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Abnormal bile acid metabolism
is an important feature of
gut microbiota and fecal
metabolites in patients with
slow transit constipation
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Destructions in the intestinal ecosystem are implicated with changes in slow

transit constipation (STC), which is a kind of intractable constipation

characterized by colonic motility disorder. In order to deepen the

understanding of the structure of the STC gut microbiota and the

relationship between the gut microbiota and fecal metabolites, we first used

16S rRNA amplicon sequencing to evaluate the gut microbiota in 30 STC

patients and 30 healthy subjects. The a-diversity of the STC group was

changed to a certain degree, and the b-diversity was significantly different,

which indicated that the composition of the gut microbiota of STC patients was

inconsistent with healthy subjects. Among them, Bacteroides, Parabacteroides,

Desulfovibrionaceae, and Ruminiclostridium were significantly upregulated,

while Subdoligranulum was significantly downregulated. The metabolomics

showed that different metabolites between the STC and the control group

were involved in the process of bile acids and lipid metabolism, including

taurocholate, taurochenodeoxycholate, taurine, deoxycholic acid,

cyclohexylsulfamate, cholic acid, chenodeoxycholate, arachidonic acid, and

4-pyridoxic acid. We found that the colon histomorphology of STC patients

was significantly disrupted, and TGR5 and FXR were significantly

downregulated. The differences in metabolites were related to changes in

the abundance of specific bacteria and patients’ intestinal dysfunction. Analysis

of the fecal genomics and metabolomics enabled separation of the STC from

controls based on random forest model prediction [STC vs. control (14 gut

microbiota and metabolite biomarkers)—Sensitivity: 1, Specificity: 0.877].
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This study provided a perspective for the diagnosis and intervention of STC

related with abnormal bile acid metabolism.
KEYWORDS

slow transit constipation, bile acid metabolism, 16S rRNA amplicon sequencing,
metabolomics, diagnosis and intervention
Introduction

Constipation is a common digestive system symptom with a

reported prevalence of 7.0%–20.3% among Chinese adults (Peng

et al., 2016; Long et al., 2017b). It is manifested by difficulty in

defecation and/or reduced frequency of bowel movements, and

dry and hard stools. With the accelerated pace of life, changes in

dietary structure, and the influence of social and psychological

factors, the prevalence of constipation is on the rise (Chu et al.,

2014). It is more symptomatic and common in the elderly and

women (Mugie et al., 2011; Vriesman et al., 2020). Slow transit

constipation (STC) is the major category of intractable

constipation and is characterized by colonic motility disorder

(Hanson et al., 2019). The pathogenesis of STC mainly includes

dietary structure with insufficient dietary fiber and water intake,

lack of intestinal motility, abnormal enteric nervous system,

dysfunction of colonic smooth muscle activity, and

psychological factors (Rao et al., 2016; Vriesman et al., 2020).

Treatments of functional constipation (three different subtypes:

constipation with a normal transit, STC, and rectal evacuation

disorders) include dietary interventions, educational and

behavioral therapy, pharmacological interventions, transanal

irrigation, neuromodulation, and imperative surgical

interventions (Lacy et al., 2016; Vriesman et al., 2020).

New alternative therapies including fecal microbiota

transplantation and acupuncture have been suggested to show

the potential to treat functional constipation, but more

supported studies are needed (Liu et al., 2016; Ding et al.,

2018). The quality of life in patients with STC decreases,

causing obvious economic and social burdens (Lacy et al.,

2016; Vriesman et al., 2020). Destructions in the intestinal

ecosystem are implicated with changes in STC, which suggest

the possible roles of microbial disturbances in the development

of constipation (Drossman, 2016; Parthasarathy et al., 2016;

Ceresola et al., 2018). The structure of the intestinal microbiota

is beneficial to the host metabolism, anti-inflammation,

immunoregulation, and gastrointestinal motility (Nicholson

et al., 2012; Kashyap et al., 2013; Propheter and Hooper, 2015;

Si et al., 2018). This association can be explained by the

regulation of the intestinal microbiota on the gastrointestinal

motility, the osmotic effect of fermentation products, and
02
metabolites, thus resulting in increased gas production

(Hooper et al., 2001; Husebye et al., 2001). However, the role

of gut microbes in the pathophysiology of STC is not

fully understood.

Fecal genomics and metabolomics are useful tools for the

quantification of the gut microbiome and related metabolites,

which have more possible objective diagnostic potential. Thus,

we performed 16S rRNA amplicon sequencing and ultra-high-

performance liquid chromatography quadrupole time-of-flight

mass spectrometry (UHPLC-Q-TOF-MS)-based metabolomics

on fecal samples of patients with STC and healthy subjects to

obtain evidence of distinct phenotypes of fecal microorganisms

and metabolites. The relationship between different fecal

microorganisms, metabolites, and clinical manifestations was

explored according to the correlation analysis.
Materials and methods

Study subject recruitment

A total of 30 subjects met the Rome IV criteria for STC and

30 healthy controls were recruited from the outpatient

department of Tianjin People’s Hospital from April 2020

through December 2020 (Drossman and Hasler, 2016; Rao

et al., 2016). All subjects were evaluated by a physician.

Inclusion criteria: STC patients confirmed by colonic transit

stud with colonic transit time >48 h (Diamant et al., 1999);

disease duration ≥ 3 months; age ≥ 18 years; body mass index

(BMI): 18.5–25 kg/m2. Exclusion criteria: congenital megacolon;

constipation caused by secondary intervention (e.g., drugs,

metabolic disorder, endocrine disorders, or neurological

disorders); previous abdominal surgery and perianal surgery;

history or current of gastrointestinal diseases (e.g., malignancy

and inflammatory bowel disease); infected with enteric

pathogens; used prebiotics, probiotics, or proton pump

inhibitors within the past month; pregnant or breast-feeding

women; long-term smoking and/or alcohol addiction; confirmed

to have hepatic, renal, cardiovascular, respiratory or psychiatric

disease; suffered from other disease that could affect intestinal

transit and the gut microbiota.
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The researchers obtained metadata about each participant,

including sex, age, gastrointestinal symptoms, dietary

supplements, medications, and allergy history. All participants

did not take antibiotics, probiotics, and prebiotics in the 3

months before the fecal sample collection. The quality of life

of all subjects was evaluated according to the Wexner

constipation score standard and the Gastrointestinal Quality of

Life Index (GIQLI) (Eypasch et al., 1995; Agachan et al., 1996).

