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diversification of intestinal
microbiota to improve colitis
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Background: Mesenchymal stem cell (MSC) therapy has emerged as a

promising novel therapeutic strategy for managing inflammatory bowel

disease (IBD) mainly via dampening inflammation, regulating immune

disorders, and promoting mucosal tissue repair. However, in the process, the

associated changes in the gut microbiota and the underlying mechanism are

not yet clear.

Methods: In the present study, dextran sulfate sodium (DSS) was used to induce

colitis in mice. Mice with colitis were treated with intraperitoneal infusions of

MSCs from human umbilical cord mesenchymal stem cells (HUMSCs) and

evaluated for severity of inflammation including weight reduction, diarrhea,

bloody stools, histopathology, and mortality. The proportion of regulatory T

cells (Tregs) and immunoglobulin A-positive (IgA+) plasmacytes in gut-

associated lymphoid tissue were determined. The intestinal and fecal levels

of IgA were tested, and the proportion of IgA-coated bacteria was also

determined. Fecal microbiome was analyzed using 16S rRNA gene

sequencing analyses.

Results: Treatment with HUMSCs ameliorated the clinical abnormalities and

histopathologic severity of acute colitis in mice. Furthermore, the proportion of

Tregs in both Peyer’s patches and lamina propria of the small intestine was

significantly increased. Meanwhile, the proportion of IgA+ plasmacytes was also

substantially higher in the MSCs group than that of the DSS group, resulting in

elevated intestinal and fecal levels of IgA. The proportion of IgA-coated

bacteria was also upregulated in the MSCs group. In addition, the

microbiome alterations in mice with colitis were partially restored to

resemble those of healthy mice following treatment with HUMSCs.
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Conclusions: Therapeutically administered HUMSCs ameliorate DSS-induced

colitis partially via regulating the Tregs–IgA response, promoting the secretion

of IgA, and facilitating further the restoration of intestinal microbiota, which

provides a potential therapeutic mechanism for HUMSCs in the treatment of

IBD.
KEYWORDS

mesenchymal stem cells, intestinal microbiota, colitis, immunoglobulin A, 16S rRNA
Introduction

Inflammatory bowel disease (IBD), including Crohn’s disease

and ulcerative colitis, is characterized by chronic intestinal

inflammation, a progressive and unpredictable disease course.

Although the pathogenesis of IBD has not been fully understood,

intestinal dysbiosis is considered to be an important trigger for

impaired intestinal barrier function and immune homeostasis,

which may be a decisive event in the development and chronicity

of IBD (Miyoshi and Chang, 2017). The composition of the

microbiota in patients with IBD has been extensively studied.

Multiple lines of evidence have revealed the presence of dysbiotic

microbiota, characterized by decreased community diversity and a

shift in bacterial taxa, including a decrease in certain genera of the

phylum Firmicutes and Bacteriodetes and an increased abundance

of Proteobacteria (Sartor and Wu, 2017). Schaubeck et al. (2016)

demonstrated that transfer of fecal microbiota from mice with

colitis to healthy animals induced colitis, and transplanting fecal

flora from healthy people to mice with experimental colitis

significantly improved the immune-inflammatory state of mice

(Burrello et al., 2018). Therefore, restoring intestinal microbiota

and improving the intestinal microecology have important clinical

significance for the rescue treatment of IBD patients. Currently,

therapies based on correcting dysbiosis, such as antibiotics,

probiotics, and prebiotics, have shown certain auxiliary effects,

but the effects are not definitive (Caruso et al., 2020). As an

emerging microecological therapy, fecal microbiota

transplantation also brings certain prospects for IBD patients,

but the long-term tolerance and safety are still unclear

(Weingarden and Vaughn, 2017). Thus, how to effectively

reshape the intestinal flora is still an important issue in the field

of IBD treatment.

Mesenchymal stem cell (MSC) therapy has emerged as a

promising new therapeutic strategy for managing IBD mainly via

dampening inflammation, regulating immune disorders, and

promoting mucosal tissue repair. To date, most studies of MSC

therapy for IBD have focused on immune modulation, promoting

the proliferation and differentiation of T regulatory cells (Tregs),

inhibiting the activity of inflammatory T cells, and the secretion of
02
pro-inflammatory factors to maintain intestinal immune

homeostasis and improve the mucosal inflammatory response (Shi

et al., 2018). Recent studies found that MSCs not only improved the

intestinal inflammatory response but also reshaped the diversity and

abundance of intestinal flora, with a similar composition of bacterial

taxa in mice with colitis to that of normal mice (Soontararak et al.,

2018; Dong and Feng, 2019). Although sufficient evidence is still

absent and the related mechanisms have not been reported, it is

speculated that remodeling the intestinal microbiota may be another

potential approach for MSCs in the treatment of IBD.

