacillin (98; 49.8%) in contrast to the

decreased resistance when in combination b-lactamase

inhibitors, namely, piperacillin-tazobactam (57; 28.9%). Only

one and two strains were susceptible to ceftazidime and

cefepime, respectively. Moreover, 196 (99.5%) isolates were

resistant to imipenem, and 195 (99.5%) isolates were resistant

to meropenem, which may be tricky for clinical treatment.

Elizabethkingia isolates were extremely highly resistant to

aztreonam; it was observed that none favored in vitro activity.

They also exhibited high resistance rates to trimethoprim-

sulfamethoxazole (195; 99%), tetracycline (178; 90.4%),

gentamicin (174; 88.3%), amikacin (154; 78.7%), and

chloramphenicol (113; 57.3%), respectively.

Interestingly, consistently with previous studies,

doxycycline, minocycline, and rifampin inhibited >90% of all

E. anophelis isolates. In particular, minocycline was more active

compared with doxycycline and tigecycline [susceptible rates,

197 (100%) versus 189 (95.9%) and 70 (35.5%), respectively]. In

this study, favored in vitro activity of fluoroquinolones was also

observed, and the susceptibility rate for levofloxacin was higher

than that of ciprofloxacin. In contrast, a significant difference

was noted between the susceptibility rates of E. anophelis against

levofloxacin (150; 76.1%) and ciprofloxacin (95; 48.2%),
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respectively. Taken together, these results evidently suggested

that the bacteria were dangerous and highly resistant to the

antibiotics. Although E. anophelis was resistant to a series of

antibiotics, minocycline, doxycycline, and rifampin showed

potent in vitro activity against this pathogen. Our findings

provide potential alternative treatment options for E.

anophelis infections.
Biofilm formation of multidrug-resistant
bacteria

Among the MDR behavior, each E. anophelis strain was

screened for the ability to form biofilm. A simple culture plate

assay was performed for the positive biofilm effect in tested E.

anophelis. Compared with any other method, this assay is the

most reliable and most straightforward method for identifying

biofilm formation. In previous studies, this assay was found

highly suitable for current research on the detection of biofilm

formation in Gram-negative bacteria. E. anophelis strains

collected in this study were highly susceptible to crystal violet

observation. On the basis of the results of the culture plate,

biofilm-positive E. anophelis were divided into three groups,

namely, weak, moderate, and strong biofilm formers, and results

are presented in Figure S1. In this study, our data revealed that

all clinical E. anophelis isolates 197(100%) were biofilm-positive,

with OD values >ODc at 595 nm. Moreover, 80 (40.6%) isolates
Frontiers in Cellular and Infection Microbiology 05
tested positive for strong biofilm formation, with OD >4ODc at

595 nm, and four (Ea109, Ea124, Ea131, and Ea143) had the

highest OD values, with values >1.5 (Figure S1). Of the 197

tested isolates, only 35 (17.8%) were weak biofilm formers, and

82 (41.6%) isolates were moderate biofilm formers. E. anophelis

was strongly adherently after culture at 37°C in MHB.

Although the ability of Elizabethkingia to form biofilm was

previously demonstrated, it must be pointed out that the percentage

of biofilm-forming strains of E. anophelis was observed in the

present investigation. We next compared the biofilm formation

level (OD595) among the strains from different sources (Figure S2).

There were significant differences among the other groups. Figure

S2 shows the percentage of strong, moderate, and weak biofilm

formation levels in isolates from sputum, blood, abdominal fluid,

CSF, and clinical/other strains. In contrast, sputum samples showed

the highest (p < 0.05) percentage of strong biofilm-forming strains,

whereas weak biofilms were formed mainly in bloodstream

infection strains (p < 0.05). In addition, all strains isolated from

abdominal and fluid CSF formed moderate biofilms. The different

biofilm-forming ability for different origin isolates is still unclear,

and further studies are needed to explain these findings.

Furthermore, results of the tissue culture plate were cross-

checked by the SEM analysis method. Eight E. anophelis sample

clones were selected randomly for investigation by light

microscopy, starting from the surface of the glass slide and

scanning several planes interspersed by short distances to

visualize biofilm architecture and microbial behavior
TABLE 1 Antimicrobial MICs (mg/L) and susceptible rates of 197 E. anophelis isolates determined using the agar dilution.

