
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Amy Sims,
Pacific Northwest National Laboratory
(DOE), United States

REVIEWED BY

Hüseyin Sancar Bozkurt,
Maltepe University, Turkey
Jose Arturo Molina Mora,
University of Costa Rica, Costa Rica

*CORRESPONDENCE

Nikhil Sharma
nikhil.sharma@ucl.ac.uk

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Microbiome in Health and Disease,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

RECEIVED 07 June 2022
ACCEPTED 03 August 2022

PUBLISHED 23 August 2022

CITATION

Lymberopoulos E, Gentili GI,
Budhdeo S and Sharma N (2022)
COVID-19 severity is associated
with population-level gut
microbiome variations.
Front. Cell. Infect. Microbiol. 12:963338.
doi: 10.3389/fcimb.2022.963338

COPYRIGHT

© 2022 Lymberopoulos, Gentili,
Budhdeo and Sharma. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 23 August 2022

DOI 10.3389/fcimb.2022.963338
COVID-19 severity is associated
with population-level gut
microbiome variations

Eva Lymberopoulos1,2†, Giorgia Isabella Gentili 1†,
Sanjay Budhdeo1,3,4 and Nikhil Sharma1*

1The Sharma Lab, Department of Clinical and Movement Neurosciences, Queen Square Institute of
Neurology, University College London, London, England, 2Centre for Doctoral Training in
AI-London enabled Healthcare Systems, Institute of Health Informatics, University College London,
London, England, 3National Hospital for Neurology and Neurosurgery, Queen Square, London,
England, 4School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences &
Medicine, King’s College London, London, England
The human gut microbiome interacts with many diseases, with recent small

studies suggesting a link with COVID-19 severity. Exploring this association at

the population-level may provide novel insights and help to explain differences

in COVID-19 severity between countries. We explore whether there is an

association between the gut microbiome of people within different countries

and the severity of COVID-19, measured as hospitalisation rate. We use data

from the large (n = 3,055) open-access gut microbiome repository

curatedMetagenomicData, as well as demographic and country-level

metadata. Twelve countries were placed into two groups (high/low)

according to COVID-19 hospitalisation rate before December 2020

(ourworldindata.com). We use an unsupervised machine learning method,

Topological Data Analysis (TDA). This method analyses both the local

geometry and global topology of a high-dimensional dataset, making it

particularly suitable for population-level microbiome data. We report an

association of distinct baseline population-level gut microbiome signatures

with COVID-19 severity. This was found both with a PERMANOVA, as well as

with TDA. Specifically, it suggests an association of anti-inflammatory bacteria,

including Bifidobacteria species and Eubacterium rectale, with lower severity,

and pro-inflammatory bacteria such as Prevotella copri with higher severity.

This study also reports a significant impact of country-level confounders,

specifically of the proportion of over 70-year-olds in the population, GDP,

and human development index. Further interventional studies should examine

whether these relationships are causal, as well as considering the contribution

of other variables such as genetics, lifestyle, policy, and healthcare system. The

results of this study support the value of a population-level association design

in microbiome research in general and for the microbiome-COVID-19

relationship, in particular. Finally, this research underscores the potential of

TDA for microbiome studies, and in identifying novel associations.
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1 Introduction

Despite the vast advances made in researching COVID-19

over the first two years of the pandemic, many of the

mechanisms underpinning its severity and inter-individual

variations in disease course are incompletely understood. This

made it difficult to predict the likely severity within a given

population and to plan patient flow at a regional and national

level. Here, we explore the link between variations in the gut

microbiome between countries and COVID severity. This is

important as the gut microbiome is amenable to manipulation at

the population level, potentially providing a novel intervention

in future outbreaks and pandemics.

There are significant variations in the response to COVID-

19. For example, while the disease predominantly affects the

respiratory tract, it has been found to also cause a range of other

symptoms, including non-specific (such as fever and headaches),

neurological (such as anosmia and dysgeusia) or gastrointestinal

(GI) symptoms (such as abdominal pain, vomiting, and

diarrhoea) (Bostancıklıoğlu, 2020; Molina-Mora et al., 2022).

Additionally, patients can experience rapid worsening associated

with the so-called cytokine storm (Ragab et al., 2020) which is

treated during a hospital stay (Ramiro et al., 2020; Cron et al.,

2021). The factors and their combination that lead to such severe

courses of COVID-19 are not understood yet. Several risk factors

have been discovered, spanning multiple axes. One of these axes

is socioeconomic factors. These include gender, ethnicity, BMI,

household income, and especially the intersection of such

vulnerabilities (Booth et al., 2021; Chen and Krieger, 2021;

Pijls et al., 2021). For example, people of minority ethnic

status in the most deprived neighbourhoods have the worst

prognosis when infected and are most likely to get infected in the

first place (Berkowitz et al., 2020). The second axis relates to

weakness of the immune system, for example in the elderly,

chronical ly i l l , disabled, and immunocompromised

(Mohammed et al., 2020; Baek et al., 2021; Booth et al., 2021).

The microbiome is a further variable that appears to affect the

severity of a COVID-19 infection but has received less attention

so far (Segal et al., 2020).

The gut microbiome is a collection of an estimated 38 trillion

microbes (Sender et al., 2016) colonising mostly the intestines,

which have vast effects on host health. By metabolising food,

they produce many key metabolites for physiological

functioning across several organs and body systems. There is a

particular interaction of the microbiome with immune pathways

(Thaiss et al., 2016; Levy et al., 2017). As such, it has become the

focus of research on inflammatory diseases, including chronic

infections, autoimmune diseases, metabolic, and even

psychiatric and neurodegenerative diseases (Wang et al., 2017).