Currently, intravenous injection is historically the most

common method for MSC delivery (Kean et al., 2013), and

many published studies have shown the benefits of tail vein

delivery in IBD treatment. However, an increasing body of

evidence suggests that intraperitoneal injection (1 × 106 cells)

showed better colitis recovery, higher MSC engraftment at the

inflamed colon but fewer trapped cells in the lung, and also more

infiltration of Tregs (Sala et al., 2015; Wang et al., 2016)

compared with intravenous injection. In addition, most of the

current studies on the regulation of intestinal flora by MSCs

apply tail vein intervention (Mar et al., 2014; Soontararak et al.,

2018), while the effect of intraperitoneal injection with MSCs on

gut microbiota is rarely reported. Thus, clarifying the influence

of MSC intraperitoneal therapy on IBD intestinal flora and its

possible mechanism will provide an important theoretical basis

for its effective application in IBD.

It has been confirmed that the immune regulation of the host

intestinal mucosa plays a crucial role in the maintenance of

intestinal flora diversity (Sun et al., 2015). Tregs expressing

transcription factor Foxp3 (Foxp3+Tregs) were essential for

the maintenance of immune tolerance (Visekruna et al., 2019;

Clough et al., 2020). It was found that the presence of

Foxp3+Tregs in in te s t ina l mucosa suppor ted the

transformation of IgA+ plasmacytes, maintaining the selective

secretion of IgA in the gut and strengthening the immune

barrier, although the mechanisms have not been completely

clarified (Cong et al., 2009; Neumann et al., 2019). IgA has been

shown to be involved in host responses against infection, and the

major role of IgA is to maintain the balance between the host
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and its microbiota (Okai et al., 2017). Secretory IgA (SIgA) has

been shown to play multiple protective roles by preventing the

adhesion of commensal bacteria to epithelial cells, neutralizing

toxins and pathogens, and limiting bacterial growth and

penetration (Okai et al., 2017). It was found that, in a T cell

transfer colitis model, the transfer of Foxp3+Tregs could inhibit

the inflammatory response of the colon, induce the

transformation of IgA+ plasmacytes in the lamina propria of

the intestinal mucosa, promote the production of SIgA, and

maintain the diversity of gut microbiota (Kawamoto et al., 2014;

Wang et al., 2015), while depletion of Foxp3+Tregs decreased the

intestinal IgA responses, resulting in a decrease in firmicutes and

an increase in proteobacteria and aggravating colitis (Cong et al.,

2009; Kawamoto et al., 2014). Therefore, regulating the intestinal

IgA responses by Foxp3+Tregs, also called Tregs–IgA response,

assumes an important role in maintaining the intestinal

microecology (Cong et al., 2009).

Given the important role of Foxp3+Tregs, whether the

mechanism of MSC remodeling gut microbiota is related to

the regulation of intestinal Tregs–IgA response deserves further

exploration. Therefore, in the present study, we investigated the

effectiveness of human umbilical cord mesenchymal stem cells

(HUMSCs) for the treatment of IBD and the influence on gut

microbiota using a mouse model of DSS-induced colitis. Studies

were also done to first investigate the possible mechanisms by

which MSCs restore the gut microbiota in IBD. The findings

revealed that HUMSCs restored the gut microbiota at least partly

through the regulation of the intestinal Tregs–IgA response to

accelerate the recovery of intestinal abnormalities in mice

with colitis.
Materials and methods

Cell preparation and culture

Human umbilical cord mesenchymal stem cells provided by

Shandong Qilu Cell Therapy Engineering Technology Co., Ltd.

were cultured in a serum-free MSC medium (Yocon Biology,

Beijing, China) at 37°C in a 5% CO2 incubator. The phenotype of

the MSCs was identified through flow cytometry which

examined the expression of cell surface markers, including

positive markers CD90, CD105, CD73, CD44, and CD29 and

negative markers CD45 and HLA-DR. HUMSCs from passages

4 and 7 were used throughout the experiments.
Animals

Eight-week-old wild-type specific pathogen-free male

C57BL/6 mice (weight, 20–23 g; Beijing Vital River Laboratory

Animal Technology Co., Ltd.) were used for the induction of

colitis. The mice were housed in a specific pathogen-free animal
Frontiers in Cellular and Infection Microbiology 03
laboratory with an environment that has a constant temperature

