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and geographical and functional
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Akkermansia muciniphila has long been considered to be the only Akkermansia

species in the human gut and has been extensively studied. The present study

revealed the genomic architecture of Akkermansia in the human gut by

analyzing 1,126 near-complete metagenome-assembled genomes, 84

publicly available genomes, and 1 newly sequenced Akkermansia glycaniphila

strain from the human gut. We found that 1) the genomes of Akkermansiawere

clustered into four phylogroups with distinct interspecies similarity and

different genomic characteristics and 2) A. glycaniphila GP37, a strain of

Akkermansia, was isolated from the human gut, whereas previously, it had

only been found in python. Amuc III was present in the Chinese population, and

Amuc IV wasmainly distributed inWestern populations. A large number of gene

functions, pathways, and carbohydrate-active enzymes were specifically

associated with phylogroups. Our findings based on over a thousand

genomes strengthened our previous knowledge and provided new insights

into the population structure and ecology of Akkermansia in the human gut.

KEYWORDS

Akkermansia muciniphila, metagenome-assembled genome, population structure,
geographical variation, functional specificity, gut microbiota
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Introduction

Akkermansia is a well-studied genus that has been regarded as

a representative of the phylum Verrucomicrobia in the human

and animal gut (Derrien et al., 2004; Derrien et al., 2010; Cani

et al., 2022). To date, only two species of Akkermansia, A.

muciniphila and A. glycaniphila (Derrien et al., 2004;

Ouwerkerk et a l . , 2016) , have been iso la ted and

comprehensively described. Akkermansia muciniphila is widely

present in the intestinal mucosa of human (Ley et al., 2008; Presley

et al., 2010; Belzer and de Vos, 2012; Falony et al., 2016), and it can

degrade the mucin in epithelial mucosa and produce diverse

structural molecules such as short-chain fatty acids (Derrien

et al., 2004; Derrien et al., 2010; Hagi and Belzer, 2021). The

host range of the Akkermansia genus is wide, ranging from

mammals (mainly A. muciniphila) to non-mammals (e.g., A.

glycaniphila is isolated from python (Ouwerkerk et al., 2016))

that differed greatly in physiology, dietary structure, and

composition of mucinous proteins in the gut (Ley et al., 2008).

There is growing evidence showing that A. muciniphila is an

excellent candidate probiotic. Previous studies have shown a

health-promoting effect of A. muciniphila (Dao et al., 2016;

Derrien et al., 2017; Zhai et al., 2019), owing to the negative

correlation of the relative abundance of A. muciniphila in gut

microbiota with multiple metabolic disorders, such as

hyperlipidemia (Yu et al., 2021), severe obesity (Hasani et al.,

2021), and type 2 diabetes (Pascale et al., 2019; Zhang et al., 2021).

Furthermore, supplementation with A. muciniphila in mice

exerted a protective effect on colitis induced by dextran sulfate

sodium and prevented the age-related decline in the thickness of

the colonic mucus layer (Bian et al., 2019; van der Lugt et al.,

2019). In clinical trials, oral supplementation of A. muciniphila

was considered a safe and well-tolerated intervention for weight

loss, thus improving insulin sensitivity and reducing insulinemia

and plasma total cholesterol (Depommier et al., 2019).

After investigating a large number of full-length 16S sequences

in 2011, it had been shown that at least eight species of the

Akkermansia genus reside in the human digestive tract (van Passel

et al., 2011). However, only two strains, A. muciniphila ATCC

BAA-835 and A. glycaniphila Pyt (van Passel et al., 2011;

Ouwerkerk et al., 2017), were subjected to a whole-genomic

sequencing until 2017. Therefore, we still need to expand our

understanding of the distribution of Akkermansia in the

population to improve their potential applications in

biomedicine. In our previous study (Guo et al., 2017), we

sequenced and analyzed the draft genomes for 39 A.

muciniphila strains isolated from China, and the population

structure of these species was divided into three phylogroups

(Amuc I, II, and III). These phylogroups showed a high genetic

diversity in metabolic and functional features. Recently, a large

number of metagenome-assembled genomes (MAGs) of the

human gut microbiome have been published, and these data

provide an opportunity to characterize the genomes of some
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important bacteria (Pasolli et al., 2019; Almeida et al., 2021).