The microbiome has a key translational advantage over other

research targets in these diseases as it is easily measured and

modifiable by diet.
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The gut microbiome is an intriguing candidate for a unifying

risk factor, or even mediator, of COVID-19. When considering

the epidemiological triad, it is part of both host factors, and the

effect of environmental factors on the host.

For one, there is a complex relationship with social risk

factors. For example, the microbiome varies by ethnicity (Gupta

et al., 2017; Deschasaux et al., 2018), socioeconomic status

(Bowyer et al., 2019), and BMI (Falony et al., 2016). It also

changes with age (Yatsunenko et al., 2012; Zapata and

Quagliarello, 2015; Badal et al., 2020). Several medical

conditions which increase the risk of COVID-19 are also

associated with changes to gut microbiome composition,

leading to the hypothesis that the microbiome is a mediator

for the disease-risk association (Kim, 2021). Another piece of

evidence of the involvement of the gut microbiome is the

reported GI symptomatology in COVID-19 (Villapol, 2020),

likely through gut epithelial cells which express ACE-2 receptors,

a major entryway for SARS-CoV-2 (Wang et al., 2020; Guney

and Akar, 2021). Further, SARS-CoV-2 is found in the stool of

COVID-19 patients (Wu et al., 2020). The gut microbiome is a

major modulator of the innate immune system, with metabolites

of the gut affecting intestinal barrier integrity, as well as the

immune system itself (Jiao et al., 2020). These metabolites have

been found to directly up- or downregulate cytokines, which

lends some bacteria the labels anti-inflammatory or pro-

inflammatory (Wang et al . , 2020). In physiological

homeostasis, these bacteria are thought to regulate each other

through competition and quorum sensing, resulting in normal

functioning. However, in an imbalanced state, these control

mechanisms are reduced, and pro-inflammatory bacteria and

pathogens can increase exponentially, a phenomenon called

‘blooming’. An altered microbiome is also often associated

with a reduction in the diversity of bacteria in the gut

(Belizário and Faintuch, 2018), though this is likely

an oversimplification.

Immune-modulatory effects of the gut microbiome have

been found to play a role in small studies of COVID-19

patients. A study from the USA compared patients of various

levels of severity and controls (n = 48), reporting a significant

decrease in anti-inflammatory and increase of pro-

inflammatory species in symptomatic patients. Specifically,

t h ey f ound a r educ t i on o f B ifidoba c t e r i um and

Faecalibacterium in patients that was inversely predictive of

disease severity, as well as an increase in Bacteroides which was

also predictive of severity (Hazan et al., 2022). In hospitalised

patients, a similar decrease in commensal symbionts and an

increase in opportunistic pathogens (compared to healthy

controls) was reported. Of note, it did not resolve when the

infection cleared (Zuo et al., 2021). Additionally, these patients

show an increase in gastrointestinal symptoms (Bozkurt and

Bilen, 2021a). While such reports show that the microbiome

differs in more severely ill patients, they cannot explain the
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causality of this association. Does COVID-19 cause

microbiome changes, or does variation in the microbiome at

baseline influence severity?

Some evidence suggests that gut bacteria have a direct

influence on COVID-19 severity through regulating cytokines.

This is a well-known function of the gut microbiome, mostly by

regulating the T-helper 17 (Th17) and T-regulatory (Treg) cell

balance Omenetti and Pizarro, 2015. For example, a

retrospective study of a probiotic booster administered to

hospitalised patients reduced the number of inpatient days and

the mortality rate, and improved radiological findings Bozkurt

and Bilen, 2021b. This study also observed reduced levels of

Interleukin-6 (IL6), a key pro-inflammatory cytokine of the

innate immune response that has been implicated in increased

severity of COVID-19 Coomes and Haghbayan, 2020 and the

COVID-19 associated cytokine storm Ragab et al., 2020. Such

evidence suggests that the microbiome could in fact have a

causal relationship with COVID-19 severity through regulating

the immune response.

Small sample size is a significant limitation to the current

literature. Studies have typically been conducted at the

individual level with small sample sizes (n<30). This

introduces major issues as there is considerable inter-subject

variability driven in part by the huge scale of the microbiome, as

well as its complex nonlinear relationships. This is exacerbated

by microbiome analyses that focus on differences in abundance

between groups. Additionally, these studies are underpowered

for detecting key confounding factors such as demographic,

socioeconomic, or medical factors.

Examining the gut microbiome at a population level may

provide an elegant solution to address the limitations of small

populations and could provide a target for public health

interventions. For one, this approach allows sample sizes of

several thousand participants. Additionally, by shifting the

focus from individuals to populations, we can consider how

the microbiome might affect the differences in COVID-19

severity that were observed across countries. Indeed, it is

known that the microbiome of the population varies between

countries. This is influenced by differences in local water and

soil microbiomes, diet and other lifestyle factors, antibiotic

prescription patterns, hygiene, and pollution (Karlsson et al.,

2014; Gupta et al., 2019; Lymberopoulos et al., 2021). By

considering the link between the gut microbiome and

COVID-19 severity, it is possible that the microbiome of a

population influences the level of COVID-19 severity

experienced in that population. In fact, the impact of the

COVID-19 pandemic varied strongly between countries.

While the rate of infection was influenced by governmental

response and strictness of public health measures such as

lockdowns (Huang et al., 2021; Arnold et al., 2022), as well

as other population metrics (Sorci et al., 2020), there remains a

difference in experienced severity across countries with similar

rates of infection.
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While there is now evidence to suggest a link between the gut

microbiome and COVID-19 severity, current evidence is limited

by the size and design of individual-level studies which can be

addressed with a population-based approach. We aim to explore

whether country-level differences in the microbiome before the

pandemic can explain a degree of the country-level differences in

COVID-19 severity, as measured by hospitalisation rate. In

addition to standard microbiome analysis, we employ an

unsupervised machine learning tool - Topological Data

Analysis - which is particularly appropriate for large

microbiome datasets and can detect even subtle non-linear

and mixed effects (Liao et al., 2019).