of 23°C ( ± 2°C) and alternating 12-h light/12-h dark cycle. All

animal experiments were approved by the Local Animal

Ethics Committee.
Colitis mouse model

Colitis was induced in mice by the oral administration of 2%

dextran sodium sulfate (DSS) (MP Biomedicals, USA) in

drinking water for 7 days as we described previously (Yang

et al., 2021). For each study, mice (n = 6 per group) were

randomly assigned to the following groups: (a) control group,

(b) DSS+PBS group, and (c) DSS+MSCs group. On day 5 of the

study (with DSS administration initiated on day 0), MSCs were

administered by peritoneal injection at a dose of 1 × 106 cells per

mouse in 200 ul phosphate-buffered saline (PBS) according to

the previous study (Soontararak et al., 2018). The control and

DSS groups of mice were administered with 200 ul PBS by

peritoneal injection. At 7 days later, the mice were administered

with drinking water without DSS and euthanized on day 10 of

the study.
Assessment of colitis

For each study, the mice were checked daily for morbidity.

Pathological features, including stool consistency, presence of

blood stool, and body weight loss, were recorded daily for each

mouse. Individual scores were combined to generate the Disease

Activity Index (DAI) in assessing disease severity as described

previously (Yang et al., 2021). Colon tissue samples were

collected, fixed in formalin, and then stained with hematoxylin

and eosin (H&E) for histopathological analysis to evaluate the

severity of histological damage of colitis using the Cooper HS

score system (Yang et al., 2021).
Fecal genomic DNA extraction

The fecal samples were harvested under sterile conditions,

immediately shock-frozen in liquid nitrogen, and then

transferred to -80°C. The CTAB/SDS method was used to

extract the total genome DNA in samples as described

previously (Wang et al., 2020). DNA concentration and purity

were monitored on 1% agarose gels. According to the

concentration, DNA was diluted to 1 ng/µl with sterile water.
16S rRNA sequencing

The 16S rRNA genes of V4 region were amplified with specific

primer V4: 515F-806R. All PCR mixtures contained 15 µl of
frontiersin.org
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Phusion®High-Fidelity PCR Master Mix (New England Biolabs),

0.2 µM of each primer, and 10 ng target DNA, and the cycling

conditions consisted of a first denaturation step at 98°C for 1 min,

followed by 30 cycles at 98°C (10 s), 50°C (30 s), and 72°C (30 s)

and a final 5-min extension at 72°C. The PCR products were

purified with Qiagen Gel Extraction Kit (Qiagen, Germany).

Following the manufacturer’s recommendations, sequencing

libraries were generated with NEBNext® Ultra™ IIDNA Library

Prep Kit (catalogue number E7645) and sequenced on an Illumina

HiSeq 2500 platform, and 250-bp paired-end reads were

generated. The paired-end reads were truncated by cutting off

the barcodes and primer sequences, and then high-quality Clean

Tags were obtained through splicing and filtering. The Clean Tags

were compared with the reference database (Silva database http://

www.arb-silva.de/). The Effective Tags were denoised with

DADA2 in the QIIME2 software (Version QIIME2-202006) to

obtain the initial amplicon sequence variants (ASVs), and then

ASVs with abundance less than 5 were filtered out. The absolute

abundance of ASVs was normalized using a standard of sequence

number corresponding to the sample with the least sequences.

Subsequent analyses of alpha diversity and beta diversity were all

performed based on the output normalized data. For alpha

diversity analysis, Chao1, Simpson, and Pielou_e indexes for

each group were determined using QIIME2 software. The

bacterial community difference among different groups was

evaluated with principal coordinate analysis (PCoA) and non-

metric multi-dimensional scaling (NMDS) based on weighted

UniFrac distances. The LEfSe software (version 1.0) was used to

do LEfSe analysis (linear discriminant analysis score threshold: 4)

so as to find out the biomarkers.
Mononuclear cell isolation

Cells from intestinal lamina propria, Peyer’s patches, and

mesenteric lymph nodes were isolated as described previously

(Rios et al., 2016). Briefly, Peyer’s patches and mesenteric lymph

nodes were mechanically dissociated in ice-cold PBS. The

resulting cell suspensions were passed through a 70-um mesh

cell strainer. To prepare the intestinal lamina propria cells,

associated fat and Peyer’s patches were removed, the intestinal

tissue was washed in ice-cold PBS to remove the luminal

contents and cut open longitudinally, and the tissue was cut

into four equal-sized pieces. Epithelial cells were removed by

shaking the tissues in PBS with 1 mM EDTA, 1 mM

dithiothreitol, and 10% fetal calf serum for two rounds of

20 min at 37°C. Then, the pieces were washed three times

with PBS to remove the EDTA, minced exactly 40 times in a

microfuge tube, and incubated in 20 ml of RPMI-1640

supplemented with 1.5 mg ml-1 Collagenase II (Biosharp), 2.5

mg ml-1 hyaluronidase (Biosharp), and 0.25 mg ml-1 DNase I

(Solarbio) for 45 min at 37°C with constant shaking. Cell

suspension was then extracted by passing the tissue and
Frontiers in Cellular and Infection Microbiology 04
supernatant over a 70-µm mesh cell strainer. The cell