Pasolli et al. characterized the human microbiome from different

body parts, ages, and countries through a large number of MAGs

(Pasolli et al., 2019). Karcher et al. reported five different A.

muciniphila candidate species in the human gut using a large-scale

population genome analysis ofAkkermansia (Karcher et al., 2021).

These studies have expanded our understanding of genomic

variation and species diversity in A. muciniphila.

To our knowledge, A. glycaniphila, another member of

Akkermansia, is a strain that has never been isolated in the

human gut. Akkermansia glycaniphila also appears unable to be

assembled in metagenomic data from the human gut

microbiome. Here, we isolated an A. glycaniphila strain from

the gut of a subject and sequenced its whole genome. This does

not completely prove that A. glycaniphila is endemic in the

human gut, but it does expand our understanding of the genus

Akkermansia. In addition, we also comprehensively analyzed the

geographical distribution characteristics of Akkermansia based

on more than 1,000 published Akkermansia genomes. These

results reinforce previous findings and provide new insights into

Akkermansia research.
Methods

Quality control and genome sequencing

We included the MAGs of Akkermansia (Supplement Table

ST1) from the data made public by two studies (Pasolli et al.

(2019) and Kirmiz et al. (2020)). Isolated genomes were

downloaded from the National Center of Biotechnology

Information (NCBI) database (Supplement Table ST2). The

source information of these MAGs and genomes was also

collected, such as host, country, etc. Each MAG met the quality

standard of completeness of more than 90% and contamination of

less than 5%, estimated based on the CheckM lineage (Parks et al.,

2015). An A. glycaniphila strain (GP37) was isolated from human

feces that was primarily isolated as part of a previous study (Guo

et al., 2017). Genomes were sequenced using the Illumina

HiSeq2500 instrument, and genomic assembly of A. glycaniphila

GP37 was performed based on the previous pipeline as described

previously (Guo et al., 2017).
Gene prediction and
functional annotation

To unify the standards, a genome content prediction for all

Akkermansia genomes was carried out using Prokka (v1.13.3)

(Seemann, 2014). The coordinates of genomic features within

sequences, including small rRNA (5S, 16S, and 23S rRNA), were

identified by using RNAmmer (v1.2) (Lagesen et al., 2007).

The protein-coding gene prediction was performed using
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Prodigal (Hyatt et al., 2010). 16S rRNA gene sequence similarity

was calculated using BLAST+ (v2.9.0). The functional

annotation of genes was based on the Kyoto Encyclopedia of

Genes and Genomes (KEGG, downloaded in December 2020)

(Kanehisa et al., 2021) and CAZy databases (dbCAN2 version,

CAZyDB.07312020) (Zhang et al., 2018) using USEARCH

(Edgar, 2010) and DIAMOND (Buchfink et al., 2015),

respectively, with the parameters e-value <1e−10, identity

>70%, and coverage percentage >70%.
Bioinformatic analyses

A phylogenetic tree of the Akkermansia strains was

constructed based on concatenated protein subsequences by

PhyloPhlAn (v.0.99) (Segata et al., 2013) with default

parameters. The phylogenetic tree was visualized using iTol

(Letunic and Bork, 2016). Pairwise average nucleotide identity

(ANI) between two genomes was calculated using FastANI

(v1.1) (Jain et al., 2018). Statistical analyses were implemented

on the R platform. Heatmap was performed using the

“heatmap.2” function, and principal coordinates analysis

(PCoA) was performed using the cmdscale function (vegan

package) and visualized using the ggplot2 package (Wickham,

2016). The BRIG software was used to visualize genome

comparisons (Alikhan et al., 2011).
Results and discussion

Metagenome-assembled genomes and
isolated genomes of Akkermansia

In order to decipher the population structure and

geographical distribution of Akkermansia, a total of 1,126
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Akkermansia MAGs conforming to the “near-complete”