Antimicrobial agent Susceptibility testing assay

Agar dilution (mg/L) MIC range S no. (%) I no. (%)R no. (%)

Piperacillin 0.5–256 8–>256 49 (24.87) 50 (25.38) 98 (49.75)

Piperacillin-tazobactam 0.5–256+4 4/4–>256/4 67 (34.01) 73 (37.06) 57 (28.93)

Ceftazidime 0.25–64 4–>64 1 (0.51) 0 (0) 196 (99.49)

Cefepime 0.06–64 2–>64 2 (1.02) 7 (3.55) 188 (95.43)

Imipenem 0.03–32 0.25–>32 1 (0.51) 0 (0) 196 (99.49)

Meropenem 0.008–32 0.06–>32 2 (1.02) 0 (0) 195 (98.98)

Aztreonam 0.03–64 32–>64 0 (0) 0 (0) 197 (100)

Gentamicin 0.125–32 4–>32 7 (3.55) 16 (8.13) 174 (88.32)

Amikacin 0.25–128 4–>128 12 (6.09) 31 (15.74) 154 (78.17)

Minocycline 0.125–32 0.25–2 197 (100) 0 (0) 0 (0)

Doxycycline 0.25–32 0.5–16 189 (95.94) 7 (3.56) 1 (0.5)

Tetracycline 0.25–32 1–>32 5 (2.54) 14 (7.1) 178 (90.36)

Tigecycline 0.015–32 0.5–16 70 (35.53) 97 (49.24) 30 (15.23)

Ciprofloxacin 0.004–8 0.125–>8 95 (48.22) 49 (24.88) 53 (26.9)

Levofloxacin 0.008–16 0.125–>16 150 (76.14) 8 (4.06) 39 (19.8)

Trimethoprim-sulfamethoxazole 0.25–8+4.75–152 4/38–>8/152 2 (1.02) 0 (0) 195 (98.98)

Rifampin 0.25–32 0.25–32 185 (93.91) 3 (1.52) 9 (4.57)

Vancomycin 0.25–64 4–>64 1 (0.51) 146 (74.11) 50 (25.38)

Chloramphenicol 1–64 8–>64 11 (5.58) 73 (37.06) 113 (57.36)
fro
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throughout the depth of the individual flow chambers. Figure 1

displays the in vitro biofilm formation results by four selected

strains studied by SEM. Microcolonies merged to form a thick,

complex biofilm structure across the entire surface of the

coverslips. Each of these four strains showed thick biofilms, as

densely stacked and layered bacteria were observed. In addition,

differences in biofilm structure and cover channel surface were

observed between stronger and weaker biofilm-forming strains.

Compared with weaker biofilm-forming strains, the others

contained thicker biofilms, and their bacteria were more

densely stacked and layered (Figure 1).
Correlation between resistance and
biofilm formation capability

One noteworthy point is that strong or moderate biofilm

formers presented a statistically significantly higher (p = 0.0006)

average number of resistances (11.01 ± 0.1643) compared with
Frontiers in Cellular and Infection Microbiology 06
the weak formers (9.657 ± 0.3477) (Figure 2A). Figure 2B shows

that the average number of resistances per strain between strong

(11.10 ± 0.2247) and moderate (10.93 ± 0.2403) biofilm formers

was not statistically significant (p > 0.05). Furthermore, both

were statistically significant (p < 0.05) higher than that in weak

biofilm formation classes (Figure 2B). This is the first time that a

direct relationship has been reported between antibiotic

resistance and biofilm formation in E. anophelis. Further

studies are needed to support these findings.

The antimicrobial resistance pattern of E. anophelis isolates

among strong, moderate, and weak biofilm formers is shown in

Table 2. In general, the antimicrobial resistance rates among

strong and moderate biofilm-forming E. anophelis strains were

significantly higher than that of weak biofilm-forming isolates

(Table 2 and Figure 3). In particular, for ceftazidime, cefepime,

imipenem, and meropenem, susceptible strains were only

detected in bacteria that showed weak biofilm formation.