suspension was then centrifuged, and the resuspended pellet

was further purified from the interface of a 45/72% Percoll

density gradient.
Flow cytometry analysis

Single-cell preparations with one million cells per 100 ul PBS

were stained with antibodies to the following markers: APC/

Cy7-anti-mouse CD4 (100413; Biolegend), PE/Cy7-anti-mouse

CD25 (102015; Biolegend), APC-anti-mouse B220 (103221;

Biolegend), PE-anti-mouse CD45 (103105-50; Biolegend). For

intracellular staining, all cells were fixed for 40 min in BD Fix/

Perm buffer and then washed in BD Perm/Wash buffer. The cells

were then stained with PE-anti-mouse FOXP3 (126403;

Biolegend) and FITC-anti-mouse IgA (11-4204-81; Biolegend)

for 30 min at 4°C. Stained cells were tested on a FACSVerse flow

cytometer (BD Biosciences, San Jose, CA, USA) and analyzed

using FlowJo software (TreeStar, USA).
Evaluation of IgA-coated bacteria by
flow cytometry

Fecal pellets were freshly harvested and incubated in sterile

PBS (100 µl to 10 mg feces) for 1 h at 4°C, homogenized, and

centrifuged at 600 g for 5 min to remove large particles.

Supernatant was centrifuged at 15,000g for 5 min to remove

non-bound immunoglobulins. The bacteria pellet was

resuspended in sterile bovine serum albumin/PBS (1% w/v).

The bacteria were stained with FITC-anti-mouse IgA for 30 min

on ice and washed with sterile PBS twice. The stained bacteria

were tested on a FACSVerse flow cytometer (BD Biosciences,

San Jose, CA, USA) and analyzed using FlowJo software

(TreeStar, USA).
Fecal IgA ELISA

Fecal pellets were freshly harvested and incubated in sterile PBS

(100 µl to 10mg feces) for 1 h at 4°C, homogenized, and centrifuged

at 600g for 5 min to remove large particles. Supernatant was

centrifuged at 15,000g for 5min to separate the bacterial pellet,

and IgA was evaluated using the Mouse IgA ELISA Kit from

MultiSciences according to the manufacturer’s instructions.
Immunohistochemical analysis

The levels of IgA in intestinal tissues were determined by

immunohistochemical staining. Mice intestinal tissues were
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fixed in formalin and embedded in paraffin. The paraffin-

embedded tissues were cut into 4-mm sections for

immunostaining. The sections were hatched with anti-IgA

(11449-1-AP; Proteintech) primary antibodies. Next, the

sections were incubated with a secondary antibody using

the SP (Rabbit) IHC Kit (SP9001; ZSGB-BIO) following the

manufacturer’s instructions. Optical microscopy was used for

observation, and the expression of IgA was analyzed

using ImageJ.
Statistical analysis

Data were analyzed using GraphPad Prism version 8.0

(GraphPad Software, San Diego, CA, USA), and the results

were shown as mean ± SD. Differences between the mean

values for groups were analyzed by an unpaired two-tailed

Student’s t-test. Comparisons of parameters for three groups

were made by one-way analysis of variance (ANOVA) followed

by Tukey’s test. The intestinal microbiota data were analyzed

using the QIIME2 software of Novogene Biotech Co., Ltd.,

Beijing, China. A value of P <0.05 was considered

statistically significant.
Results

Phenotypic characterization of HUMSCs

HUMSCs were assessed for MSC characteristics by

harvesting cells at the third passage and analyzing them by

flow cytometry. As shown in Figure 1, the cells were positive for

the expression of CD90, CD105, CD29, CD44, and CD73 but

negative for the expression of CD45 and HLA-DR. The results

showed that the cells were HUMSCs and could be used for

subsequent experiments.
HUMSCs attenuated DSS-induced colitis
in mice

To investigate whether MSCs have a therapeutic effect on

IBD, DSS-induced colitis in a mouse model was employed. Mice

were treated with 2.0% DSS in their drinking water for 7 days

followed by 3 days of normal water. MSCs suspended in PBS

were administered by intraperitoneal injection in the DSS

+MSCs group on day 5, while the DSS+PBS group was only

intraperitoneally injected with the same volume of PBS.

