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Editorial on the Research Topic

Signaling in stress sensing and resistance in parasitic protozoa
Protozoan parasites are a large and highly diverse group of unicellular eukaryotes

infecting humans and animals, posing enormous health and socio-economic impacts.

More than 1 million deaths annually are caused globally by protozoan parasites

(Andrews et al., 2014). A significant proportion of the world population is at risk of

being afflicted by parasitic diseases like malaria, African trypanosomiasis, Chagas disease,

and leishmaniases, widely considered “Neglected global infectious diseases” for which the

dearth of clinically approved vaccines and safer and efficacious chemotherapeutic options

(https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_1) still persists.

Protozoan pathogens lead complex life cycles, from one host to another, surviving in a

variety of morphotypic forms through this complex continuum. The developmental

stages can be free-living, extracellular parasitic or intracellular parasitic. The key trigger

identified for such transitions has often been stresses such as the alteration of

temperature or pH, hypoxia, oxidative burst, or nutrient depletion (Vonlaufen et al.,

2008). Of note, stress-associated modulations confer endurance to drug exposure to

augment resistance or develop quiescent or ‘persister-like’ forms. Hence, the ability to

sense and respond to stress and thrive in less than optimal conditions, hence, are crucial

for pathogenicity of the parasites, manifestation of diseases and for combating

chemotherapeutic challenge (Bhattacharya et al., 2020). Some of the major stress-

response pathways, characterized to date, are elicited by posttranslational

modifications (PTM), redox systems, chaperon proteins that mediate protein folding

and secondary messengers like cyclic adenosine monophosphate or calcium (cAMP or

Ca2+) which modulate chemotaxis, antioxidant defence of the parasite (Kelly et al., 2021;

Quintana et al., 2021). Against this backdrop, the primary goal of the Research Topic has

been to envision the link between adaptive stress response with pathogenicity and drug
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response. With three original articles, the Research Topic offers a

glance hinting towards the significance of PTM in oxidative

stress response in T. cruzi, alteration of membrane dynamics in

drug resistance in L. donovani, and development of a potential

nanoformulation inducting hallmarks of stress response in L.

donovani. Alongside this, an illustrative review highlights a

putative trypanosmatid G-protein coupled receptor signaling

in a sensing host environment.

Chagas disease, endemic in 21 countries across Latin

America, registers significantly higher morbimortality

compared to other parasitic diseases (Bonney, 2014). The

causative agent, T. cruzi, experiences a heteroxenous life cycle

with a transition between insect vectors and vertebrate hosts. In

this course, the parasite encounters variable environmental

stress which includes nutritional stress, temperature, and

oxidative stress during the infection cycles. Stress sensing and

adaptive responses are intricately linked to the differentiation of

the parasite into morphological forms like epimastigotes,

metacyclic trypomastigotes, or amastigotes. Being an

obligatory intracellular parasite, T. cruzi must withstand its

own metabolic by-products and also cope with the oxidative

burst from the host immune system, which includes the

production of reactive oxygen species (ROS) and reactive

nitrogen intermediates (RNI). Santos Moura et al. describe a

novel aspect of posttranscriptional regulation of mitochondrial

superoxide dismutase (SODA), a major antioxidant enzyme of

the parasite. With an aim to explore the biological significance of

their earlier profiling of lysine-acetylated proteins in procyclic

and bloodstream forms of T. cruzi epimastigotes, where a

number of anti-oxidant proteins were identified (Moretti et al.,

2018), the group delves with acetylation of the mitochondrial

protein TcSODA. Acetylation of K97 is identified to be crucial in

modulating SODA activity. The molecular dynamic simulation

demonstrated conformational change and altered affinity

towards superoxide (O2•–) resulting from K97 acetylation. In

this context, a mitochondrial lysine deacetylase- TcSir2rp3 was

explored for possible involvement in the process. TcSir2rp3

interacts with TcSODA and overexpression of TcSir2rp3

resulted in elevated SOD activity with reduced ROS levels both

in mitochondria and cytosol. Using mutated versions of

TcSODA and TcSir2rp3 the possible cross talk in the context

of K97 acetylation was confirmed, which also affects

responsiveness to benznidazole and nifurtimox. The study for

the first-time evidenced significance of acetylation in modulating

antioxidant enzyme action in Trypanosomatids and reinforced

the importance of PTM in modulating stress response.

Stress response has been determined as a preliminary

hallmark for the identification of preclinical candidates against

pathogens (Egwu et al., 2021). Das et al. here describe the

development of a novel nano-formulation using a liposomal

curcuminoid HO-3867 which poses cytotoxicity on the

extracellular promastigotes and intracellular amastigotes of L.