standard (completeness > 90% and contamination < 5%) from

public data (Pasolli et al., 2019; Kirmiz et al., 2020) were

included. Although metagenomic samples were widely

collected from multiple human sites, almost all Akkermansia

MAGs were detected from human fecal samples (Supplement

Table ST1). This finding was in line with the previous studies

showing that the gut, rather than other body sites, was a major

habitat of Akkermansia (Geerlings et al., 2018). Similarly, only

six non-Akkermansia Verrucomicrobia genomes were identified

in a recent study reconstructing over 56,000 MAGs from the

global human oral metagenomes (Zhu et al., 2021); this result

also indicated a very low occurrence of Akkermansia in the

human oral cavity.

The average completeness and contamination rates of 1,126

Akkermansia MAGs were 96.3% and 0.4%, respectively. The

genomic data revealed varying genomic sizes ranging from 2.17

to 3.30Mbp (average 2.73Mbp, Figure 1A). TheMAGs represented

five continents and 22 different countries. The majority of the

genomes (60.2%, 678/1,126) were from countries in Europe, and the

others were from Israel (n = 141), the USA (n = 107), China (n =

97), Canada (n = 53), Kazakhstan (n = 33), Mongolia (n = 10), Fiji

(n = 5), and Peru (n = 2) (Figure 1B). In view of the geographical

and population spans and the integrity of 1,126 MAGs, we

suggested that they effectively represented the characteristics of

the human intestinal Akkermansia genus and could be used to

answer fundamental questions regarding population structure and

functional specificity of Akkermansia.

To extend the genomic content of Akkermansia, we also

analyzed 84 isolated genomes from the NCBI database and one

newly sequenced Akkermansia strain (GP37, an A. glycaniphila

strain isolated from the human gut). The quality of these

genomes was reassessed (Supplement Table ST2). The

distribution of genome sizes for the isolated genomes was

consistent with that of MAGs (Figure 1B). All of these strains
BA

FIGURE 1

The genome size and country distribution of 1,211 strains of Akkermansia. (A) Distribution of genome size of 1,126 metagenome-assembled
genomes (MAGs) and 85 isolated genomes. (B) Country distribution of 1,126 MAGs and 85 MAG isolated genomes.
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were isolated from the feces, but their hosts were widely

distributed, including humans (n = 61), mice (n = 13),

chimpanzees (n = 3), and other animals (n = 8). Of the

isolated genomes, 96.5% (82/85) were A. muciniphila, and the

remaining three were A. glycaniphila.
Population structure of Akkermansia

The phylogenetic relationship of all 1,211 Akkermansia

genomes was analyzed based on PhyloPhlAn, a method for

improving the phylogenetic and taxonomic placement of

microbes (Segata et al., 2013). We identified seven distinct

phylogroups of Akkermansia (Figure 2A), including three A.

muciniphila phylogroups (Amuc I, II, and III) reported by Guo

et al. (2017) and a phylogroup of A. glycaniphila. The three A.
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muciniphila phylogroups accounted for 94% of all genomes, of

which 945 were Amuc I, 181 were Amuc II, and 6 were Amuc III.