Compared with the DSS+PBS group, MSC administration

significantly ameliorated DSS-induced colitis as evidenced by

the marked restoration of weight loss (Figure 2A), decreased

mortality (Figure 2B), and significant relief of colonic shortening

(Figure 2C). Furthermore, the DAI based on the assessment of
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stool consistency, bloody stool, and body weight loss displayed a

consistent tendency after MSC administration (Figure 2D). H&E

staining was performed to systematically evaluate the severity of

colonic mucosa injury. Compared with the DSS+PBS group

which presented with more loss of crypts, infiltration of

mononuclear cells, severer damage of goblet cells, and higher

histopathological score, the DSS+MSCs group exhibited a

relatively intact colonic architecture, less mononuclear cell

i nfi l t r a t i on , mi ld mucosa l damage , and a lower

histopathological score (Figure 2E).
Administration of HUMSCs reshaped the
diversity and richness of gut microbiota

To determine whether the repairing effect of MSCs on colon

inflammation is related to the regulation of gut microbiota, 16S

rRNA sequencing analysis was performed in fecal bacterial DNA

isolated from the control group, the DSS+PBS group, and the

DSS+MSCs group of mice.

First, to evaluate the complexity of the community

composition and compare the differences between groups, beta

diversity was calculated based on weighted UniFrac distances.

Both models of PCoA and NMDS were performed to visualize

differences of samples in complex multi-dimensional data. As

shown in Figures 3A, B, the difference of microflora structure

among the three groups was obvious, but compared with the

DSS+PBS group, the community composition was relatively

similar between the control mice and the MSC mice.

To evaluate the differences of community distribution within

the groups, alpha diversity was calculated. The chao1 index

represents community richness. As shown in Figure 3C, the

number of intestinal flora in the DSS+PBS group was higher

than that of the control group, and MSC treatment decreased the

number of intestinal flora despite the fact that no statistical

difference was achieved. The indexes of Simpson and Pielou_e

were measured for microbial community diversity and evenness.

Compared with the control group, both alpha diversity indices

were significantly upregulated with DSS administration, while

MSC treatment reversed the change, and there was no difference

between the MSCs group and the control group (Figures 3D, E).

Next, we analyzed the difference of populations and

abundances among the three groups. The top 10 microbes at

the phylum, class, order, family, and genus levels were shown

and indicated significant variations in the composition of the gut

microbiota. Analyses of the microbiota at the phylum level

revealed a dominance of Firmicutes and Bacteroidota.

Compared with the control mice, DSS administration

significantly increased Firmicutes and decreased Bacteroidota,

and MSC treatment reversed this change, decreasing Firmicutes

and increasing Bacteroidota (Figure 3F). At the genus level, the

Muribaculaceae bacteria community in the DSS+PBS group was

significantly lower than that in the Control group, and MSC
frontiersin.org
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treatment increased the community remarkably as shown in

Figure 3G. Similarly, MSCs restored the change in

Lachnospiraceae_NK4A136_group and Clostridia_UCG-014

induced by DSS drinking (Figure 3G). Besides this, the effect

of MSCs in restoring the microbial population was also observed

at the class, order, and family levels (Supplementary Figure S1).
HUMSC treatment restored the microbial
structure in mice induced by DSS

To confirm which bacterium was altered by MSC treatment

and, in turn, affected the disease progression against DSS-

induced colitis, we performed LEfSe analysis to detect

significant differences in the dominance of bacterial

communities. As shown in Figures 4A, B, the class Clostridia,

the order Lachnospirales, and the family Lachnospiraceae, the

order Oscillospirales and the family Oscillospiraceae, and the

genus Lachnospiraceae_NK4A136_group and Eubacterium_
Frontiers in Cellular and Infection Microbiology 06
ruminantium_group were the dominant differential bacteria

resulting in gut microbiota dysbiosis in the DSS group,

while these types of taxa were downregulated with MSC

administration (Figure 4C).
HUMSCs regulated the response of
Foxp3+Tregs and IgA-secreting
plasmacytes

B220-IgA+ B cells are the mature plasmacytes secreting IgA,

and Foxp3+Tregs have been shown as the important helper cells

in affecting the transformation of IgA-secreting plasmacytes in

GALT (Cong et al., 2009). Thus, to further explore whether the

regulation of MSCs on intestinal flora was associated with

Tregs–IgA response, we isolated mononuclear cells from

GALT, including colonic lamina propria (cLP), small intestinal

lamina propria (sLP), Peyer’s patches (PPs), and mesenteric

lymph nodes (MLN) to determine the changes of Foxp3+Tregs
A

B

FIGURE 1

Phenotypic characterization of human umbilical cord mesenchymal stem cells. (A) The phenotype of mesenchymal stem cells (MSCs) was
identified, including positive markers CD90, CD105, CD73, CD44, and CD29 and negative markers CD45 and HLA-DR. (B) Isotype antibodies
were used as controls.
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and IgA+ plasmacytes by flow cytometry. Compared