donovani. The work is of particular interest in formulating a safe,
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specific, and effective therapeutic treatment, still an

unaccomplished mission against visceral leishmaniasis. HO-

3867 was encapsulated with phosphatidylcholine (PC) with

stearylamine (SA) by thin film rehydration to prepare PC-SA/

HO-3867 liposomes. The formulation induced four-fold upsurge

in abrupt ROS production in the parasite coupled to altered lipid

metabolism in the promastigotes as reflected by enhanced

accumulation of lipid bodies. When tested on L. donovani

promastigotes, the liposomal preparation induced substantial

alteration of morphology and prompted stress induced apoptosis

like event typically marked by cell cycle arrest with an increase of

sub-Go population, mitochondrial depolarization, and DNA

fragmentation. Stress induced activation of metacaspase and

poly [ADP]-ribose polymerase-1 (PARP-1) have recently been

linked to impaired sirtuin (SIR2) function with depletion of

NADH (Purkait et al., 2015). PC-SA/HO-3867challege

eventuated 3.5 and 1.6-fold up-regulation of metacaspase and

PARP1, respectively. In vivo studies in mouse infection model

demonstrated RNI and ROS mediated killing of intracellular L.

donovani amastigotes by PC-SA/HO-3867. Owing to its

potential of selectively triggering stress response in the

parasite, PC-SA/HO-3867 is a potential candidate for further

preclinical analysis.

Albeit alteration of gene copy number and acquisition of

mutations have been the cornerstones of drug resistance in

Leishmania, benchmarking resistance with respect to adaptive

response has been attempted for all approved antileishmanials.

Chaperone ac t i v i t y , a l t e ra t ion o f abundance for

glycerophospholipid, lactate, amino acid and amino acid

conjugates, or elevated intracellular thiol content have been

reported to correlate with the level of resistance as evidenced

by comparative transcriptomics, metabolomics, and proteomics

data (Gutierrez Guarnizo et al., 2021). Untargeted metabolomics

and lipidomic analysis of miltefosine (MIL) and amphotericin B

(AmB) resistant lines and isolates revealed significant changes in

the levels of sterols, sphingolipids, phospholipids with

cyclopropanated fatty acids, and inositol phosphoceramide

species (Vincent et al., 2014; Fernandez-Prada et al., 2016;

Pountain and Barrett, 2019). In this Research Topic, Ghosh et

a l . further i l luminate the re levance of membrane

physicochemical property by impedance spectral analysis.

Characterization of 20 independent clinical isolates of L.

donovani comprising low to high susceptibility to sodium

stibogluconate (SSG) for cross-resistance to paromomycin

(PMM), AmB or MIL identified six isolates to be cross-

resistant to MIL. The association of intracellular thiol content

and antimony resistance, as projected earlier (Singh et al., 2014),

was initially validated in the isolates with a strong correlation

between thiol content and SSG susceptibility. In the quest for

unique drug-resistance biomarkers, electrochemical impedance

spectroscopy (EIS) has earlier been applied in monitoring their

chemoresistivity and sensitivity to drugs (Crowell et al., 2020).

Adopting a similar approach, the authors profiled impedance
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spectra for the isolates with variable susceptibility to MIL and

established the correlation between specific impedance spectral

patterns with MIL susceptibility. Overall, the SSG-R isolates

having a high EC50 value against MIL displayed significantly

enhanced membrane capacitance owing to higher membrane

fluidity. The observation was further reinforced with the in vivo

MIL responsive patterns in hamster models. The report sheds

light on the significance of the systemic biophysical approach in

identifying drug responsiveness, however, whether such

impedance spectra can be exploited in conjunction with

artificial intel l igence/machine learning for prompt

identification of resistant isolates warrants further introspection.

A number of signaling cascades, in ancestral forms with

respect to higher eukaryotic signal transduction pathways, have

been associated with stress responsiveness, particularly in

sensing the altered environment in the insect vector and in

mammalian hosts. A surge of cyclic nucleotide-mediated

response has been detected under temperature and pH stress,

hypoxia, and depletion of nutrients like purines (Sen Santara

et al., 2013; Saha et al., 2020; Kelly et al., 2021). In recent years,

flagellar cAMP has surfaced as a major well-defined response in

trypanosomatids with identified effectors like cAMP response

proteins (CARPs) (Shaw et al., 2022). Though canonical G-

protein coupled receptors (GPCR) are apparently absent in

trypanosomatids, putative orthologues with reduced domains

have been annotated. Diaz et al. offers an illustrative purview on

the presence of a GPCR-like signaling system involved in

chemotaxis in response to host-derived neuropeptides. Special

emphasis is offered to possible components of G-protein coupled

signaling like adenylate cyclases, phosphodiesterases, and

CARPs. Also, a detailed update on GTPase family proteins

from trypanosomatids and noncanonical GPCR like

oligopeptide sensing protein-family like TbGPR89, involved in

quorum sensing like events (Rojas et al., 2019), have been

provided. The review further explores the possibilities of a

functional neuropeptide sensing as chemoattractant or

chemorepellant via RMAP-2/-3 GPCR system in Leishmania.

Though the hypothesis offered by the authors awaits

experimental validation, the review portrays novel dimensions

of environmental stress sensing in trypanosomatids.

Advances in the field of stress sensing and signaling would

continue to bolster our understanding of the pathogenicity and

resistance mechanisms of parasitic protozoa. Systemic

identification of stress-associated remodeling would escalate
Frontiers in Cellular and Infection Microbiology 03
the drug development and management of parasitic

protozoan disorders.
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