We hypothesise that there will be significant differences in

microbiome composition between countries based on COVID-

19 severity grouping that will be evident with standard analysis

as well as TDA. We expect to find specific microbiome

signatures to be associated with such groups of low and high

severity. Specifically, we hypothesise that TDA will find more

complex associations above and beyond those results from

standard analysis. Finally, we expect to be able to discern the

effects of relevant confounders.
2 Methods

2.1 Data

2.1.1 Microbiome data
This study used an open microbiome data source,

curatedMetagenomicData (cMD) accessed through

BioConductor (Pasolli et al., 2017). This dataset used 16S

rRNA amplicon sequencing. Because of its highly conserved

nature, this technique now represents the standard application

to the investigation of the microbiome (Gupta et al., 2019).

For this study, healthy participants over the age of 2 years

old were included. In the first 2 years of life, the gut microbiome

undergoes drastic shaping to its structure and functionality,

particularly between 6 months and 2 years when solid foods

are introduced, resulting in the final maturation stages of the

microbiome (Robertson et al., 2019). Considering this, we

excluded participants under 2 years old as their microbiome is

still in the maturation phases and may therefore report

misleading conclusions. Children over the age of 2 were not

excluded as their microbiome is already more stable.

Additionally, they are counted as part of hospitalisation data,

and we matched the population of each dataset accordingly. The

curat dataset comprised both age data and age category, which

included newborns, school-age, children, and adults. In the case

where subjects had missing data for both age and age category,

they were excluded. The age group comprising newborns were

fully excluded, as well as participants under the age of two. For

ease of analysis, all participants’ age group was collected as
frontiersin.org
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metadata. Additionally, sample-level demographic data of

gender and BMI were used.

We further excluded samples from countries with less than

100 samples, to ensure a level of representativeness of the

microbiome data.

This filtering yielded 3,055 healthy gut microbiome samples

from 12 countries. These were Canada, Denmark, Estonia,

Finland, France, Great Britain, Israel, Italy, Netherlands, Spain,

Sweden, United States of America.
2.1.2 COVID-19 severity data
For each of these countries, COVID-19 severity data was

obtained from Our World in Data (https://github.com/owid/

covid-19-data), using hospitalisations as the preferred metric

representing the number of COVID-19 patients in hospital on a

given day. We chose severity to be operationalised by

hospitalisations as it is the measure most likely to reflect the

hypothesised immune-modulating effects of the microbiome, as

opposed to factors relating to public policy or the healthcare

system. These would have more influence on metrics of cases,

test-positivity-rate, ICU beds, or fatality rates.

We restricted the data to comprise the hospitalisations

before the initiation of the vaccination programme (before

December 2020), to avoid potential confounding effects of

vaccine roll-out. For each country, the number of absolute

hospitalisations was summed over the whole period and then

calculated as hospitalisations per 100,000 population.

Using a weighted average, included countries were grouped

into ‘high’ and ‘low’ COVID-19 severity groups. These include

Canada, Denmark, Estonia, Finland, the Netherlands, and the

USA in the high severity group, and France, Great Britain, Italy,

Israel, Spain, and Sweden in the low severity group. This

grouping is reflective of the data distribution as indicated

in Figure 1.

Finally, country-level confounding variables were collected

that could present relevant confounders in the association

between the microbiome and COVID-19 severity. The first of

these is the proportion of over 70-year-olds in the population, as

the older population is more at risk of severe COVID-19

(Damayanthi et al., 2021). The second includes two measures

of wealth and industrialisation level: the Gross Domestic

Product (GDP) and the Human Development Index (HDI).

These three measures were chosen as there is previous evidence

that they are associated with COVID-19 fatality differences

between countries which suggests potential relevance to

COVID-19 severity in general (Sorci et al., 2020). Additionally,

both age and wealth influence the microbiome (Bowyer et al.,

2019; Badal et al., 2020), meaning there is potential for influence

on the relationship between the microbiome and COVID-19,

as well.
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2.2 Analysis

Standardmicrobiome analysis was performed in R version 4.1.2

(2021-11-01) using the curatedMetagenomicData (3.2.3), phyloseq

(1.38.0), and microbiome (1.16.0) packages. Unsupervised Machine

Learning with TDA was performed in Python 3.1.4 in a Jupyter

Notebook environment, using mainly the pandas (1.2.4), NumPy

(1.19.5), and tmap (1.0) libraries and seaborne (0.11.1) and

matplotlib (3.3.4) for visualisations. All code is available on

GitHub (via thesharmalab-team/microbiome_covid).
2.2.1 Standard microbiome analysis
The composition of the gut microbiome by phylum was

investigated using bar plots to observe differences in the overall

relative abundance of phyla between the COVID-19 groups.

Alpha diversity compromises a mathematical measure of

diversity within the microbiome population. This used the

Shannon index to account for both species abundance and

evenness (p<0.05 considered significant). This metric was

compared within all individual included countries and by

Covid-19 grouped countries.

Beta diversity analysis was run to measure the difference in

microbiome composition between the high and low severity

groups. This was analysed with the Bray-Curtis dissimilarity

matr ix and v i sua l i sed wi th Pr inc ipa l Coord inate

Analysis (PCoA).

A permutational multivariate analysis of variance

(PERMANOVA) was adopted to identify the top genus-level

taxa which significantly differ between the COVID-19 groups.

This further allows for the overall significance testing between

the microbiome composition and the COVID-19 groups

(permutations = 999).
2.2.2 Tmap
Topological Data Analysis (TDA) is an unsupervised

machine learning tool based on algebraic topology and

differential geometry (Carlsson, 2009). This means that it

analyses the topological structure, or shape, of high-

dimensional data without sacrificing complexity. TDA has

many attributes that make it attractive for microbiome

research, particularly its robustness to noise and sensitivity to

signal. This enables it to detect even small and non-linear effects,

as demonstrated in a previous study which showed that it

outperformed standard microbiome tools (Liao et al., 2019).