with the DSS+PBS group, the ratio of Foxp3+Tregs

(CD4+CD25+Foxp3+T cells) was significantly enhanced with

MSC treatment in PPs, and IgA+ plasmacytes (CD45+B220-

IgA+ B cells) also displayed a higher percentage in PPs

(Figure 5A). The consistent tendency was present in sLP after

MSC administration (Figure 5B). Meanwhile, the DSS+MSCs

group also had a higher absolute number of Foxp3+Tregs and

IgA+ plasmacytes compared to the DSS group in PPs and sLP

(Supplementary Figure S2), while in cLP, although MSC

treatment markedly increased the ratio of Foxp3+Tregs, no

difference was seen in IgA+ plasmacytes compared with the
Frontiers in Cellular and Infection Microbiology 07
untreated group (Figure 5C). In addition, the proportions of

Foxp3+Tregs and IgA+ plasmacytes in the MLN showed similar

changes to those in cLP (Figure 5D). These data demonstrated

that Tregs–IgA response was mainly present in PPs and sLP as

previously evidenced (Kawamoto et al., 2014).
HUMSCs promoted IgA production and
IgA coating of microbiota in colitis mice

IgA is a crucial defensive factor directly contacting the

microbiota and altering the community structure. To further
A B

D

E

C

FIGURE 2

Mesenchymal stem cells (MSCs) from human umbilical cord ameliorated dextran sulfate sodium (DSS)-induced experimental colitis. The mice were
treated with 2.0% DSS in their drinking water for 7 days, followed by 3 days of normal water. MSCs suspended in phosphate-buffered saline (PBS) were
administered by intraperitoneal injection in the DSS+MSCs group on day 5, while the DSS+PBS group was only intraperitoneally injected with the same
volume of PBS. (A) Body weight change (n = 6). (B) Disease activity index (DAI) score (n = 6). (C) Survival (n = 14). (D) Representative pictures of colon
and colon length (n = 6). (E) Representative microscopic pictures of H&E staining (×40 and ×100 magnification) and histopathological score (n = 6).
The results were reported as mean ± SD. P-values were calculated by one-way analysis of variance followed by Tukey’s test; *p < 0.05, **p <0.01,
***p < 0.001.
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observe the expression of IgA in intestinal tissues,

immunohistochemical analysis was employed. Compared with

the untreated group, the expression of IgA was significantly

higher in the small intestine after MSC administration, while no
Frontiers in Cellular and Infection Microbiology 08
difference was seen in the colon (Figure 6A), which was

consistent with the results of flow cytometry. Next, we

collected fresh stool from mice of the DSS group and the

MSC-treated group on days 1, 3, 5, 7, and 9. Fecal pellets were
A B

D E

F

G

C

FIGURE 3

Human umbilical cord mesenchymal stem cell treatment significantly reversed the microbiome dysbiosis induced by dextran sulfate sodium
drinking. (A) Principal coordinate analysis based on weighted UniFrac distances for beta diversity; the differences were evaluated by anosim
analysis. (B) Non-metric multi-dimensional scaling based on weighted UniFrac distances for beta diversity. Alpha diversity box plot of chao1
index (C), Simpson index (D), and Pielou_e index (E). Histograms of the relative abundance for the top 10 microbes at the phylum (F) and genus
(G) levels. P-values were calculated by ANOVA, followed by Tukey’s test. The results were expressed as mean ± SD; n = 5, *p < 0.05, **p <0.01,
***p < 0.001. NS, p > 0.05.
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incubated in sterile PBS (100 µl to 10 mg feces) and centrifuged

to obtain the supernatant. ELISA was applied to determine the

IgA concentration secreted into the intestinal lumen. Data

showed that an intraperitoneal injection of MSCs increased

IgA in stool pellets to a much greater extent than an injection

of PBS did (Figure 6B). It is accepted that IgA can control the

infection by coating the pathogenic bacteria. We next evaluated

the bacteria-coating properties of IgA elicited with or without

MSC intraperitoneal intervention. Therefore, we prepared

suspensions of fecal bacteria and measured the amount of IgA

bound to individual bacteria by flow cytometry with a labeled

secondary anti-IgA monoclonal antibody. As expected, the

proportion of IgA-coated bacteria significantly increased with

MSC administration (Figure 6C).
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Discussion