All subjects or their families signed informed consents.
Fecal sample collection and preparation

Standardized instructions and kits for collecting stool were

provided to subjects, and the feces were collected and frozen in

liquid nitrogen for cryopreservation immediately. The feces of

the subjects were scored according to the Bristol stool form scale

(BSFS) (Chumpitazi et al., 2016).
DNA isolation and 16S rRNA
amplicon sequencing

Total genome DNA from fecal samples was extracted using

the CTAB/SDS method. DNA concentration and purity were

monitored on 1% agarose gels. According to the concentration,

DNA was diluted to 1 ng/ml using sterile water for further use.

The V3–V4 variable region of 16S rRNA in fecal samples was

amplified by PCR using a universal primer designed for the

conserved region. According to the characteristics of the

amplified 16S region, Illumina Miseq sequencing platform was

used to construct a small fragment library and perform paired-

end sequencing. Through the splicing and filtering of reads,

cluster of operational taxonomic units (OTU) with Greengenes

database (http://greengenes.lbl.gov/), species annotation, and

abundance analysis, the species composition of the sample was

revealed. Sequence analysis was performed by UPARSE software

package using the UPARSE-OTU and UPARSE-OUTref

algorithms. In-house Perl scripts were used to analyze a-
diversity (within samples) and b-diversity (among samples).

Sequences with ≥97% similarity were assigned to the same

OTU. A representative sequence from each OTU was

annotated taxonomic information using the RDP classifier

(Wang et al., 2007).
Analysis of species diversity, community
structure, and differential microbes

We rarified the out table and drew four curves to evaluate the

sequencing data including rarefaction curves, Shannon curves,

rank-abundance curves, and species accumulation curves. The

differences in a-diversity index between groups were analyzed
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by seven metrics: Observed Species, Shannon, Simpson, Chao 1,

ACE, Coverage, and PD whole tree. Shannon index estimates

flora diversity, and Chao1 estimates the species abundance.

Principal component analysis (PCA) was applied to reduce the

dimension of the original variables using QIIME (Bolyen et al.,

2019). QIIME calculates both weighted and unweighted UniFrac

distance, which are phylogenetic measures of b-diversity
(Caporaso et al., 2010). The unweighted UniFrac distance was

used for principal coordinate analysis (PCoA) to get principal

coordinates and visualize them from complex, multidimensional

data. At the same time, non-metric multi-dimensional scaling

(NMDS) was also used to perform rank ordering and PCoA on

the OTU data (Rivas et al., 2013). To confirm differences in the

abundances of individual taxonomy between the two groups,

STAMP software was utilized. Linear discriminant analysis effect

size (LEfSe) was used for the quantitative analysis of differential

microbes within STC and healthy subject groups (Segata et al.,

2011). This method was designed to analyze data in which the

number of species is much higher than the number of samples

and to provide biological class explanations to establish

statistical significance, biological consistency, and effect-size

estimation of predicted biomarkers. Finally, PICRUSt software

was used to predict the functional gene composition in samples,

so as to analyze the functional differences between different

samples or groups.
Gut microbiome co-occurrence
network analysis

In order to understand the correlations between different

genera or species, a co-occurrence network was constructed

based on the 16S rRNA data (Wang et al., 2018; Dan et al.,

2020). The Spearman’s correlation coefficient was used to

analyze the bacterial correlations in the STC and C groups

according to the relative abundance of each species or genus,

respectively. The significant correlations were visualized by

Cytoscape version 3.7.1 (http://www.cytoscape.org) (Shannon

et al., 2003).
UPLC-Q-TOF-MS-based metabolomics

For fecal metabolomics, the fecal samples were slowly

thawed at 4°C. An appropriate amount of samples was added

to 800 ml of pre-cooled methanol/acetonitrile/water (2:2:1, v/v)

solvent, vortexed to mix, sonicated at low temperature for

30 min, and stood at −20°C for 10 min. Subsequently, the

samples were centrifuged at 14,000 g for 20 min at 4°C. The

supernatant was dried in a vacuum centrifuge. For UPLC-Q-

TOF-MS analysis, 100 ml of acetonitrile/water (1:1, v/v) solvent
was used to dissolve the dry substances. The supernatant was

taken for analysis, after being vortexed and centrifuged at 14,000
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g for 15 min at 4°C. The samples were separated by UHPLC with

Agilent 1290 Infinity LC (Agilent Technologies, Santa Clara, CA,

USA). The 6600 Triple-TOF mass spectrometer (AB Sciex) was

used to collect the first- and second-order spectra of the samples.

The metabolite structure identification, data preprocessing,

experimental data quality evaluation, and data analysis were

performed in turn according to the peak area. Specific

chromatography–mass spectrometry analysis conditions were

carried out in accordance with the experimental procedures of

Shanghai Applied Protein Technology (Shanghai, China).

Based on the fold change (FC) analysis and t-test/non-

parametric test analysis, the difference analysis of all

metabolites detected in the negative ion mode was performed.

After normalizing to total peak intensity, the processed data

were analyzed by the R package, where it was subjected to

orthogonal partial least-squares discriminant analysis (OPLS-

DA) (Worley and Powers, 2013). The sevenfold cross-validation

and response permutation testing were used to evaluate the

robustness of the model. The variable importance in the

projection (VIP) value of each variable in the OPLS-DA model

was calculated to indicate its contribution to the classification.

Metabolites with the VIP value >1 were further applied to

Student’s t-test at univariate level to measure the significance

of each metabolite; p-value less than 0.05 was considered as

statistically significant. Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis was performed on the

screened differential metabolites with VIP (VIP value ≥ 1 and

p-value < 0.05).
Random forest model prediction of
potential diagnostic biomarkers

The receiver operating characteristic (ROC) curve and area

under the curve (AUC) index were applied to optimize and verify

the identified biomarkers (including gut microbiota and/or

metabolites) and determine whether these biomarkers have

diagnostic significance for STC (Falony et al., 2016; Liu et al.,

2020). Random forest was used to build the diagnostic prediction

models using the MetaboAnalyst 5.0 (https://www.metaboanalyst.

ca) (Pang et al., 2021). To determine the association between

Wexner constipation score, GIQLI, BSFS score, potential

diagnostic gut microbiota, and metabolites, a correlation analysis

was constructed using Spearman’s correlations.
HE staining, immunohistochemistry,
quantitative real-time polymerase chain
reaction, and Western blot of colon
tissues

Tissue samples of the control group were obtained from

normal para-cancer colon tissue (more than 3 cm from the
Frontiers in Cellular and Infection Microbiology 04
tumor) from colon cancer patients undergoing total colon

resection. The tissue samples were confirmed to be normal

colon tissue by two pathologic examiners. Colon tissues of the

STC group were derived from patients who had to undergo

surgery. All subjects or their families signed informed consents.