That study combined the TDA algorithm Mapper (Singh et al.,

2007) with a modified version of the Spatial Analysis of

Functional Enrichment algorithm (SAFE) (Baryshnikova,

2016) into a single library, tmap, for integrated stratification
frontiersin.org
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and association analysis of population microbiome data. This

library is also used in this study.

The Mapper algorithm is a clustering method based on

simplicial complexes that represent high-dimensional data,

such as the microbiome data of this study, as a network graph.

The input is a point cloud, with each microbiome sample

constituting one data point. Through filtering, covering, and

clustering in the high-dimensional space, data points are

converted into nodes and edges. Nodes represent groups of

samples with similar microbiomes which are close in the high-

dimensional space, while edges represent overlap between

these groups.

The SAFE algorithm, as used here, maps variables such as

host metadata or bacterial taxa, onto the microbiome network as

node attributes and generates subnetwork scores. These so-

called SAFE scores exist for each node but can be transformed

to a network-wide score called SAFE enriched score which

enables comparison between variables, as well as co-

enrichment in which relationships between variables

are analysed.

The procedure used to implement tmap in this study is as

follows. The first step is the optimisation of the cover ratio,

which includes hand-tuning the parameters of overlap and

resolution, as well as the minimum number of samples

required to form a node. The cover ratio determines how

sparse versus dense the graph network representation of the

microbiome data will be. Based on these, the final Mapper

network graph is calculated. Here, hand-tuning resulted in

using a minimum number of samples of 7, resolution of 100

and overlap of 1.1. Then, all microbiome taxa and metadata

variables are enriched using the SAFE algorithm. This is then

used for metadata stratification, meaning the comparison of
Frontiers in Cellular and Infection Microbiology 05
enrichment for groups. The final step is co-enrichment analysis,

in which pairwise co-enrichment is calculated and a strict 0.5th

percentile significance cut-off applied.
3 Results

3.1 COVID-19 severity

Table 1 shows the severity of COVID-19 by total

hospitalisations and hospitalisation per 100,000 before the

commencing of the vaccination programme.

Based on the data reported in Table 1, we allocated the 12

countries into two groups: high and low Covid-19

hospitalisation per 100,000. The separating limit used for the

Covid-19 groups is 1842.75 hospitalisations per 100,000. As

displayed in Figure 1, the low severity group includes Canada,

Denmark, Estonia, Finland, the Netherlands, and the United

States of America. The high severity group includes Spain,

France, Great Britain, Israel, Italy, and Sweden. While the tiles

are coloured according to the observed variables, the area of

each tile represents the microbiome sample size for

each country.

Presented in Table 2 are the demographic factors for the

cMD dataset (Gender, Age Group, and BMI) observed for the

high and low Covid-19 grouping.
3.2 Standard microbiome analysis

In assessing the relative abundances of phyla, an increase in

Bacteroidetes and Proteobacteria and a decrease in Firmicutes
TABLE 1 Displayed in the table are the country-level variables for the 12 countries included in the analysis.

Country-level data

Location Proportion over 70 years old GDP HDI Hospitalisations per 100,000 Frequency
Canada 10.80 44,017.59 0.93 803.68 75

Denmark 12.33 46,682.51 0.94 517.23 494

Spain 13.80 34,272.36 0.90 1,968.95 210

Estonia 13.49 29,481.25 0.89 868.86 24

Finland 13.26 40,585.72 0.94 258.09 61

France 13.08 38,605.67 0.90 5,621.29 61

Great Britain 12.53 39,753.24 0.93 2,830.04 250

Israel 7.36 33,132.32 0.92 2,086.07 900

Italy 16.24 35,220.08 0.89 5,364.83 59

Netherlands 11.88 48,472.54 0.94 1,401.75 470

Sweden 13.43 46,949.28 0.95 2,366.49 257

USA 9.73 54,225.45 0.93 1,816.21 194
fr
This includes hospitalisation per 100,000 and the number of microbiome samples (Frequency) which are the basis of the grouping into low and high severity. Confounding factors are also
included for each country: proportion over 70, GDP and HDI. These were obtained from the COVID-19 Dataset from Our World in Data.
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and Actinobacteria is shown in the high group in comparison to

the low group (Figure 2).

The alpha diversity represented by violin plots in Figure 3,

reveals significant differences, via the Wilcoxon Sign test
Frontiers in Cellular and Infection Microbiology 06
(p<0.05), in microbiome diversity and distribution between the

high and low groups. France presents with the greatest bacterial

diversity and the lowest is associated with the United States

of America.
frontiersin.org
l

TABLE 2 The demographics table reported shows the number of samples for each variable by COVID-19 severity group.

Demographic Data by COVID-19 Severity Groups.

Variable Low Severity Group High Severity group Tota
Gender

Female 528 487 1015

Male 476 89 565

Unknown 314 1161 1475

Age Group

Adult 1130 1546 2676

Child 88 92 180

Schoolage 66 3 69

Senior 34 96 130

BMI

Lean (BMI 18.5+ to 25) 508 209 717

Overweight (BMI 25+ to 30) 230 114 344

Obese (BMI 30+ to 35) 146 43 189

Morbid obese (BMI 35+ to 40) 9 2 11

Severe Obese (BMI 40+ to 45) 25 11 36

Super Obese (BMI 45+) 16 11 27

Unknown 384 1347 1731
These are gender, age group, and BMI. These values were obtained from the cMD Dataset.
FIGURE 1

This figure visualises the weighted grouping of countries into COVID-19 severity groups. It shows the hospitalisation rate for each country
included in this study relative to the number of microbiome samples available for that country. While the hospitalisation rate is indicated by
colour, the sample size is represented by the area of each tile. On the left is the raw data, and on the right the grouping into high or low
COVID-19 severity groups (high in red, low in blue) based on a weighted mean into even groups.
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Beta diversity visually presents microbiome composition

variations and differences between Covid-19 groups (Figure 4).