MSC therapy has emerged as a promising therapeutic

strategy for managing IBD mainly via dampening

inflammation, regulating immune disorders, and promoting

mucosal tissue repair. While there are few and conflicting

reports on the effects of MSCs on gut microbiota regulation,

Mar et al. (2014) showed that MSC-treated animals exhibited no

significant differences in overall microbial community diversity

compared with DSS animals. Several other studies indicated that

MSC therapy significantly reversed the dysbiosis of DSS mice,

remodeling the microbiota similar to that of the healthy group,

although the possible mechanism has been not reported

(Soontararak et al., 2018; Ikarashi et al., 2019). In addition,
A B

C

FIGURE 4

Human umbilical cord mesenchymal stem cell treatment restored the microbial structure in mice induced by dextran sulfate sodium (DSS). (A)
Linear discriminant analysis (LDA) scores computed to identify the taxa which were significantly enriched in each group (LDA score > 4). There
are no significantly different taxa in the DSS + mesenchymal stem cell group, so this group is not shown. (B) LEfSe cladogram representing the
microbiota enriched in the DSS + phosphate-buffered saline (PBS) group. Nodes from inside out represent taxonomic types from phylum to
genus levels. The sizes of the nodes indicate the relative abundance of the taxa. Red nodes denote the taxa which were significantly enriched in
the DSS+PBS group. (C) All-against-all algorithm of LDA coupled with LEfSe.
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A
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D
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FIGURE 5

Human umbilical cord mesenchymal stem cell regulated the response of Foxp3+Tregs and IgA-secreting plasmacytes in Peyer’s patches (PPs)
and lamina propria of the small intestine (sLP). CD4+CD25+Foxp3+ T cells (Tregs) and CD45+B220-IgA+ B cells (IgA+ plasmacytes) from the
control group, the dextran sulfate sodium (DSS) + phosphate-buffered saline group, and the DSS + mesenchymal stem cell group were
analyzed by flow cytometry, and bar charts of the percentage of Foxp3+Tregs and IgA+ plasmacytes in PPs (A), sLP (B), colonic lamina propria
(C), and mesenteric lymph nodes (D) are presented. The data are shown as mean ± SD; n = 4 to 5 per group. P-values were calculated by
ANOVA, followed by Tukey’s test; *p < 0.05, **p <0.01, ***p < 0.001. NS, p > 0.05.
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most of the current studies on the regulation of intestinal flora by

MSCs apply tail vein intervention. In the present study, we found

that, beyond improving colonic inflammation, MSC

intraperitoneal injection also significantly promoted the

remodeling of the gut microbiota in DSS-induced mice, which

was probably related to the regulation of Tregs–IgA response.

In our study, C57BL/6 mice were administered with

drinking water with DSS, and MSCs were administered by

peritoneal injection on day 5. Previous reports have

demonstrated that MSCs could reduce weight loss, colonic

shortening, and histopathological score in IBD induced by

DSS. In our current study, compared with the DSS group,

MSC treatment significantly alleviated the DAI score, reduced

the mortality, increased the colon length, and promoted the

recovery of mucosal inflammation, which was consistent with

the results of previous studies (Song et al., 2018).
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The imbalance of the gut microbiota destroys immune

homeostasis and triggers immune-mediated intestinal mucosal

inflammation, which is widely considered as a key factor in the

development of IBD (Miyoshi and Chang, 2017). Correction of

dysbiosis is of great clinical significance for the treatment of IBD.

In the present study, before euthanization, feces of mice were

collected to perform 16S rRNA sequencing. We observed that

the microbiome disruption induced by DSS injury was, to a great

degree, reversed by the administration of MSCs as previously

reported (Soontararak et al., 2018)—for example, compared to

the DSS group, both the alpha and beta diversity and the

abundance of the gut microbiome were significantly remodeled

to become more closely resembling that of mice treated with

MSCs in the healthy control group. LEfSe analysis also revealed

several taxa with remarkable differential predominance in the

DSS group, while MSC administration obviously reversed these
A

B C

FIGURE 6

Human umbilical cord mesenchymal stem cell promoted IgA production and IgA coating of microbiota in colitis mice. (A) Expression of IgA in
the small intestine and the colon from the dextran sulfate sodium (DSS) + phosphate-buffered saline (PBS) group and the DSS + mesenchymal
stem cell (MSC) group by immunohistochemical staining (×400 magnification, positive for brown) and bar charts of average optical density
values; n = 5 per group. (B) Levels of fecal IgA from DSS+PBS mice and DSS+MSCs mice on days 1, 3, 5, 7, and 9; n = 6 per group. (C) IgA
coating of microbiota in fecal samples from the DSS+PBS group and the DSS+MSCs group was analyzed by flow cytometry, and bar charts of
the proportion of IgA-coated bacteria are presented; n = 6. The data are shown as mean ± SD. P-values were calculated using unpaired T-test;
*p < 0.05, **p <0.01, ***p < 0.001. NS, p > 0.05.
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changes. Therefore, although it is not clear whether the gut

microbiota changes are the consequence of intestinal recovery or

whether intestinal recovery results from the improved

microbiota, these findings were sufficient to suggest that MSC

administration accelerated overall intestinal health and healing

through microbiome regulation.