Similarly, the isolates resistant to doxycycline or rifampin were

merely found in strong and moderate biofilm-forming E.

anophelis. A discrepancy was observed in the correlation

between the degree of biofilm formation and antimicrobial

resistance rates in most antibiotics from different classes,

including piperacillin, piperacillin-tazobactam, ceftazidime,

cefepime, meropenem, gentamicin, amikacin, doxycycline,

tetracycline, tigecycline, ciprofloxacin, levofloxacin, rifampin,

and vancomycin. However, the correlation could not be

distinguished in case of aztreonam, minocycline, and

trimethoprim-sulfamethoxazole (Table 2 and Figure 3).

Furthermore, after analyzing 12 antibiotics by the Kruskal–

Wallis test, the difference between biofilm formation (among

strong, moderate, and weak) and the proportion of

antimicrobial-resistance was confirmed statistically significant

(p < 0.05) in case of piperacillin, piperacillin-tazobactam,

cefepime, amikacin, and ciprofloxacin, respectively (Figure 4).
Discussion

E. anophelis is an emerging pathogen that will cause life-

threatening nosocomial infections in humans with

compromised immune systems. Recently, E. anophelis

infections in humans are increasing in many countries and

showed high mortality, which consolidated the importance of

early identification and treatment (Janda and Lopez, 2017; Lin

et al., 2019). Furthermore, many global E. anophelis outbreak

infections have been uncovered in recent years (Teo et al., 2013;

Navon et al., 2016; Perrin et al., 2017; Lin et al., 2018a; Choi et al.,

2019). Therefore, further exploration of antimicrobial resistance

and virulence mechanisms in E. anophelis are of utmost

importance. In the present study, the antimicrobial

susceptibility characteristics and biofilm formation of

nosocomial E. anophelis isolates were investigated, which were

confirmed and obtained in China.
FIGURE 1

Scanning electron microscopy imaging analysis of four E.
anophelis biofilm formations. The four strains were as follows:
weak biofilm-forming strain SKL 051060 (A, B); moderate
biofilm-forming strain SKL014219 (C, D); strong biofilm-forming
strain SKL067015 (E, F); and SKL068512 (G, H). Among them, the
left part of the figure (A, C, E, G) is the imaging result at 5,000-
fold magnification (5.00k SE), bar = 10.0 µm; the right part of the
figure (B, D, F, H) is the image result of 10,000-fold
magnification (10.00k SE), bar = 5.00µm. The data show that the
cell morphology is intact and densely stacked, and layered
bacteria can be observed.
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First, we found that E. anophelis isolates exhibited high

MDR. The strains used in this study showed stabilized degrees

of MDR to the tested antibiotics. Corresponding to previous

reports, they were resistant to many commonly used

antibacterial drugs, including penicillin, cephalosporin,

carbapenem, aminoglycoside, fluoroquinolone, tetracyclines,

sulfonamide, and carbapenem (Chen et al., 2015; Han et al.,

2017; Chew et al., 2018; Lin et al., 2018a; Lin et al., 2018b; Choi
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et al., 2019). In this study, the antimicrobial resistance rates

observed were as follows: piperacillin (49.8%), piperacillin-

tazobactam (93%), ceftazidime (99.5%), imipenem (99.5%),

meropenem (99%), aztreonam (100%), gentamicin (88.3%),

amikacin (78.2%), tetracycline (90.4%), tigecycline (15.2%),

ciprofloxacin (26.9%), levofloxacin (19.8%), trimethoprim-

sulfamethoxazole (98.9%), vancomycin (25.4%), and

chloramphenicol (57.4%), respectively. As presented in
A B

FIGURE 2

A bar graph displays the relationship between biofilm formation intensity and antimicrobial resistance. (A) Strong or moderate biofilm-forming
strains presented a significantly higher average number of resistances than the weak producers. (B) The discrepancy in antimicrobial resistance
among weak, moderate, and strong biofilm-producing isolates. W, weak biofilm formation; M, moderate biofilm formation; S, strong biofilm
formation; S/W, strong or moderate biofilm formation. ** means significant at 0.01 level, *** means significant at 0.001 level.
TABLE 2 The relationship among biofilm-forming ability of E. anophelis with antibiotic resistance pattern.