Samples are represented as points on the graph, their closeness

implies their similarity in sequence composition. The clustering

of the high and low groups appears to occupy the same region.
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Extending from the overall differences in phyla abundances

between the high and low groups (Figure 2), differences in top

genus-level taxa were explored and observed in Figure 5. A

noticeable higher proportion of Eubacterium rectale dominates

the low group contrarily to the Prevotella copri in the high group.
BA

FIGURE 3

(A) is a representation of violin plots based on the Shannon alpha diversity index for each country. (B) displays violin plots based on Low and
High COVID-19 groups with corresponding p-values.
BA

FIGURE 2

(A) displays the relative phyla abundance for the Low and High COVID-19 groups. (B) displays the relative abundance for each phylum for High
and Low High COVID-19 groups.
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FIGURE 5

Top genus-level bacteria separating low and high COVID-19 groups. The bars towards the right represent higher abundance in the low COVID-
19 group whilst the bars towards the left indicate higher abundance in the high COVID-19 groups. The x-axis in this figure displays the
logarithmic change of bacteria which differed significantly.
FIGURE 4

Represents the Bray-Curtis dissimilarity distance metric applied to PCoA graph representing the difference between samples grouped by
COVID-19 hospitalisations.
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Overall multiple species of the Ruminococcus genus prevail in the

low group. Both groups include the genus Bacteroides although

distinct species are associated with them. The second most

abundant genus-level taxa associated with the high and low group

are Escherichia coli and Bifidobacterium adolescentis, respectively.
3.3 Topological data analysis

The analysis with TDA Mapper yields a graph network of

the microbiome data that contains 1,323 nodes and 11,258 edges,

with 1,125 (63.18%) samples lost.

SAFE enrichment of the COVID-19 severity groups on the

Mapper graph shows clustering of the groups in distinct areas of

the network: while the low severity group is enriched in the

lower left part of the network, the high severity group is enriched

in several clusters in the right and top parts of the network (see

Figure 6). This suggests that different microbiome profiles are

associated with low and high severity.

The enrichment graph comparing the bacterial taxa with the

most enriched nodes across the network (Figure 7) also shows

distinct clusters of enrichment. Most of these bacteria are highly

common in the human gut. The genus with the highest number

of enriched nodes is Bifidobacterium longum which also has the

highest SAFE enriched score. It is enriched in a large cluster in
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the bottom left of the network, as is for example Eubacterium

rectale (second highest SAFE enriched score). Dorea longicatena

on the other hand, the taxon with the second most enriched

nodes and fifth highest SAFE score, is enriched in a cluster on

the bottom right. While this graph visually suggests co-

enrichment between the severity groups and some taxa, this

can only be shown with pairwise co-enrichment analysis. The

results of this are presented in the association matrix in Figure 8,

with asterisks indicating statistically significant associations.

While the high severity group only significantly co-enriched

with the adult age category, the low severity group has several

associations. It is associated firstly with three of the most highly

enriched taxa, namely Bifidobacteria longum and bifidum, and

Eubacterium rectale. Further, it is associated with many

metadata of interest, including the individual-level variables

male gender and the schoolchildren age category, as well as

the population-level variables proportion of over 70-year-olds in

the population, GDP, and HDI. Of the taxa associated with the

low group, the Bifidobacteria are associated with normal BMI,

and all three taxa co-enrich with each other and taxa such as

Eubacterium hallii, Bifidobacteria bifidum and adolescentis, and

Ruminococcus bromii. The three population-level covariates all

significantly co-enrich with each other. Proportion over 70 years

old and GDP are also each associated with the key taxon

Bifidobacterium longum and other anti-inflammatory bacteria.
FIGURE 6

Topological Data Analysis (TDA) with Mapper: This figure shows the network graph made from the microbiome data. Each node represents a
group of samples with similar microbiome profiles, each edge represents overlap in the groups. The colours represent the COVID-19 severity
groups, enriched with the SAFE algorithm on the network. Specifically, which of the groups has the higher SAFE score at a given node. The
figure shows that there is clear clustering of the groups across the network, with the low severity group mostly enriched across the lower left of
the network graph. The high severity group is enriched in the right and top of the network graph. This suggests different microbiome profiles
associated with the groups.
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Further, the co-enrichment analysis shows clusters of association

between several anti-inflammatory bacteria, and between pro-

inflammatory bacteria. One interesting association is between

Collinsella aerofaciens and Bifidobacteria longum and bifidum,
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which, as mentioned above, are both associated with the low

severity group.

Looking at the SAFE enriched scores of the metadata, it

shows that both country-level metadata, namely proportion over
FIGURE 8

Shown is the association matrix of pairwise co-enrichment of all metadata and the 15 top taxa. The top taxa are a combination of the 10 taxa
with the highest SAFE enriched scores (network-wide) and the 10 taxa with the highest number of enriched nodes. The colours represent the p-
value, asterisks indicate significance at the 0.5th percentile of all pairwise associations (not all represented in the matrix). Of note, the low
severity group is associated with the taxa Eubacterium rectale, Bifidobacterium longum and Bifidobacterium bifidum, and the population-level
confounders GDP, HDI, and the proportion of over 70s in the population. These bacteria are also associated with each other, the same holds
true for the confounders. Additionally, the bacteria and confounders are associated with each other and other anti-inflammatory bacteria such
as Bifidobacterium adolescentis or Faecalibacterium prausnitzii.
FIGURE 7

As in Figure 6, this shows the graph network constructed from the microbiome data with the TDA Mapper algorithm. This graph shows the
bacterial taxa with the highest number of enriched nodes and the nodes in which a given taxon has the highest SAFE score are coloured
accordingly.
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70 and GDP, as well as individual-level metadata, namely adult

age and normal BMI were more highly enriched than the covid

severity grouping (Figure 9).
4 Discussion

This study is the first to apply a population-based indirect

association approach to the association between the gut

microbiome and COVID-19 severity, supported by the use of

unsupervised machine learning with Topological Data Analysis.