All sample collection was performed in the operating room of

Tianjin People’s Hospital and the samples were immediately

stored at −80°C.

Paraffin sections (5 mm thick) of colon tissues from STC

patients or healthy subjects were prepared after immersion in

4% paraformaldehyde for 4 h and 70% ethanol. The brief steps

of HE staining included dewaxing the sections, impregnating

the cytoplasm with eosin, redyeing the nucleus with

hematoxylin, and dehydrating and sealing the tablets. The

first step of immunohistochemistry was dewaxing and

hydration. Permeabilize tissue cells by incubating with 0.1%

Triton X-100 in phosphate buffered saline for 15 min on ice.

Antigens of Takeda G protein-coupled receptor (TGR5, Lot:

ab72608, Abcam, England) and nuclear farnesoid X receptor

(FXR, Lot: bs-12867R, Bioss, China) were unmasked by

microwaving sections in 10 mmol/L citrate buffer, pH 6.0 for

15 min. After blocking nonspecific proteins and endogenous

peroxidase, the primary antibodies (1:200) and fluorescein-

conjugated secondary antibody (1:100) were respectively

incubated in a dark humidity chamber. Observe the results

using a microscope in a dark room. Six to eight different fields

were randomly selected from each group, and the number of

TGR5- or FXR-positive cells was analyzed and calculated by

ImageJ software (National Institutes of Health, United States).

The lysate was used to extract the RNA from the colon tissues

of two groups [Lot: DP431, Tiangen Biochemical Technology

(Beijing) Co., Ltd.], and the RNA purity and concentration

were detected by a spectrophotometer. cDNA was synthesized

from 1 mg of total RNA using a reverse transcriptase kit [Lot:

KR106, Tiangen Biochemical Technology (Beijing) Co., Ltd.].

The relative gene expression levels of TGR5 and FXR were

calculated by the 2-△△CT method using the qRT-PCR method

with GAPDH as the internal reference. Primer sequences are

outlined in Figure 5B. The extraction of protein of the colon

tissues was performed according to the kit instructions, and the

protein concentration was determined using BCA assay. The

quantified protein was pretreated and separated by SDS-PAGE,

and transferred to polyvinylidene difluoride membranes. The

membranes were blocked with bull serum albumin for 2 h at

room temperature and incubated with rabbit antibodies against

TGR5, FXR, or GAPDH (Lot: GB12002, Servicebio, China)

(1:2,000) overnight at 4°C. The membranes were washed

and further incubated with HRP-conjugated anti-rabbit or

anti-mouse secondary antibody (1:10,000 dilution) for 1 h.

The protein bands were developed using enhanced

chemiluminescence reagent, imaged with a gel imaging

s y s t em (Tanon , Ch ina ) , and quan t ifi ed by NIH

ImageJ software.
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Data analysis

PCoA, Fisher’s exact tests, Spearman correlations, and

Wilcoxon rank-sum test were used to identify differences and the

relations within the clinical characteristics. For normally distributed

data, Student’s t-tests were performed to evaluate the differences in

taxonomic abundance, Wilcoxon rank-sum test was performed

when data were not normally distributed. p-value < 0.05 was

considered statistically significant. The Benjamini–Hochberg

method was used to correct p-value as false discovery rate (FDR)

(Green and Diggle, 2007).
Results

Clinical characteristics of STC patients
and healthy subjects

A total of 30 subjects with a clinical diagnosis of STC (age,

53.2 ± 16.323; sex, male:female, 7:23) and 30 healthy individuals

(age, 47.967 ± 13.803; sex, male:female 9:21) were recruited

(Table 1). There were no statistical difference in age, gender, and

BMI between the two groups.
Alterations of gut microbiota
composition and function in STC
patients based on the 16S rRNA data

The STC group and the healthy volunteer group displayed

43,697 and 24,730 unique OTUs, respectively. A total of 24,431

OTUs were shared by both groups (Figure 1A). The rarefaction

curves, Shannon curves, rank-abundance curves, and species

accumulation curves were generated from OTUs, with 97%

identity achieved in all samples (Figure S1). This indicated that

the testing samples were sufficient and the amount of data were

reasonable for the investigation of fecal microbiota. Taking the

genus level as an example, there was a difference in the relative

abundance of species between the STC group and the healthy

group. Bacteroides was significantly increased, while
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Agathobacter and Subdoligranulum were decreased in the

STC group (p-value < 0.05 or 0.01) (Figure 1B). The results

of 7 indexes in a-diversity analysis are shown in Table 2 and

Figures 1C, D. It is indicated that the a-diversity of gut

microbiota in STC patients was richer than healthy subjects,

but there were no significant differences except for the Simpson

index (p-value = 0.021). The community composition structure

and aggregation similarity of two groups were different based

on the PCoA and NMDS of their microbiota (Figures 1E, F).

The analysis results of LEfSe included cladograms

(phylogenetic distribution) (Figure 1G) and histogram of

LDA value distribution (LDA>2, Figure 1H). The LEfSe

analysis results based on the prediction of KEGG pathway

are shown in Figure 1I. The red and green nodes in the

branches indicate the functional items and important

microbial groups that play vital roles in the healthy or STC

group. The differential microflora in the STC group was closely

related to carbohydrate metabolism, glycan biosynthesis and

metabolism, immune system, energy metabolism, digestive

system, metabolic diseases, excretory system, nervous system,

transport and catabolism, metabolism of terpenoid and

polyketides, and lipid metabolism. There were significant

differences in membrane transport (p = 0.037), cell motility

(p = 0.047), and digestive system (p = 0.014) between

two groups.
Gut microbiota–based prediction of STC

To find and test the potential diagnostic gut microbiota

biomarkers, a random forest model was applied based on the

differential genus with relative abundance > 0 in at least 95%

samples of two groups. With reference to the results of LEfSe

analysis of different gut microbiota, we finally selected 14 different

bacterial genera or families for performing the multivariate ROC

curve based exploratory analysis under the automated important

feature identification and performance evaluation (Figure 2A).

After comprehensive consideration of the value of the AUC, five

potential diagnostic gut microbiota biomarkers (g:Bacteroides, g:

Parabacteroides, f:Desulfovibrionaceae, g:Ruminiclostridium 5,
TABLE 1 Study participant demographics and characteristics.