Biofilm formation ability Strong (n = 80) Moderate (n = 82) Weak (n = 35)

Antibiotics R No. (%) I No. (%) S No. (%) R No. (%) I No. (%) S No. (%) R No. (%) I No. (%) S No. (%)

Piperacillin 56 (70) 17 (21.25) 7 (8.75) 36 (43.9) 18 (21.95) 28 (34.15) 6 (17.14) 15 (42.86) 14 (40)

Piperacillin-tazobactam 29 (36.25) 38 (47.5) 13 (16.25) 24 (29.27) 21(25.61) 37(45.12) 4 (11.43) 14 (40) 17(48.57)

Ceftazidime 80 (100) ─ ─ 82 (100) ─ ─ 34 (97.14) ─ 1 (2.86)

Cefepime 80 (100) ─ ─ 78 (95.12) 4 (4.88) ─ 30 (85.71) 3 (8.57) 2 (5.72)

Imipenem 80 (100) ─ ─ 82 (100) ─ ─ 34 (97.14) ─ 1(2.86)

Meropenem 80 (100) ─ ─ 82 (100) ─ ─ 33 (94.29) ─ 2 (5.71)

Aztreonam 80 (100) ─ ─ 82 (100) ─ ─ 35 (100) ─ ─

Gentamicin 74 (92.5) 5 (6.25) 1 (1.25) 70 (85.37) 8 (9.75) 4 (4.88) 30 (85.72) 3 (8.57) 2 (5.71)

Amikacin 67 (83.75) 10 (12.5) 3 (3.75) 64 (78.05) 13 (15.85) 5 (6.1) 23 (65.71) 8 (22.86) 4 (11.43)

Minocycline ─ ─ 80(100) ─ ─ 82(100) ─ ─ 35(100)

Doxycycline ─ 2 (2.5) 78 (97.5) 1 (1.22) 4 (4.88) 77 (93.9) ─ 1 (2.86) 34 (97.14)

Tetracycline 69 (86.25) 8 (10) 3 (3.75) 79 (96.34) 3 (3.66) ─ 30 (85.71) 3 (8.57) 2 (5.72)

Tigecycline 10 (12.5) 44 (55) 26 (32.5) 17 (20.73) 37 (45.12) 28 (34.15) 3 (8.58) 16 (45.71) 16 (45.71)

Ciprofloxacin 18 (22.5) 25 (31.25) 37 (46.25) 28 (34.15) 19 (23.17) 35 (42.68) 7 (20) 5 (14.29) 23 (65.71)

Levofloxacin 14 (17.5) ─ 66 (82.5) 21(25.61) 6 (7.32) 55 (67.07) 4 (11.43) 2 (5.71) 29 (82.86)

Trimethoprim-
sulfamethoxazole

80 (100) ─ ─ 80(97.56) ─ 2 (2.44) 35(100) ─ ─

Rifampin 3 (3.75) 1 (1.25) 76 (95) 6 (7.32) 1(1.22) 75 (91.46) ─ 1(2.86) 34 (97.14)

Vancomycin 31 (38.75) 48 (60) 1 (1.25) 12 (14.63) 70 (85.37) ─ 7 (20) 28 (80) ─

Chloramphenicol 37 (46.25) 37 (46.25) 6 (7.5) 53 (64.63) 27 (32.93) 2 (2.44) 23 (65.71) 9 (25.72) 3 (8.57)
fro
R, resistant; S, susceptible; I, intermediate resistant.
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previous reports, minocycline, doxycycline, rifampin, and

levofloxacin were active against E. anophelis in vitro in our

study (Wang et al., 2020; Chiu et al., 2021; Kuo et al., 2021),

which may be the first choice of empirical medication for the

clinical treatment of this bacterial infection. Interestingly, as

reported in Taiwan and by others, tigecycline, the derivative of

minocycline, showed inferior antimicrobial activity in the
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present study (Jian et al., 2019; Chang et al., 2021; Kuo

et al., 2021).