The clustering result of ANI on whole-genome data was

identical to the phylogenetic analysis (Figure S1). The three

known A. muciniphila phylogroups (Amuc I, II, and III) had

average between-phylogroup ANIs ranging from 85% to 91%

(Figure 2B), and the average 16S rRNA gene similarity was from

98.9% to 99.9% (Figure 2C). This finding suggested that these

phylogroups were distinct subspecies, which was consistent with

a previous study (Guo et al., 2017). In addition, the new

phylogroup (containing 69 genomes) has an average ANI of

82%–84% with the three Amuc phylogroups I to III, and the

average 16S rRNA gene similarity was 98.1%–98.5%. Therefore,

this new phylogroup was defined as A. muciniphila subsp. IV

(Amuc IV) according to the criterion for other A. muciniphila

phylogroups (Guo et al., 2017; Kirmiz et al., 2020). Akkermansia
B C

A

FIGURE 2

Phylogenetic analysis of Akkermansia genomes. (A) Phylogenetic tree of 1,126 MAG and 85 isolated genomes. Filling colors in the phylogenetic
tree represent different species or phylogroups. The outer circle represents the original strains from MAGs and isolated genomes. For better
visualization, only 10% of the strains of Amuc I and Amuc II were used, without changing the overall structure of the tree. (B, C) Heatmaps show
the pairwise ANI among seven Akkermansia species and phylogroups (B) and the 16S sequence similarity among five Akkermansia muciniphila
phylogroups and Akkermansia glycaniphila (C).
frontiersin.org

https://doi.org/10.3389/fcimb.2022.957439
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Lv et al. 10.3389/fcimb.2022.957439
glycaniphila and the two remaining new phylogroups showed a

remarkable difference with regard to between-phylogroup ANI

(<80%) and 16S rRNA gene similarity (<90%), suggesting that

they were different species. These two branches were named as

Akkermansia sp. V (containing five genomes) and Akkermansia

sp. VI (containing two genomes). However, due to the small

number of genomes and the lack of culture evidence, they cannot

yet be defined as potential new species.

There were significant differences in some genomic

characteristics for the seven Akkermansia phylogroups. The

strains of A. glycaniphila and Akkermansia sp. V had the

largest genome size (average 3.08 and 3.10 Mbp, respectively;

Figure 3), and the strains of Akkermansia sp. VI had the smallest

genomes (average 2.39 Mbp). Among A. muciniphila subspecies,

the genome sizes of Amuc II were the largest (average 2.99 Mbp),

while Amuc I was the smallest (average 2.66 Mbp). The

distribution of the number of proteins was consistent with that

of genome sizes (Figure S2). The G+C content of Akkermansia

sp. VI was extremely higher than the others (average 64.8%;

Figure 3), while that of Akkermansia sp. V was remarkably lower

(average 52.0%). Amuc II and III had a higher GC content

(58.1% and 58.4%, respectively) compared with other A.

muciniphila phylogroups, and Amuc I had the lowest GC

content (55.7%). The representative genomes of Amuc I, II,

III, and IV showed differences in several different genomic

regions (Figure S3). Diversified genomic characteristics of the

Akkermansia phylogroups suggested different evolution history

and functional habits.

Belzer et al. (Belzer and de Vos, 2012) divided the

Akkermansia phylogenetic tree into five clades according to

the full-length 16S rRNA sequences. Among them, four clades

contained human-associated sequences and one clade had a high
Frontiers in Cellular and Infection Microbiology 05
diversity without human-derived sequences. In this study, we