The study successfully elucidated significant differences between

countries with low and high COVID-19 severity. We have
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detected microbiome signatures at the genus level which

dominate the severity groups, as well as the influence of

various confounding factors influencing this relationship.

Microbiome composition varies significantly with geographical

location, which is associated with a diverse range of diseases

(Sun et al., 2020; Chen et al., 2021; Romano et al., 2021). Overall,

our results support the complex association between the gut

microbiome and COVID-19 severity.

This study comprises a large sample size of 3,055 gut

microbiome samples which is vastly greater in comparison to

that used by similar studies conducted at the individual level.

Another major strength lies in the combination of two analysis

approaches, both conventional and machine learning. This helps
A

FIGURE 9

Bar chart of the network-wide SAFE enriched score of all metadata. This score is an indicator of effect size, allowing comparison across
variables.
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to strengthen results and conclusions, as well as expand

conventional linear analysis with high-dimensional analysis

that can account for the complexities of the microbiome.

We observed both similarities and discrepancies with

individual-level studies. Our results are consistent with the

study from Yeoh et al., with an increased proportion of

Bacteroides and decreased Actinobacteria in COVID-19

patients compared to controls (Yeoh et al., 2021). A small

cross-sectional study (n=48) reported a decreased diversity and

an increase in the Bacteroidetes phylum associated with

increased severity of COVID-19 which is consistent with our

findings, as well (Hazan et al., 2022). On the other hand, a study

comparing controls with patients of different COVID-19 severity

reported an increase in Actinobacteria in Covid-19 patients.

They report a decrease in Firmicutes in line with our results, as

well as a decrease in microbial diversity as Covid-19 severity

increases which we did not find (Wu et al., 2021). The direct

comparison (PERMANOVA) identified taxa specifically

associated with COVID-19. Yeoh et al. (2021) found COVID-

19 patients to have lower quantities of Eubacterium rectale and

Bifidobacterium adolescentis. We identified Eubacterium rectale

and Bifidobacterium, more specifically the genus adolescentis, as

the two most beneficial taxa. This perhaps accounts for the lack

of such bacterial genera in diseased patients. These genera in

particular are also known to influence the immune response,

further supporting our finding (Zheng et al., 2020; Baradaran

Ghavami et al., 2021).

Consider ing the harmful taxa as ident ified by

PERMANOVA, Prevotella copri, which belongs to the

Bacteroidetes phylum, is also known to play a role in the

development of rheumatoid arthritis (Alpizar-Rodriguez et al.,

2019; Drago, 2019). In a small study comparing COVID-19

patients to controls, a decrease in Prevotella copri abundance was

noted, however, a positive association with viral load of SARS-

CoV-2 in the upper respiratory tract was also identified.

Moreover, the same study found an increase in E.coli in

COVID-19 patients, and a positive correlation with COVID-

19 severity (Zhou et al., 2022), which is supported by the

PERMANOVA in this study. Though E.coli are a commensal

member of the gut microbiota, there are multiple well known

pathogenic subspecies which may alter different cellular

processes (Kaper et al., 2004). In line with other studies, these

bacteria suggest a potential, detrimental role in COVID-19

severity, however, neither bacterium was found to be a

significant association in the TDA analysis. Prevotella copri

was identified as a highly enriched taxon and enriched in a

similar area of the network graph as the high severity group, but

this association did not pass the strict significance threshold.

The unsupervised machine learning with TDA provided

additional insights above and beyond those from the

PERMANOVA. The bacteria significantly associated with the

low group are Eubacterium rectale, Bifidobacterium longum, and

bifidum. These are thought to be anti-inflammatory bacteria and
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the latter two of which are key strains in many probiotic

therapeutics with a host of beneficial effects (Sharma et al.,

2021). Strains from these and other probiotics species have

previously been shown to have beneficial effects on the

incidence and course of other viral respiratory infections,

potentially by acting on the gut-lung axis and the innate

immune system which makes it a target to reduce

inflammation in COVID-19 (Baud et al., 2020; Stavropoulou

and Bezirtzoglou, 2020). Indeed, strains of these two

Bifidobacteria were used in a probiotic ‘cocktail’ to treat 99

hospitalised COVID-19 patients in a randomised controlled trial

(Ivashkin et al., 2021). However, there was no effect of the

probiotic on clinical outcomes. The same was found in a smaller

case-control study (N=30), although neither the strains nor the

dose of probiotics administered was recorded, making that study

difficult to interpret (Veterini et al., 2021). While these results

may appear to suggest a reduced influence of the microbiome on

COVID-19 severity, it is actually in line with the results reported

here. Since we take a population-level approach, we consider the

‘baseline’ microbiome of the population. The results thus speak

to the potential preventative resilience of the microbiome and

our results point towards potential preventative treatments

rather than interventional treatments for COVID-19. This

underscores the value of population-level approaches as taken

in this study for treatment translation. This point is strengthened

by the results reported in a recent preprint of an RCT which

observed that exposed people who took a daily Lactobacillus-

based probiotic were less likely to develop COVID-19 and if they

did, to develop it later than controls (Wischmeyer et al., 2022).

Together, this suggests that the microbiome might be an

accessible and promising target for prophylaxis.