However, inconsistent AST results were reported for some

antibiotics, especially for piperacillin-tazobactam, levofloxacin,

rifampin, and vancomycin. For an Elizabethkingia infection,

successful treatment has been described using piperacillin-

tazobactam. An infant’s unusual presentation of E. anophelis
FIGURE 3

The frequency of antibacterial resistance in strong/moderate biofilm formation and weak biofilm producer E. anophelis isolates. S/W, strong or
moderate biofilm formation; W, weak biofilm formation. PIP, piperacillin; TZP, piperacillin-tazobactam; CAZ, ceftazidime; FEP, cefepime; IPM,
imipenem; MEM, meropenem; AZT, aztreonam; GEN, gentamicin; AMK, amikacin; MNO, minocycline; DOX, doxycycline; TCY, tetracycline: TGC,
tigecycline; CIP, ciprofloxacin; LVX, levofloxacin; SXT, trimethoprim-sulfamethoxazole; RFP, rifampin; VA, vancomycin; and CHL, chloramphenicol.
A B

D E

C

FIGURE 4

The correlation between antibiotic resistance and biofilm-forming capacity of clinical E. anophelis isolates to five antibiotics. (A–E) For
piperacillin (PIP), piperacillin-tazobactam (TZP), cefepime (FEP), amikacin (AMK), and ciprofloxacin (CIP). Susceptible isolates tended to form
weaker biofilms than non-susceptible isolates. Significant differences were detected between groups. The p-values obtained by Mann–Whitney
analysis were as follows: piperacillin (p < 0.0001), piperacillin-tazobactam (p = 0.0088), cefepime (p = 0.0022), amikacin (p = 0.0442), and
ciprofloxacin (p = 0.0461). * means significant at 0.05 alpha level, ** means significant at 0.01 level, *** means significant at 0.001 level.
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infection indicated the pathogen was sensitive only to

piperacillin-tazobactam (Mantoo et al., 2021). After antibiotic

treatment was changed to piperacillin-tazobactam, the patient

soon recovered and was discharged (Mantoo et al., 2021).

According to a report by Wang et al., the antimicrobial

susceptibilities of piperacillin-tazobactam were high at 86.5%

(Wang et al., 2020). Moreover, in another report, it was also

demonstrated that the combinations showed reasonable in vitro

activity with a 71.8% susceptibility rate (Chang et al., 2021). In

contrast, a significant difference was observed in our study. Only

34.01% of agent was active against E. anophelis isolates in vitro.

In line with the data in the present study, Chiu et al. revealed

that piperacillin-tazobactam was notoriously active against 84 E.

anophelis isolates in vitro. No susceptibility strain was found (Chiu

et al., 2021). The variability in fluoroquinolone susceptibility has

also been detected in the majority literature. Against levofloxacin

and ciprofloxacin, different previous reports showed a different

susceptibility of the E. anophelis pathogen. Although favored high in

vitro activity of levofloxacin was observed in our study, the

susceptibility rate of ciprofloxacin was much lower than that. In

agreement with our results, in previous studies, it was concluded

that, compared with levofloxacin, ciprofloxacin exhibited inferior

activity against E. anophelis (Burnard et al., 2020; Tang et al., 2021).

In other reports, when comparing our results, a significant

difference was observed between the susceptibility rates of E.

anophelis against ciprofloxacin (92% and 100%, respectively) (Lau

et al., 2016; Perrin et al., 2017). In contrast, both ciprofloxacin and

levofloxacin exhibited poor activity against E. anophelis isolates in

hospitals in South Korea and Taiwan (Han et al., 2017; Lin et al.,

2018a). These two AST results indicated that all the susceptibility

rates were less than 30%, which is contradictory to our and previous

findings (Han et al., 2017; Lin et al., 2018a).

It has been reported that the rifampin agent is less active against

Gram-negative bacilli due to its weaker ability to readily penetrate

the outer membrane of these pathogens (Goldstein, 2014). Chang

et al. found that rifampin is unproductive to against E. anophelis,

and the susceptibility rate was only 20.5% (Chang et al., 2021).

Nevertheless, in most other studies, it was reported that rifampin is

potent in fighting E. anophelis bacteria; even more than 95% of

strains remained sensitive (Han et al., 2017; Seong et al., 2020;

Wang et al., 2020; Chiu et al., 2021). Corresponding to these reports,

rifampin also showed high in vitro activity inhibiting E. anophelis in

our study. For rifampin, the underlying mechanism of high

effectiveness to confront E. anophelis is yet known and warrants

further investigation. Vancomycin has been suggested as a potential

therapy for Elizabethkingia infections, particular in meningitis (Han

et al., 2017; Jean et al., 2017; Lin et al., 2019; Seong et al., 2020).