inc luded the Akkermans ia genomes from diverse

transcontinental populations and found that the average

similarity of 16S rRNA sequences between A. muciniphila and

A. glycaniphila was 94.3%, and among Amuc I–IV phylogroups,

it was >98%. This result indicated a relatively conservative 16S

rRNA sequence in Akkermansia genomes, suggesting that more

potential Akkermansia species or phylogroups are still

undiscovered, especially in non-human animals. A recent

study (Xing et al., 2019) constructed a phylogenetic tree based

on 710 single-copy core genes shared by 23 Akkermansia

genomes and divided A. muciniphila into four subspecies. The

result was consistent with our findings showing that the genome

of an Akkermansia strain (Akkermansia sp. KLE1797 from the

NCBI database) belonged to a distinct phylogroup (in our study,

Amuc IV). Amuc IV was also found by Kirmiz et al. based on 35

high-quality MAGs reconstructed from the feces of American

children (Kirmiz et al., 2020). A comprehensive genomic

diversity study reported that Akkermansia in the human gut

can be divided into five candidate species (Karcher et al., 2021),

of which the Amuc IV phylogroup was considered to contain

two candidate species in this study. This is roughly the same as

our findings.
Global distribution of Akkermansia
phylogroups

The 1,211 Akkermansia genomes with wide distribution in

22 countries allowed us to investigate the biogeographical

features of phylogroups. Also, to compare the differences

between Western and non-Western populations, we define

four Asian countries (China, Kazakhstan, Mongolia, and

Israel) as non-Western and the rest as Western. We found

that the two most dominant phylogroups, Amuc I and II, were

extensively distributed globally (Figures 4A, B). Members of

Amuc I and II were observed in trans-continental, trans-oceanic,

cross-lifestyle populations and even appeared across-host

considering that all non-human A. muciniphila isolates were

placed in these two phylogroups. Amuc II, especially, had a

higher intra-phylogroup genetic diversity in the Western

populations compared to that of non-Western populations

(Figure 4C). On the other hand, the geographic bias of Amuc

III and IV was more prominent (Figure 4A; Figure S4).

Moreover, 83.3% (five out of six) of the Amuc III genomes

were from the gut microbiotas in a Chinese population and only

one genome was from a European population. Conversely, all 69

genomes of Amuc IV were from Europe, the USA, Canada, and

Israel, rather than from China or other countries. Moreover, the

distributional modes of Akkermansia sp. V, Akkermansia sp. VI,

and A. glycaniphila were still hard to accurately estimate due to

the few numbers of genomes; however, all these species showed

trans-continental distribution (Figure S4).
FIGURE 3

Scatter plot of the genome size and GC content of seven
Akkermansia species and phylogroups.
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In recent years, the geographic deviation among

different subspecies has been described in several gut bacteria

such as Prevotella copri (Tett et al., 2019) and Eubacterium

rectale (Karcher et al., 2020). These findings suggested that not

only the geographical factor but also other unknown factors (e.g.,

diet difference between populations (Cheng et al., 2021; Dıéz-

Sainz et al., 2022), or movement of individuals) are probably the

forces for speciation of the gut bacteria. Similarly, except for

Amuc III, Amuc I, II, and IV were observed in the gut

microbiota of American children in the study of Kirmiz

et al. (2020).
Functional characteristics of
Akkermansia phylogroups

It is possible that each Akkermansia phylogroup has a

unique functional profile. To test this notion, we annotated all
Frontiers in Cellular and Infection Microbiology 06
genomes using the KEGG database (Kanehisa et al., 2021)

and identified a total of 1,740 KEGG orthologs (KOs). PCoA

analysis based on the KO profiles revealed a clear separation

among three major phylogroups (Amuc I, II, and IV; adonis R2 >

0.25, q < 0.001 in pairwise comparison) (Figure 5A), while the

functions of Amuc III strains were relatively close to Amuc II but

were still significantly different (adonis R2 = 0.058, q = 0.001).

Likewise, the functions of A. glycaniphila and Akkermansia sp. V

genomes were close to that of Amuc IV. We then compared the

presence of KOs for three representative phylogroups (Amuc I,

II, and IV) to identify the phylogroup-specific functions for

them. In terms of pan-genome (KOs that occurred in at least one

strain), the three phylogroups shared 1,141 functions, while 186,

66, and 55 functions especially occurred in Amuc I, II, and IV,

respectively (Figure 5B). The Amuc I-specific functions were

involved in the pathways of transporters (14 KOs), prokaryotic

defense system (14 KOs), transcription factors (9 KOs), etc.