Characteristic Healthy Subjects STC Patients p-value

Subjects (n) 30 30 –

Age (years) 47.967 ± 13.803 53.2 ± 16.323 0.185 (t-test)

Male/Female 9/21 7/23 0.388 (Chi-square test)

Body mass index (kg/m2) 21.643 ± 1.704 22.076 ± 1.672 0.325(t-test)

Disease duration (years) – 7.325 ± 8.559 –

Bristol Stool Scale 4.233 ± 1.073 2.5 ± 1.306 <0.001(t-test)

Wexner 3.767 ± 2.223 18.333 ± 7.439 <0.001(t-test)

GIQLI 127.967 ± 17.789 107.767 ± 21.394 <0.001(t-test)
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FIGURE 1

The shift of gut microbiome in slow transit constipation (STC) and control C subjects accroding to the 16S rRNA data. (A) Venn diagram of the
observed OTUs in STC and C. (B) The relative abundance of the two groups at the genus level (Top 10). *p-value < 0.05 and ** p-value < 0.01,
t-test. (C, D) Difference analysis of a-diversity index between the STC and C groups. Boxplot of difference between groups of Shannon index (C)
with p = 0.094, t-test, and Simpson (D) with p = 0.021, Wilcoxon rank-sum test. (E) Principal coordinate analysis (PCoA) of the microbiota based
on the unweighted UniFrac distance metrics for the STC and C groups. ANOSIM, R = 0.134, p = 0.001. (F) The differences between the STC and
C groups were observed based on Non-Metric Multi-Dimensional Scaling (NMDS). (G, H) Cladograms generated by LEfSe indicating differences
in the bacterial taxa between the STC and C groups. Red bars indicate taxa with enrichment in the C group, and green bars indicate taxa with
enrichment in the STC group. (I) The LEfSe analysis of KEGG pathway (Welch’s t-test test).
TABLE 2 a-diversity indices comparing STC patients to healthy subjects.

a-diversity index Healthy Subjects STC Patients p-value

Shannon 6.351 ± 1.466 6.988 ± 1.425 0.094

Simpson 0.907 ± 0.082 0.942 ± 0.072 0.021

Ace 7,978.602 ± 3,979.623 9,247.546 ± 5,687.232 0.622

Goods coverage 0.974 ± 0.015 0.971 ± 0.0180 0.719

Chao1 7,766.749 ± 3,659.184 8,970.217 ± 5,284.232 0.602

Observed species 3,691.433 ± 1,705.291 4,347.967 ± 2,474.777 0.432

PD whole tree 99.107 ± 26.547 107.228 ± 36.495 0.676
Frontiers in Cellular and Infection Microbiology
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and g:Subdoligranulum) were screened out and were attempted to

be constructed as a diagnostic model with AUC = 0.785

(Figure 2B). The relative abundances of these five bacterial

genera in each group are shown in Figure 2C. In addition to g:

Subdoligranulum, the other four diagnostic gut microbiota

biomarkers were significantly upregulated in the STC group.

The human intestine tract has a complex microbial

ecosystem, and the influence of individual groups in different

microbial communities on the intestine tract is uneven (Yilmaz

et al., 2019). In order to describe the potential relationship

between the flora in the gut microbial community, we further

constructed a co-occurrence network of five potential diagnostic

gut microbiota biomarkers in the control and STC groups based

on the significant Spearman correlations (Figure 2D). A different

co-occurrence network was displayed between the five potential

diagnostic markers. The variation trend relationship between
Frontiers in Cellular and Infection Microbiology 07
them was visualized. There were 10 edges in total, whose density

and colors represented the closeness of the relationship. The size

o f nodes represented i t s impor tance in the five

bacterial communities.
Metabolomics analysis revealed aberrant
metabolic patterns in STC patients

Based on univariate analysis, differential analysis of all

metabolites detected in negative ion mode was performed. The

different metabolites with FC > 1.5 or FC < 0.67 and p-value <

0.05 were visually displayed in the form of a volcano plot

(Figure 3A). There were more downregulated differential

metabolites in the STC group than in the control group. The

score plot of the OPLS-DA score showed that there was a large
B CA

D

FIGURE 2

Random forest model prediction of potential diagnostic biomarkers of gut microbiota between STC patients and healthy subjects. (A)
Classification performance of a random forest model using 16S rRNA abundance of 14 different bacterial genera or species. The cross-
validation prediction performance of models with increasing number of predictors in order, and sorted by importance. (B) ROC curve
displaying the classification for STC and C employing five potential diagnostic gut microbiota biomarkers (AUC = 0.785). (C) The abundance
of 5 potential diagnostic gut microbiota biomarkers in each sample including g:Bacteroides, g:Parabacteroides, f:Desulfovibrionaceae, g:
Ruminiclostridium 5, and g:Subdoligranulum. (D) Co-occurrence network of five potential diagnostic gut microbiota biomarkers in both the
STC group and the control group based on the Spearman correlation algorithms. Each node presents a bacterial genus or species. The node
size indicates the relative importance of each genus or species, and the density of the edges represents the Spearman coefficient. Red links
stand for positive interactions between nodes, and green links stand for negative interactions.
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variation between the two groups (Figure 3B), and this

evaluation model was stable with Q2 = 0.311 (Figure 3C). VIP

obtained from the OPLS-DA model could be used to measure

the influent intensity and explanatory ability of the expression

pattern of each metabolite on the classification and
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discrimination of each group of samples. Generally,