However, the mechanism by which MSCs regulate the gut

microbiota is unclear. Previous observations point to the

existence of a Tregs–IgA axis in maintaining the balance of the

gut microbiota (Feng et al., 2011; Kato et al., 2014; Luu et al.,

2017). Foxp3+Tregs, by acting in both germinal center-

independent and germinal center-dependent manners,

suppress inflammation and support IgA+ plasmacyte

transformation in PPs, resulting in an increase of SIgA, and

their depletion causes a rapid loss of specific IgA response in the

intestine (Cong et al., 2009). Current studies have shown that

MSCs maintain intestinal mucosal immune homeostasis in IBD

by promoting the proliferation and differentiation of

Foxp3+Tregs in GALT (Shi et al., 2018), while the effect of

MSCs on the transformation of IgA+ plasmacytes in the intestine

is still unclear. In the present study, we examined the proportion

of Foxp3+Tregs and IgA+ plasmacytes in GALT and observed

that both the ratios and the numbers of Foxp3+Tregs and IgA+

plasmacytes were significantly upregulated with MSC treatment

in PPs and sLP compared with the DSS group, while in cLP and

MLN, although MSC treatment markedly enhanced the ratio of

Foxp3+Tregs, the proportion of IgA+ plasmacytes had no

difference compared with the untreated group. As previously

reported, Tregs–IgA response was mainly present in PPs and

sLP; Foxp3+ Tregs migrate into PPs, inducing the

transformation of IgA+ plasmacytes which transfer to the sLP
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where they complete their differentiation and secrete IgA into

the gut lumen (Kawamoto et al., 2014; Gribonika et al., 2019).

These data supported the important role of MSCs in the

regulation of the Tregs–IgA response. IgA is a crucial

defensive factor directly contacting the microbiota and altering

the community structure to strengthen the immune barrier. A

previous study examined the potential of adipose-derived MSCs

to restore the intestinal mucosal immune system in aged mice,

which found that SIgA responses were significantly increased in

aged mice adoptively transferred with MSCs when orally

immunized with ovalbumin plus cholera toxin (Aso et al.,

2016). In this study, we found that the level of IgA in the

small intestine and feces was significantly upregulated after MSC

treatment compared with the DSS group. Meanwhile, the

proportion of IgA-coated bacteria significantly increased with

MSC administration. It is widely accepted that IgA can control

infection by coating the pathogenic bacteria and preventing their

contact to the gut epithelium, a process called immune

exclusion. Meanwhile, the coating by IgA regulates the

diversity and the structure of the microbial taxa (Macpherson

et al., 2018; Melo-Gonzalez et al., 2019). These findings suggest

that MSCs remodeled the structure and the diversity of the gut

microbiota by regulating the Tregs–IgA response, promoting

intestinal IgA secretion.

This study is the first to explore the mechanism of MSCs

regulating the gut microbiota. However, it should also be

acknowledged that an in-depth investigation of its mechanism

is lacking in the present study—for example, depleting Tregs to

observe whether MSCs can still promote the transformation of

IgA+ plasmacytes and the secretion of IgA to regulate the

structure and the diversity of the intestinal flora and analyzing
FIGURE 7

Mechanism of human umbilical cord mesenchymal stem cell (HUMSC)-regulated gut microbiota in dextran sulfate sodium-induced colitis mice.
An intraperitoneal injection of HUMSCs regulated the intestinal Tregs–IgA response in Peyer’s patches, increased the IgA-secreting plasm cells
in the lamina propria of the small intestine, and further promoted the secretion of IgA in the intestinal lumen, which contributed to the
remodeling of the structure and the diversity of the gut microbiota.
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the IgA-coated bacteria with 16S rRNA sequencing. Therefore,

there is still a need to further investigate and elucidate the

mechanism by which MSCs regulate the gut microbiota.
Conclusion

Overall, our study here revealed that MSC intraperitoneal

therapy improved DSS-induced colonic inflammation, and the

mechanism may be partly by regulating the intestinal Tregs–IgA

response, promoting the secretion of IgA in the intestinal lumen,

and remodeling the structure and the diversity of the gut

microbiota (Figure 7), which provides a potential therapeutic

mechanism for HUMSCs in the treatment of IBD.
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