Therefore, in our study, E. anophelis strains were screened against

vancomycin, but only 0.51% of susceptible isolates were detected. In

line with our results, vancomycin is ineffective in the treatment of

Elizabethkingia infection and has also been observed in previous

reports (Han et al., 2017; Wang et al., 2020; Chang et al., 2021; Chiu

et al., 2021; Kuo et al., 2021). Unfortunately, these results suggest
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therapy for E. anophelis remains controversial, and further

investigations are urgently needed to determine the optimal

antibiotics for treating this bacterium infection.

In the present study, all detected E. anophelis isolates were

capable of forming biofilms. As mentioned, 40.6%, 41.6%, and

31% of clinical isolates formed strong, moderate or weak

biofilms, respectively. These findings were comparable with the

results reported by Tang et al., who noted that biofilm formation

was high at 96.7%, as only one E. anophelis isolate tested negative

for biofilm formation (Tang et al., 2021). Moreover, it was

indicated that more than a quarter of the isolates tested

positive for strong biofilm formation, with the highest OD

values reaching 2.0 (Tang et al., 2021). In contrast, the

biofilm-forming ability of the strain that we isolated was

superior. Next, our data showed that the biofilm formation

was higher in sputum samples, whereas weak biofilms were

mainly formed in bloodstream infection E. anophelis strains.

However, there may be a limitation because no comparable

study can be obtained of E. anophelis. Thus, future investigations

among E. anophelis strains from different sources are warranted.

In previous studies, it was documented that biofilm-forming

bacteria could reduce antibiotic susceptibilities and bemore resistant

to the antibacterial agent than non–biofilm-forming strains (Yang

et al., 2019; Shenkutie et al., 2020; Hashemzadeh et al., 2021). By

comparing the results in this study, a similar outcome was found for

the E. anophelis pathogen. The strains that obtained strong or

moderate biofilm formation presented statistically significant

higher resistances compared with the weak producers (p < 0.05),

especially for piperacillin, piperacillin-tazobactam cefepime,

amikacin, and ciprofloxacin. In a previous study, it was

demonstrated that biofilm formation in MDR Staphylococcus

saprophyticus isolates was significantly higher than that of non

MDR Staphylococcus saprophyticus isolates. At the same time, no

significant relationship was detected between MDR and biofilm

formation intensity (strong, moderate, and weak) (Hashemzadeh

et al., 2021). The result was similar to ourfindings, and in the present

study, no significant relationshipwas observed betweenMDR, XDR,

and biofilm-forming intensity. Compared with previous

investigations, our results indicated that the correlation between

the antibacterial agent and biofilm strength was different among the

different antibiotics (Fauzia et al., 2020; Shadkam et al., 2021). For

gentamicin, tetracycline, vancomycin, and chloramphenicol, no

significant difference in biofilm formation between sensitive and

resistant isolates was observed. We presume that this was partially

due to the difference sample size, which may affect the statistical

analysis. For example, 174 isolates were non-susceptible to

gentamicin, and only seven were susceptible. For tetracycline, 178

isolates were non-susceptible, and only five were susceptible. It is

important to understand and clarify the biofilm formation and

antibiotic resistance mechanism of E. anophelis and identify

effective method of blocking-up biofilm for the prevention and

treatment of this species. However, previous studies in other
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bacteria have documented that biofilm-acquired drug resistance is

complicated and likely involves the expressionof virulence genes and

efflux pumps, growth and metabolic adaptations, horizontal gene

transfer, gene mutation, stress response, and others factors (Bonifait

et al., 2008; Soto, 2013; Dutkiewicz et al., 2018; Yi et al., 2020). Thus,

outcomes from our investigation should be interpretedwith caution,

because the methods utilized in this investigation cannot be used to

adequately assess biofilm-mediated MDRmechanisms.

To overcome this limitation, more thorough investigations to

study the relationship between biofilm formation and antibacterial

resistance, including faster conjugative plasmid transfer or

multiplication of specific regulatory horizontal gene transfer

genes, should be conducted in future studies to clarify these

underlying mechanisms of action. In conclusion, studies on E.

anophelis biofilms are still in its infancy. The result obtained in this

study may be an essential stepping-stone for considering biofilm

formation in drug susceptibility testing to improve the antimicrobial

therapy effect with E. anophelis infections.
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