metabolites with VIP value ≥ 1 and p-value < 0.05 were

considered as differential metabolites to have a significant

contribution to model interpretation. The information of the

21 differential metabolites selected is displayed in Table 3.
B C

D E

F G H

A

FIGURE 3

The fecal metabolites of STC patients and healthy subjects are significantly different. (A) The different metabolites were visualized in the form of
volcano plot. The abscissa is the logarithm value of log2 of the fold change, and the ordinate is the logarithm value of −log10 of significance p-value
(STC vs. C). Metabolites of difference with FC > 1.5, p-value < 0.05 are represented by rose red, while those with FC < 0.67 and p-value < 0.05 are
shown in blue. Metabolites that are not significantly different are shown in black. (B) The score plot of orthogonal partial least-squares discriminant
analysis (OPLS-DA), where t[1] represents principal component 1, t[2] represents principal component 2, and the ellipse represents the 95% confidence
interval. The distribution of points reflects the degree of difference between groups and within group. The model evaluation parameter Q2 obtained
by sevenfold cross-validation is 0.311. (C) Permutation test of OPLS-DA. The x-coordinate represents the degree of permutation, and the y-coordinate
represents the values of R2 and Q2. The green dot represents R2, the blue dot denotes Q2, and the two dashed lines represent the regression lines of
R2 and Q2, respectively. (D) Top 20 enriched KEGG pathways of 21 screened differential metabolites (VIP value ≥ 1 and p-value < 0.05). (E)
Classification performance of a random forest model using abundance of 21 differential metabolites based on multivariate ROC curve exploratory
analysis. The cross-validation prediction performance of models with inreasing number of predictors in order, and sorted by importance. (F) The
receiver operating characteristic curve (ROC) of 12 potential diagnostic biomarker metabolites [each area under curve (AUC) ≥ 0.7]. (G) The
abundance of 9 different metabolites involved in the BA synthesis, metabolism, secretion, and lipid metabolism, which was believed to have diagnostic
efficacy. Significance compared with the control group, **P < 0.01 or *P < 0.05 vs. the control group. (H) ROC curve displaying the classification for
STC and C employing 9 diagnostic biomarker metabolites (AUC = 0.81).
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In order to clarify the functional changes related to specific

differential metabolites in the stool of STC patients, we

performed the KEGG pathway on the 21 screened metabolites

(Figure 3D). The results showed that the KEGG pathway was

mainly concentrated in secondary bile acid (BA) biosynthesis

(−log10 p-value = 6.420), primary BA biosynthesis (−log10 p-

value = 5.825), bile secretion (−log10 p-value = 4.266), cholesterol

metabolism (−log10 p-value = 3.085), linoleic acid metabolism

(−log10 p-value = 2.181), and biosynthesis of unsaturated fatty

acids (−log10 p-value = 1.381).

The gut microbiota can modulate intestinal motility through

the release of short-chain fatty acids (SCFAs) (Barbara et al.,

2005; Martin-Gallausiaux et al., 2021). SCFAs produced by gut

bacteria, especially butyrate and propionic acid, have multiple

beneficial effects on host health, including the maintenance

of mucosal integrity, the prevention of symbiotic expansion of

potentially pathogenic bacteria in the gut and the regulation of

energy metabolism through the gut–brain axis (Wang et al.,

2019; Zhuang et al., 2019). The quantitative comparison analysis

(response strength, means ± SD) of propionic acid and

isobutyric acid in the feces of healthy subjects was 1,221,545 ±

1,999,220 and 1,563,167± 969,880, while in STC patients, they

were reduced to 255,230 ± 550,046 and 1,814,435± 1,329,376
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(p-value = 0.013 and 0.406). This indicated that the levels of

SCFA changed to some extent, especially the decrease of

propionic acid during the occurrence of STC, which was

consistent with the previous results (Li et al., 2020; Tian

et al., 2021).

We also compared the differences in the content of other

secondary BAs or its conjugated BAs. In STC patients, except for

lithocholic acid, all of them were reduced to varying degrees

compared with healthy subjects, but the statistical differences

were not significant (Table 4). Combined with differential

metabolites, it was indeed found that primary and secondary

BAs were significantly reduced in the feces of STC patients.

Based on the above results and the roles of BAs in lipid

metabolism (Fiorucci et al., 2021), we selected nine different

metabolites that were deeply involved in BA synthesis,

metabol ism, secret ion, and l ip id metabol ism, and

demonstrated their abundance in the two groups (Figure 3G).
Gut metabolite-based prediction of STC

To find the potential diagnostic metabolic biomarkers, the

random-forest model was used to evaluate the accuracy of 21
TABLE 3 The information of 21 significantly differential metabolites.

Name VIP Fold
change

p-
value

m/z RT
(s)

Quantitative analysis
(Control)

Quantitative analysis
(STC)

Thymine 2.004 1.976↑ 0.023 125.03524 74.3435 484,330 ± 612,626 956,822 ± 924,101

Taurocholate 1.305 0.101 0.043 514.28179 197.259 439,651 ± 1,041,027 44,580 ± 88,504

Taurochenodeoxycholate 2.909 0.167 0.017 498.28652 145.579 1,912,584 ± 3,520,092 319,093 ± 512,153

Taurine 2.025 0.314 0.007 124.00744 291.676 1,029,081 ± 1,142,722 323,370 ± 770,728

Succinate 3.916 0.199 0.015 117.01962 391.109 3,013,974 ± 5,118,610 598,775 ± 1,387,217

Propionic acid 2.522 0.209 0.013 73.03003 391.176 1,221,545 ± 1,999,220 255,230 ± 550,046

Nervonic acid 1.253 1.878↑ 0.027 365.34001 37.606 83,699 ± 61,566 157,186 ± 166,513

Glycyl-L-leucine 1.566 0.597 0.039 187.10837 283.697 687,000 ± 554,262 410,403 ± 456,281

Deoxycholic acid 12.233 0.525 0.008 391.28427 128.334 30,298,350 ± 23,615,390 15,918,241 ± 16,317,735

Cyclohexylsulfamate 26.333 0.417 0.039 178.0543 70.444 212,951,579 ± 270,482,964 88,817,956 ± 175,614,185

Cholic acid 14.581 0.259 0.009 407.27861 218.452 30,438,945 ± 42,352,355 7,880,015 ±16,816,427

Cholesteryl sulfate 1.793 1.643↑ 0.009 931.61153 26.4205 285,135 ± 209,642 46,8399 ± 306,055

Chenodeoxycholate 5.894 0.107 0.045 783.57383 128.579 4,318,477 ± 10,292,191 461,818 ± 717,881

Arachidonic acid (peroxide free) 1.986 0.504 0.024 303.23131 38.7865 2,093,885 ± 1,879,405 1,055,170 ± 1,580,409

Adynerin 4.451 0.426 0.002 515.30189 52.427 4,542,108 ± 3,782,549 1,932,674 ± 2,039,784

9,10-DiHOME 2.347 0.436 0.002 313.23647 84.842 1,180,798 ± 1,006,075 514,772 ± 544,196

4-Pyridoxic acid 1.901 1.679↑ 0.002 182.04518 44.08 514,197 ± 249,711 863,303 ± 529,983

2-Methylbenzoic acid 2.289 1.652↑ 0.016 135.04488 129.02 635,109 ± 518,673 1,049,088 ± 747,583

1-Palmitoyl-2-hydroxy-sn-glycero-3-
phosphoethanolamine

2.270 0.558 0.014 452.27705 194.122 4,105,361 ± 3,615,908 2,289,623 ± 1,488,993

1-Methylxanthine 1.211 0.583 0.028 165.04129 109.821 741,523 ± 618,759 432,025 ± 430,157

13(S)-HODE 1.308 0.534 0.015 295.2263 47.747 1,205,164 ± 1,081,968 643,204 ± 569,528
Mass-to-charge ratio (m/z); retention time (RT); quantitative analysis: response strength, means ± SD.
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differential metabolite abundances for the classification

performance anmong STC patients and healthy subjects

(Figure 3E). The AUC and 95% confidence intervals of the

top 12 differential metabolites are shown in Figure 3F, which

were regarded as potential diagnostic biomarker metabolites.