(Supplement Table ST3), while the Amuc II-specific functions
B C

A

FIGURE 4

Geographic and host source of seven Akkermansia species and phylogroups. (A) Phylogenetic characteristics of Akkermansia species and
phylogroups, with circles representing the national origin of each strain. (B) The distribution of Akkermansia species and phylogroups in Western
and non-Western populations (left panel) and human and non-human hosts (right panel). (C) Boxplot shows the intra-phylogroup ANI
comparisons between Western and non-Western strains.
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were related to transporters (6 KOs) and ABC transporters

(6 KOs), peptidases and inhibitors (4 KOs), and others. The

Amuc IV-specific functions were involved in pathways of

transporters (6 KOs), two-component systems (4 KOs),

peptidases and inhibitors (3 KOs), and others. In terms

of core-genome (KOs that occurred in >90% of the strains),

the three phylogroups shared 986 core functions, while 24, 41,

and 30 functions especially occurred in Amuc I, II, and IV,

respectively (Figure 5C). In terms of transport pathways, Amuc

I-specific KOs mainly involve iron complex transporters, for

example, K02016 and K02015. These substrate-binding

proteins are usually involved in the transmembrane transport

of iron, while Amuc IV-specific KOs participate in organic

acid transporters, such as K08191. This is a hexuronate

transporter, involved in the carbohydrate metabolic pathway

of bacteria. These metabolic pathways are highly diverse

in different species of bacteria (Rodionova et al., 2012).

Therefore, the functions of these specific codes may suggest

differences in energy utilization among different Akkermansia

phylogroups. In other words, these phylogroup-specific

functions were involved in multiple metabolism and transport

pathways and potentially associated with the specific adaption

mechanism for different Akkermansia phylogroups (Supplement

Table ST3). In addition, functional differences between groups

may be examples of the adaptive evolution of Akkermansia. For

example, some subspecies lack the ability to make vitamin B12
(Karcher et al., 2021), which allows them to interact better with

other species in the gut.
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In order to further investigate the ability of carbohydrate

formation and decomposition of Akkermansia species, the

genomes were screened for carbohydrate-active enzymes

(CAZymes) (Zhang et al., 2018). Notably, a remarkable

separation was observed on the CAZyme profiles among

members of Amuc I and II–IV (adonis R2 = 0.56, q < 0.001;

Figure 6A), while the strains of Amuc II, III, and IV were relatively

closer. Compared to Amuc II–IV, strains of Amuc I had a fewer

number of carbohydrate-active enzymes (p < 0.001; Figure 6B) and

especially glycosyltransferase (GT) and glycoside hydrolase (GH)

proteins (p < 0.001; Figure 6C). GT proteins are mostly related to

protein glycosylation, cell wall polysaccharide synthesis, or

synthesizing exopolysaccharides in the context of biofilm

formation (Lairson et al., 2008). This may represent the

adaptability of the strains of Amuc II–IV phylogroups to the

synthesis of exopolysaccharides or other structural carbohydrates.

Moreover, 13 CAZymes were specifically encoded in the pan-

genome of Amuc I, while 6 CAZymes were specifically encoded in

the genomes of Amuc II–IV members. Interestingly, glycosyl

transferase family 61 (GT61, occurred in 98.6% of Amuc IV

strains but none in others) and glycoside hydrolase family 130

(GH130, occurred in 78.3% of Amuc IV strains but none in others)

were specifically encoded by Amuc IV (Figure 6D; Supplement

Table ST4). The GT61 family involved in the synthesis of cell wall

xylans is often reported in plant cells (Cenci et al., 2018). These

MAGs mainly encode two enzymes (SVE69682.1 and

SVE78114.1) of the GT61 family. Interestingly, this family is

uncommon in prokaryotes, and as a result, it may indicate that
B

C

A

FIGURE 5

Comparison of KEGG functions among Akkermansia species and phylogroups. (A) PCoA analysis on the KO profiles of 1,211 strains. (B, C) Venn
diagram shows the overlap of KOs in the pan-genome (B) and core-genome (C) of Amuc I, Amuc II, and Amuc IV.
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the cell wall composition of Amuc IV members is different from

that of other phylogroups. The isolation of this type of strain in

future studies will help us further understand the role of these

enzymes. Similarly, GH130 might potentially provide the ability of

mannose hydrolysis for Amuc IVmembers (Saburi, 2016), and this

phenomenon may be correlated to the geographical distribution

differences of the Amuc IV phylogroup. In brief, the difference in

functional profiles among Akkermansia phylogroups may have

relativity to their ability for utilizing complex carbohydrates.