The depleted levels of the Bifidobacteria genus are consistent

with other studies (Bozkurt and Bilen, 2021a). Additionally,

hospitalised patients that received a B.animalis probiotic were

reported to have reduced mortal i ty and improved

symptomatology, as well as a reduction in IL-6 (Bozkurt and

Bilen, 2021b). Such findings are in line with the proposed

mechanism of action of Bifidobacteria species on the immune

system through affecting dendritic cells of the intestinal mucosa

(López et al., 2011). In fact, it has been shown that different

Bifidobacteria strains have specific effects on T cell

differentiation. For example, there are four B.bifidum strains

that are Th17 inducing (López et al., 2011). This is particularly

interesting as there is now evidence to suggest that Th17, and the

Th17 inducer cytokine IL-6, could be a driver of the COVID-19

cytokine storm, although mechanistic insight so far is

inconclusive (Paiva et al., 2021). This is supported by previous

evidence that suggests the microbiome as a regulator of the Treg/

Th17 axis, which is responsible for appropriate protection from

pathogens without excessive or autoimmune response

(Omenetti and Pizarro, 2015). Together, this evidence is thus

highly suggestive of a link between Bifidobacterium levels and

COVID-19 severity.
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Nevertheless, there are some discrepancies between our

findings and the literature. For example, Ruminococcus torques

had been found to be more abundant in Covid-19 patients

whereas our PERMANOVA analysis includes this specific

species in the beneficial taxa. Furthermore, the bacteria

Collinsella aerofacis has been detected in a recent study

published in 2020 in Covid-19 hospitalised patients, therefore

going against our findings from the PERMANOVA (Zuo et al.,

2021). In the TDA co-enrichment analysis, however, this species

was associated with the probiotic species associated with the low

severity group - Bifidobacterium bifidum - and Eubacterium

hallii, Ruminoccus obeum, and Dorea formicigenerans. This

could suggest an indirect mechanism of action on COVID-19

severity by reducing the abundance of those probiotic species

that future studies should explore further. In line with the TDA

finding and the Zuo et al. study, but not the PERMANOVA

finding, the literature suggests a more pro-inflammatory profile

of Collinsella aerofacis, as it seems to play a role in regulating

immunity: it is associated with immunotoxicity in immune

checkpoint inhibitor therapy in cancer (Kageyama et al.,

2020), with type 2 diabetes (Lambeth et al., 2015), and with

rheumatoid arthritis (Chen et al., 2016), although other studies

report the opposite (Jeong et al., 2019). In overweight and obese

pregnant women, a study found a positive association of the

genus Collinsella with circulating insulin and a negative

association with dietary fibre intake (Gomez-Arango et al.,

2018). In our study, the bacterium was associated with normal

BMI, as were the taxa it co-enriched with. This discrepancy

could be due to different effects of species within a genus. In

addition to pointing toward potentially novel mechanisms of

action, these findings also support the superior performance of

TDA over conventional analysis in picking up subtle and

complex relationships, as suggested by Liao et al. (2019).

In addition to these bacterial associations, TDA suggested an

association with both individual- and country-level

confounders. Our results show associations of the low severity

group with the percentage of over 70-year-olds in the

population, GDP, and HDI, which were all also associated

with each other, and the three anti-inflammatory bacteria

associated with low severity. This suggests a confounding effect

of these variables on the microbiome-disease severity

association. This finding is in line with a previous study

looking at between-country variation of the case fatality rate

(CFR) which found positive associations between CFR and

percentage over 70-year-olds, GDP, and level of democracy

(Sorci et al., 2020). Their results suggest that there are highly

complex interactions between different facets of healthcare

spending, policy, and social or cultural factors that impact the

severity of COVID-19. However, they can impact the

microbiome as well. The diet of a population changes with

population wealth, becoming more diverse and nutrient-rich

with rising GDP (Ritchie and Roser, 2017). Diet in turn

massively impacts the composition of the microbiome (David
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et al., 2014). Further, socioeconomic status at the individual level

is also associated with changes in microbiome composition

(Bowyer et al., 2019). Similarly, the composition of the

microbiome changes at an individual level with increasing age

(Yatsunenko et al., 2012; Zapata and Quagliarello, 2015; Badal

et al., 2020), which could arguably be reflected in the

composition of the population microbiome.

Further, both the age distribution of a country, as well as its

wealth, impact the number of comorbidities present in that

population that could impact COVID-19 severity and the

microbiome. This again could be mitigated by the

performance of different healthcare systems. There are several

different ways in which these three variables and the

microbiome-COVID-19 relationship can be related. To

disentangle these effects, future research needs to account for

further variables such as diet, healthcare spending, healthcare

performance, comorbidities, and public health policy.

Additionally, our study supports an association between

male gender and low severity, which is contrary to the widely

reported increased risk of men for worse COVID-19 outcomes

and death (Jin et al., 2020). A large meta-analysis reports that

male patients have much higher odds of both requiring intensive

care (OR 2.84) and mortality (OR 1.39), which occurs globally

(Peckham et al., 2020). This result is likely caused by a gender

imbalance in the microbiome dataset: the dataset includes twice

as many females as males and the high severity group specifically

only contains 5% males. Similarly, low severity was significantly

associated with the school-age age category, which is also

underrepresented in the high severity group and has a low

sample number in general. For variables with few samples

which are highly distributed across the network, enrichment is

difficult to interpret as permutation has a low probability.

There are several limitations of this study.

The study assesses association and not causality, which

would require prospective and interventional studies.

Additionally, the range of confounding factors included in our

study has been limited due to the availability of data. For

example, we do not have extensive metadata on ethnicity, or

diet, antibiotics use, and other lifestyle habits of individual

samples in our dataset – while this data exists for around 10-

15% of subjects in the cMD dataset, it is not broad enough to be

used in our analysis. These factors are all known to affect the

microbiome (Dethlefsen et al., 2008; Monda et al., 2017; Vaughn

et al., 2017; Huang and Shi, 2019), and in the case of ethnicity is

also known to affect COVID-19 severity (Berkowitz et al., 2020).