Then, to create a biomarker model, the multivariate ROC

curve-based exploratory analysis was performed. It is

concluded that the prediction model containing nine

d i ff e r en t i a l me tabo l i t e s [ incu ld ing t au rocho l a t e ,

taurochenodeoxycholate , taurine, deoxycholic acid ,

cyclohexylsulfamate, cholic acid, chenodeoxycholate,

arachidonic acid (peroxide free), and 4-pyridoxic acid]

deeply involved in BA synthesis, metabolism, secretion, and

lipid metabolism showed a high discriminatory power to

predict STC status with AUC = 0.81 (Figure 3H).
Changes of morphology and bile acid-
related receptor expression in colon
tissues of STC patients

In healthy subjects, the epithelium of the colonic mucosa was

intact. The glands were abundant and neatly arranged, and there

was no obvious cytoplasmic expansion and inflammatory cell

infiltration in the interstitium. The epithelium of the mucosal

layer of STC patients was damaged or missing, with the number

of glands reducing, whose cytoplasm was obviously enlarged.

Compared with normal tissues, more inflammatory cells

infiltrating were seen in the interstitium (Figure 4A).TGR5 is a

cell membrane receptor located on human chromosome 2q35,

and its homology is highly conserved in humans and mammals

(>80%). TGR5 is highly expressed in immune cells, intestinal

tract, and gallbladder (Duboc et al., 2014). FXR is a member of

the nuclear receptor superfamily and a ligand-dependent

transcription factor. It is mainly expressed in liver, intestine,

kidney, and other tissues, which can regulate the metabolism and

enterohepatic circulation of BAs (Fiorucci et al., 2010). The

results of immunohistochemistry, qRT-PCR and WB

experiments showed that compared with healthy controls, the

gene and protein expression levels of TGR5 and FXR in the
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colon tissues of STC patients were significantly reduced

(Figures 4B and 5).
Correlation analysis between Wexner
constipation score, GIQLI, BSFS score,
and diagnostic gut biomarkers

Correlation analysis can help measure the closeness of

significant diagnostic gut biomarkers (microbiota and

metabolites) to clinical manifestations. The results are shown

as heatmap in Figure 6. Red indicated positive correlation, green

indicated negative correlation, and white indicated non-

significant correlation. The color depth was related to the

absolute value of the correlation coefficient. The significance

of the correlation was related to the size of the point. The smaller

the p-value was, the higher the significance was and the larger

the point was. Compared with microbiota, Wexner constipation

score, GIQLI, and BSFS score were more correlated with

diagnostic gut metabolites. Wexner constipation score was

negatively correlated with these diagnostic metabolites, while

the other two were positively correlated. There was obvious

positive correlation among metabolites. On the whole, there was

a certain negative correlation between the differential microbiota

and the differential metabolites, which provided enlightenment

for us to study the regulatory relationship between the two.

Comprehensive use of 14 diagnostic gut microbiota and

metabolite biomarkers may accurately distinguish STC and

healthy population with AUC = 0.877.
Discussion

As shown in the summary of Figure 6, compared to the

healthy subjects, the relative abundance of Bacteroides,

Parabacteroides, Desulfovibrionaceae, and Ruminiclostridium

5 was increased while Subdoligranulum was decreased

significantly in feces of STC patients. STC patients showed

increased a-diversity.The b-diversity of the two groups was

remarkably different, which displayed alternation of gut
TABLE 4 The information of other secondary BAs or its conjugated Bas.

Name VIP Fold change p-value m/z RT (s) Quantitative analysis(Control) Quantitative analysis (STC)

Glycolithocholic acid 0.196 0.752 0.380 432.30832 166.15 31,903 ± 38,586 23,986 ± 30,246

Lithocholic acid 13.188 1.106↑ 0.713 375.28882 72.862 37,217,919 ± 40,433,719 41,149,879 ± 41,811,647

Taurolithocholic acid 0.185 0.727 0.334 482.29091 78.303 166,054 ± 203,462 120,664 ± 154,239

Glycochenodeoxycholate 0.405 0.319 0.017 472.30622 204.659 55,234 ± 83,234 17,642 ± 9,699

Glycodeoxycholic acid 1.079 0.119 0.139 450.31875 205.917 814,328 ± 2,616,266 96,808 ± 183,895

Tauroursodeoxycholic acid 0.338 0.665 0.193 482.29112 142.162 72,381 ± 92,688 48,152 ± 39,440

Taurochenodeoxycholate 0.519 0.427 0.053 500.30143 143.273 124,983 ± 194,069 53,315 ± 42,972
Mass-to-charge ratio (m/z); retention time (RT); quantitative analysis: response strength, means ± SD.
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microbiota composition. Furthermore, STC patients displayed a

decreased level in metabolites that were associated with BA

synthesis, metabolism, secretion, and lipid metabolism.

Experimental studies on human colon histology also

confirmed this. The random forest prediction model was used

to distinguish STC patients from healthy people by using few

specific significant diagnostic gut microbiota and metabolites,

which had a medium degree of reliability. It provided the

possibility of generating a supplementary method for the risk

assessment of the intestinal health monitoring model.

STC is a chronic disabling disease characterized by delayed

colonic transit without outlet obstruction. It is refractory to

drugs and finally treated with colectomy as the disease

progresses (Knowles et al., 2017). Gastrointestinal motility is

the key to the normal function of the human gastrointestinal

tract. Over the years, many studies have been conducted on the

mechanism of STC (Mazzone et al., 2020). Although the

pathogenesis of STC has been partially elucidated, it is not

completely clear. STC has complex pathogenesis, and most

studies focus on enteric nerve and muscle diseases,
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abnormalities of neurotransmitters, interstitial cells of Cajal

and enteric glial cell as well as chloride channel dysfunction.

In recent years, the correlation between organism flora and

diseases has gradually become an important means of disease

mechanism research and a new perspective of disease treatment.