In addition, we were concerned about the gene copy number

of mucin-degrading GHs in each phylogroup. A total of eight

mucin degradation-related GH families were annotated in all
Frontiers in Cellular and Infection Microbiology 08
genomes (Figure 7). Akkermansia sp. VI has the least copy

number compared to the other groups, and GH89 and GH95

were absent in these genomes. Compared with Amuc I, Amuc II,

III, IV, Akkermansia sp. V, and Agy had higher gene copies in

GH2, GH20, GH29, and GH95, most notably Akkermansia sp.

V, which had relatively higher copy numbers on multiple mucin-

associated GH. This difference may indicate the carbohydrate

preference of each phylogroup strain. Akkermansia can degrade

mucin into acetic acid and propionic acid, from which it can

obtain energy (Kim et al., 2021). The diversity of mucin-related

enzymes in Akkermansia may indicate that different groups

metabolize mucin in different ways. However, we can provide
B

C

DA

FIGURE 6

Comparison of CAZy functions among Akkermansia species and phylogroups. (A) PCoA analysis on the CAZymes families of 1,211 strains.
(B, C) Boxplot showed the content comparison of CAZy enzyme-related genes annotated by the four phylogroups (B) and glycosyltransferase
(GT) gene content between Amuc I and Amuc II–IV (C); significance was calculated using the rank-sum test. (D) Venn diagram shows the
overlap of CAZyme families between Amuc I and Amuc II–IV.
FIGURE 7

Average number of gene copies in each phylogroup of the eight mucin-degrading GH families.
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only limited genomic evidence. In future studies, we need to

obtain more culturable strains to test this hypothesis.
Assembly of the genome of Akkermansia
glycaniphila strain from human

GP37 is a strain of A. glycaniphila isolated and cultured

from human feces. The genome assembly of this strain was

assembled by whole-genome sequencing. Its genome size is 3.01

Mbp and has 2,554 genes, its GC content is 57.65%, its

completeness is 94.56%, and its contamination rate is zero

(Supplement Table ST2). The genome of GP37 contains 13

contigs and the N50 length is 663,974bp, which means that GP37

is a high-quality genome assembly. ANI is commonly used to

describe the consistency between the genomes of strains and

species. GP37 had greater than 98% ANI with other

A. glycaniphila genomes (GCF_900097105.1_WK001 and

GCF_001683795.1_ASM168379v1), suggesting that they are

highly similar strains (Figure S5). In addition, GP37 encodes 270

predictive CAZymes, including 106 glycosyl transferases and 118

glycosyl hydrolases, indicating its role in energy metabolism.
Conclusions

This study characterized the phylogeographic population

structure and functional specificity of Akkermansia based on

1,126 near-complete MAGs and 85 isolated genomes. The

Akkermansia genomes were placed into two previously

isolated species (A. muciniphila and A. glycaniphila), and the

A. muciniphila members were further divided into three

previously described phylogroups (Amuc I, II, III, and IV).

These species and phylogroups revealed a significant

geographical distribution bias; especially, Amuc III was present

in the Chinese population and Amuc IV was mainly distributed

in Western populations. Functional analyses showed notable

specificity in different Akkermansia species and phylogroups

that were involved in some metabolism and transport pathways

and in carbohydrate-active enzymes. In conclusion, our results

showed that the Akkermansia members in the human gut had

high genomic diversity and functional specificity and diverse

geographical distribution characteristics.
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