Further, by excluding samples with known diseases to avoid

confounding in the microbiome dataset, we also limit how

representative the included microbiome data is of its

population, potentially producing sampling error.

There are similar issues with population-level data: while the

observed co-enrichment of the country-level confounders and

both the low severity group and significant taxa suggests a

considerable confounding or mediating effect, more fine-
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grained effects were not able to be detected due to a lack of

appropriate variables. However, these three variables were

chosen based on the existing literature and an a posteriori

inclusion of further interesting variables to disentangle the

observed effects is beyond the scope of this study. Further

confounders that we would suggest being included in future

studies can be grouped into four archetypes that affect both the

microbiome as well as COVID-19 severity. First, confounders

reflecting underlying population genetics such as the prevalence

of specific COVID-19 prognostic risk alleles (Fricke-Galindo

and Falfán-Valencia, 2021) that could have systematic effects on

microbiome composition (Goodrich et al., 2014). Second,

confounders reflecting individual lifestyle, such as smoking,

which are known to affect both COVID-19 severity (Gao et al.,

2021) and the microbiome (Savin et al., 2018). Third,

confounders reflecting the healthcare system as a proxy

measure of a country’s ability to treat COVID-19 such as the

rate of ICU beds or ECMO capabilities, but also as a proxy

measure of the general health of a country as reflected by

healthcare expenses per person. Finally, population health

measures and policy during the pandemic should be included

as they have an effect both on COVID-19 prevalence

and severity (Huang et al., 2021; Arnold et al., 2022), as well

as on the microbiome due to lifestyle changes induced by

lockdowns and increased hygiene (Burchill et al., 2021; Finlay

et al., 2021).

Further, due to the scarcity of samples and confounding

variables, multiple countries ought to be excluded. The study

may have benefitted from the inclusion of more countries to

observe a full geographical variation. On the same note, we have

noted an uneven distribution of microbiome samples across the

countries, with an overall range of gut microbiome samples from

24 in Estonia to 900 in Israel, although using the weighted mean

as a threshold for the low and high groups of disease severity

allowed the groups to be even. Of course, a key assumption of

this study is that the observed samples are representative of their

populations. Even though a larger sample size and more

evenness between countries would increase the likelihood of

that assumption holding true.

Another limitation lies in the metric chosen to assess

COVID-19 severity. The hospitalisation rate can be influenced

by factors such as the healthcare system itself and the pressure

on that system at any moment during the pandemic. Other

potentially influential factors can revolve around public policy

and in particular public health measures such as social

distancing and lockdowns, as infection rates and thereby

hospitalisations could have been affected. In light of these

limitations, future studies should therefore aim to investigate

the causal role of the gut microbiome in COVID-19 severity and

further examine the long-term effects of the gut microbiome.

The findings of this study, together with similar findings in

the literature, have translational potential. Considering the

strong associations between the gut microbiome and the
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severity of COVID-19, future studies should look further into

specific mechanisms with a particular emphasis on the possible

beneficial role of prebiotics and probiotics and targeted

dietary interventions.

Additionally, as previous studies have demonstrated

antiviral activity of specific probiotic strains in several

respiratory viruses, including other coronaviruses and

COVID-19, special attention should be paid to more targeted

approaches (Baud et al., 2020; Bozkurt and Bilen, 2021b). The

need for strain-level studies is supported by the finding that

different strains of the same species can have differential effects

on T cell differentiation López et al., 2011. This includes

individual- and population-level studies at the strain level, as

well as targeted case-control studies and RCTs. However, the

largest effect of probiotics may be exerted when delivered as a

public health intervention. As this study suggests, a more anti-

inflammatory microbiome profile may be a contributor to fewer

hospitalisations from COVID-19 - with effects not only for the

individual but for the whole country. Less pressure on the

healthcare system could mean potentially fewer excess deaths

due to cancelled routine appointments and planned surgeries as

has been observed especially for cancer patients during the

pandemic (Maringe et al., 2020; Riera et al., 2021). The

microbiome is a particularly accessible treatment target for

population-level interventions, as it can be modulated through

oral supplements or diet. Similar to how foods, such as flour and

salt, and other products, such as toothpaste, have been fortified

to successfully prevent birth defects (Brown et al., 2011), iodine

deficiency (Andersson et al., 2010), and caries (Twetman et al.,

2003), respectively, such everyday products could be fortified to

improve the microbiome.
4.1 Conclusion

The findings of this study suggest an association between the

microbiome of country populations at baseline and the severity

of COVID-19 experienced during the pandemic, as measured by

hospitalisations. Specifically, anti-inflammatory bacterial taxa

including Bifidobacteria and Eubacterium rectale were

identified as protective. We also find evidence that

characteristics of countries, such as the proportion of over 70-

year-olds, as well as GDP and Human Development Index,

influence this association between the microbiome and COVID-

19 severity. Future studies should aim to disentangle the direct

and indirect effects of wealth, policy, and population

characteristics on the microbiome and on hospitalisations.

These findings were made possible by a unique study design of

indirect association using open-access population-level data. As

our findings both support and expand upon individual-level

findings, this study highlights the unique capabilities of such

population-level studies for understanding diseases and finding

novel treatment avenues, especially when considering the
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microbiome which is a particularly accessible target. Finally, the

use of an unsupervised machine learning tool, Topological Data

Analysis, strengthened and expanded findings from

conventional microbiome analysis, particularly through its

ability to account for nonlinear relationships and the effect of

confounders. This validates TDA as a valuable tool for

microbiome analysis , part icularly for microbiome-

disease associations.
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