Under the physiological conditions, the types and proportions of

gut microbiota maintain a dynamic balance, which interact with

the host to exert essential functions such as immunity, nutrition,

immunity, and metabolism (Fiers et al., 2020; Schwabe and

Greten, 2020). Studies have found significant differences in the

composition of intestinal mucosa and fecal flora between STC

patients and healthy controls (Ding et al., 2018; Zhang et al.,

2018; Tian et al., 2021). Compared with normal subjects, the

structure, abundance, and co-occurrence of gut microbiota were

significantly altered in STC patients in our study, which was

consistent with the characteristics of microbiota in children with

chronic functional constipation (de Meij et al., 2016). The

opportunistic pathogen Parabacteroides can induce depressive-

like behavior in a mouse model of Crohn’s disease, whose

relative level can be reduced by dietary synbiotic to ameliorate
B

A

FIGURE 4

The morphology and BA-related receptor expression in colon tissues of STC patients and healthy subjects. (A) HE staining of colon tissues. Red
arrows indicated inflammatory cell infiltration, and black arrows indicated mucosa layer structure of colon tissues. (B) Immunohistochemical
staining results of TGR5 and FXR. The number of positive cells was quantitatively analyzed in six random selected fields of the same size using
NIH ImageJ software. Significance compared with the control group, **p < 0.01 or *p < 0.05 vs. the control group.
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constipation (Gomez-Nguyen et al., 2021; Yang et al., 2021). As

an important endotoxin producer in patients with constipation,

depressed Desulfovibrionaceae bacteria was benificial to

promoting intestinal hormone secretion and maintenance of

intestinal barrier integrity (Zhuang et al., 2019). It is worth

noting that studies have shown that Subdoligranulum is

negatively correlated with clinical symptoms and inflammation

of inflammatory bowel disease, and may be a potential probiotic

for its treatment (Kim et al., 2021; Xia et al., 2021).

Metabolic pathways encoded by the human gut microbiota

continuously communicate with the host through a large number of

biologically active metabolites (Postler and Ghosh, 2017). BAs have

both hydrophilicity and hydrophobicity, which can effectively

reduce the surface tension between lipid and water phases to

facilitate absorption of fat-soluble vitamins and lipids (Ridlon

et al., 2006). Primary BAs are synthesized in hepatocytes using

cholesterol as raw material under the catalysis of 17 biochemical

enzymes, and excreted into the duodenum with bile. About 95% of
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BAs pass through the apical sodium-dependent bile acid transporter

(ASBT) of intestinal cells in the terminal ileum, which compensate

for the lack of BA synthesis ability of hepatocytes. The intestinal

symbiotic bacteria convert some BAs (approximately 5%) entering

the colon into various intestinal BAs, which are vital hormones

regulating host energy balance and cholesterol metabolism through

several G-protein-coupled receptors and/or nuclear receptors

(Fiorucci and Distrutti, 2015; Wahlstrom et al., 2016). Primary

BAs include cholic acid (CA) and chenodeoxycholic acid (CDCA)

(Alrefai and Gill, 2007). In the colon, bacterial 7a-dehydroxylase
(mainly derived from Clostridium spp. Eubacteria and Clostridium

spp. XIVa) removes 7a-OH groups from CA and CDCA to form

deoxycholic acid (DCA) and lithocholic acid (LCA), respectively.

CA, CDCA, DCA, and LCA are collectively referred to as free BAs,

which are combined with glycine and taurine to produce

conjugated BAs (Alrefai and Gill, 2007; Vallim et al., 2013;

Appleby and Walters, 2014). In this study, we found that the

feces of patients with STC decreased significantly in primary and
B

C

A

FIGURE 5

The gene and protein expression levels of TGR5 and FXR in colon tissues of STC patients and healthy subjects. (A) qRT-PCR results of gene
expression of TGR5 and FXR. (B) Gene primer sequence. The relative gene expression levels were calculated by the 2-△△CT method with
GAPDH as the internal reference (n = 6). (C) Western blotting results of protein expression of TGR5 and FXR. NIH ImageJ software was used to
quantify the relative optical density of protein bands. Values are means ± SD (n = 6). The protein expression was detected in the same gel in
which GAPDH was used as the internal control. Significance compared with the control group, **p < 0.01 or *p < 0.05 vs. the control group.
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second BAs especially including cholic acid, chenodeoxycholate,

taurine, taurocholate, taurochenodeoxycholate, deoxycholic acid,

cyclohexylsulfamate, and glycochenodeoxycholate, indicating that

the metabolism of BAs in the patient’s body was abnormal. BAs can

also activate phospholipase 2 by interfering with the cell membrane,

causing the cell to release arachidonic acid, promoting the

production of reactive oxygen species, and inducing DNA

damage (Sanchez, 2018). The reduction of arachidonic acid
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(peroxide free) is consistent with previous studies. Furthermore,

the study of SCFAs as important metabolites in intestinal diseases

has received widespread attention. Our study also found a

significant reduction in propionic acid during STC, but significant

changes in other types of SCFAs were not observed.

The action of BAs in the colon is known as a “physiological

laxative”. When the reabsorption of BAs in the ileum is insufficient

and hepatoenteric circulation is broken, more BAs will be
frontiersin.org
FIGURE 6

The summary of gut microbiota composition and metabolism analysis between STC and healthy subjects. Compared to the healthy subjects,
the relative abundance of Bacteroides, Parabacteroides, Desulfovibrionaceae, and Ruminiclostridium 5 were increased while Subdoligranulum
was decreased significantly in feces of STC patients. STC patients displayed alternation of gut microbiota composition. STC patients displayed
decreased level in metabolites that were associated with BA synthesis, metabolism, secretion, and lipid metabolism. Experimental studies on
human colon histology showed decreased expression of TGR5 and FXR in STC patients. Wexner constipation score was negatively correlated
with these diagnostic metabolites, while GIQLI and BSFS scores were positively correlated. There was obvious positive correlation among
metabolites. There was a certain negative correlation between the differential microbiota and the differential metabolites. Comprehensive use of
14 diagnostic gut microbiota and metabolite biomarkers may accurately distinguish STC and healthy population with AUC = 0.877.
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transported to the colon (Jiang et al., 2015). BAs can activate

intracellular adenylate cyclase, increase the permeability of the

intestinal mucosa, promote intestinal electrolyte and water

secretion, strengthen colonic transmission, and stimulate

defecation (Chedid et al., 2018). Clinical studies have indicated

that an increase in the total amount of fecal BAs in patients is

significantly associated with accelerated colonic transit (Bajor et al.,

2015; Dior et al., 2016). Animal studies have shown that BAs

directly induce accelerated colonic motility (Traub et al., 2008; Kim

et al., 2017). Therefore, supplementation of the proper amount of

specific BA analogs or the use of drugs that inhibit the reabsorption

of ileal BAs is beneficial to improve the clinical symptoms of

patients with constipation, and has become one of the new

treatment options for the treatment of STC (Jiang et al., 2015).

Elobixibat is a highly selective ASBT inhibitor whose mechanism of

action is to reduce the ileum reabsorption of BAs and increase the

concentration of BAs entering the colon. Elobixibat resolved

constipation in the short term (10 mg/day for 2 weeks) and was

well tolerated with short-term and long-term (5 mg/day or 15 mg/

day, or maintain the 10mg/day dose for 1 year) treatments resulting

from a randomized, double-blind, placebo-controlled, phase 3 trial

and an open-label, single-arm, phase 3 trial (Nakajima et al., 2018).

In a double-blind placebo randomized controlled study of oral

sodium CDCA (500 mg/day or 1,000 mg/day for 4 days) in the

treatment of 36 female patients with constipation-predominant

irritable bowel syndrome, it was found that compared with the

control group, treatment with sodium CDCA could improve the

clinical symptoms including accelerating the transit of the entire

colon, increasing the defecation of the patients, and softening the

feces to make it easier to excrete from the body (Rao et al., 2010).

Evidence supported the use of increasing the concentration of

endogenous BAs to treat chronic constipation. However, there are

no specific reports of this strategy on the therapeutic effect of STC.

The hepatic BAS synthesis rate is reversibly controlled by a

feedback mechanism of FXR mediated in the liver and ileum.

The rate of hepatic BA synthesis is reversibly controlled by an

FXR-mediated feedback mechanism in the liver and ileum

(Galman et al., 2003). The intestinal FXR activity maintained

good outflow of BAs back to the portal vein and controled the

reuptake of BAs into enterocytes (Stanimirov et al., 2015). After

knocking out the FXR gene in the intestinal tract of wild mice,

there was a significant inflammatory response in the intestinal

tract of the mice, and the mRNA expression of inflammatory

cytokines increased significantly (Vavassori et al., 2009). A large

number of animal studies have confirmed that the activation of

intestinal FXR can inhibit the transcriptional activity of NF-kB
(Modica et al., 2008; Gadaleta et al., 2011; Miyazaki et al., 2021).

The regulation of liver and intestine FXR activity reduced

inflammation and epithelial permeability by lowering the levels

of proinflammatory mediators in the gut. In addition, intestinal

FXR activation induced transcription of genes involved in

intestinal protection to prevent bacterial invasion and
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epithelial damage (Mosińska et al., 2018; Biagioli et al., 2021).

Compared to FXR, TGR5 may be activated by hydrophobic BAs

(taurine further enhances its potency) to promote permanent

signaling transmission. The activation of TGR5 in colonic

epithelial cells could suppress cholinergic-induced secretory

responses and basal secretory tension (Cozma-Petrut ̧ et al.,

2017; Long et al. , 2017a). Studies have shown that

overactivation of epithelial TGR5 by lipophilic BAs, such as

DCA and LCA, promoted colonic motility and led to diarrhea

through a 5-HT-mediated pathway. In the mice lacking TGR-5,

shortened transit time and increased constipation were reported

(Alemi et al., 2013). These results suggested that changes in

colonic TGR5 expression could alter small intestinal and colonic

transit (Mosińska et al., 2018). Moreover, BA-dependent TGR5

activation significantly inhibited the activation of NF-kB in wild-

type mice injected with lipopolysaccharide compared with

TGR5-deficient mice (Wang et al., 2011). FXR and TGR5

agonists are promising in controlling inflammation in Crohn’s

disease and ulcerative colitis (Yoneno et al., 2013; Perino and

Schoonjans, 2015; Jia et al., 2018). In our study, we found that

the expression of TGR5 and FXR in colon tissues was

significantly downregulated. On the one hand, it reflected the

result of the significant reduction of BAs in the intestine of STC

patients, in turn forming a negative feedback, which inhibits

intestinal absorption and increases the rate of liver synthesis; on

the other hand, it also explained the significant inflammatory

response and decreased motility in colon tissue of STC patients.

Host metabolism is affected not only by the microbial

modification of BAs, which leads to changes in the signal

pathways through the BA receptors, but also by the changing

composition of the microbiota (Wahlstrom et al., 2016).

Microbial deconjugation (removal of taurine or glycine

conjugates) can prevent the reuptake of BAs through ASBT.

BA deconjugation is carried out by Bacteroides with bile salt

hydrolase activity (Ridlon et al., 2006). The enterotypes of

Bacteroides are resistant to BAs, which grow in the presence

of fat and bile (Arumugam et al., 2011; Tan et al., 2019). Studies

have shown that Bacteroides coprophilus and Bacteroides

thetaiotaomicron can act on the biotransformation of primary

BAs, which are released in the intestine when dietary fat is

ingested (Staley et al., 2017; Lynch et al., 2019). In our study,

FXR in the colon tissues of STC patients was significantly

reduced and a previous study also found that FXR deficiency

enriched Desulfovibrionaceae (Sheng et al., 2017).

The pathological mechanism of STC is complicated. The

amount of clinical samples currently included was not sufficient,

and the analysis methods used also had certain limitations, which

could not fully reveal the true metabolic state of the host. Future

research should focus on targeted and precise quantitative analysis

of relevant important differential metabolites and research on the

cross-talk pathological mechanism between gut microbiota and the

metabolites of the feces, so as to better guide clinical practice.
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Conclusion

In summary, the current analysis shows that STC patients

exhibited imbalances in the intestinal flora. The a-diversity of

the gut microbiota in the STC group was increased. b-diversity
was markedly different from healthy subjects. The types of fecal

metabolites that specifically changed in STC patients were

determined. Further, the possible gut microbiota and

metabolites with diagnostic value were screened out, and the

interaction analysis was conducted. It may provide clues for a

better understanding of STC’s intestinal microenvironmental

change mechanism, and further experiments are needed to

confirm their cross-talk. BAs and lipid metabolism seem to be

an important link in the pathogenesis of STC and are, thus,

worth further studying. This study provides an in-depth

understanding of the relationship between the fecal

microbiota, metabolites, and intestinal dysfunction in STC

patients, and provides a possible future model for STC

diagnosis and interventions targeting specific microbiota

related to BA metabolism.
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