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action of Xuanfei Baidu granule
(XFBD) in the treatment
of COVID-19 based on
molecular docking and
molecular dynamics
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Mei Wu1, Chaochao Wang1, Hengxiang Xu1, Yijun Chen1,
Ruijiao Zhang2, Xiaosong Hu2, Tian Chen2, Jing Tang3,
Qin Deng3, Dong Li1, Zheng Yang2*, Guibao Xiao3*

and Xiao Zhang2*

1Clinical Medicine, Chengdu Medical College, Chengdu, China, 2Chengdu Medical College of Basic
Medical Sciences, Chengdu, China, 3Department of Infectious Diseases, First People’s Hospital of
Ziyang, Ziyang, China
Purpose: The Corona Virus Disease 2019 (COVID-19) pandemic has become a

challenge of world. The latest research has proved that Xuanfei Baidu granule

(XFBD) significantly improved patient’s clinical symptoms, the compound drug

improves immunity by increasing the number of white blood cells and

lymphocytes, and exerts anti-inflammatory effects. However, the analysis of

the effective monomer components of XFBD and its mechanism of action in

the treatment of COVID-19 is currently lacking. Therefore, this study used

computer simulation to study the effective monomer components of XFBD and

its therapeutic mechanism.

Methods: We screened out the key active ingredients in XFBD through TCMSP

database. Besides GeneCards database was used to search disease gene

targets and screen intersection gene targets. The intersection gene targets

were analyzed by GO and KEGG. The disease-core gene target-drug network

was analyzed and molecular docking was used for verification. Molecular

dynamics simulation verification was carried out to combine the active

ingredient and the target with a stable combination. The supercomputer

platform was used to measure and analyze the number of hydrogen bonds,

the binding free energy, the stability of protein target at the residue level, the

solvent accessible surface area, and the radius of gyration.

Results: XFBD had 1308 gene targets, COVID-19 had 4600 gene targets, the

intersection gene targets were 548. GO and KEGG analysis showed that XFBD

played a vital role by the signaling pathways of immune response and

inflammation. Molecular docking showed that I-SPD, Pachypodol and
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Vestitol in XFBD played a role in treating COVID-19 by acting on NLRP3, CSF2,

and relieve the clinical symptoms of SARS-CoV-2 infection. Molecular

dynamics was used to prove the binding stability of active ingredients and

protein targets, CSF2/I-SPD combination has the strongest binding energy.

Conclusion: For the first time, it was found that the important active chemical

components in XFBD, such as I-SPD, Pachypodol and Vestitol, reduce

inflammatory response and apoptosis by inhibiting the activation of NLRP3,

and reduce the production of inflammatory factors and chemotaxis of

inflammatory cells by inhibiting the activation of CSF2. Therefore, XFBD can

effectively alleviate the clinical symptoms of COVID-19 through NLRP3 and

CSF2.
KEYWORDS

COVID-19, Xuanfei Baidu granule, bioinformatics analysis, molecular docking,
molecular dynamics
Introduction

Coronavirus disease 2019 (COVID-19) is a highly infectious

disease caused by severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) (Lai et al., 2020). Since the outbreak of

COVID-19, it has been characterized by strong infectivity,

long treatment time after infection, and high mortality of

patients with severe illness (Fogarty H, et al., 2020; Rowan NJ,

et al., 2020; Goldman DT, et al., 2021). The latest clinical
02
research findings that the main physiological and pathological

feature of severe COVID-19 is “cytokine storm”, also known as

inflammatory storm (Ouédraogo et al., 2020). It is an immune

response produced by a positive feedback loop between

cytokines and immune cells, and it is also the state which the

body’s immune system has evolved from “self-protection” to

“over-protection” (Bellanti and Settipane, 2020). Therefore, the

outbreak of inflammation is an important pathological factor

leading to the aggravation and even death of patients with
GRAPHICAL ABSTRACT

The mechanisms analysis of Xuanfei Baidu Granules (XFBD) in the treatment of COVID-19.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.965273
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Xiong et al. 10.3389/fcimb.2022.965273
respiratory damage caused by COVID-19 (Liu et al., 2021),

however, there is no clear antiviral therapy for COVID-19 in the

clinic (Panyod et al., 2020). The latest clinical trials show that

traditional Chinese medicine has a significant effect on viral

pneumonia. Clinical studies have shown that XFBD combined

with conventional drugs can significantly improve clinical

symptoms such as fever, cough, fatigue, loss of appetite, etc.

XFBD treatment can increase the number of white blood cells

and lymphocytes to improve immunity, while significantly

reducing C-reactive protein and erythrocyte sedimentation rate

to play an anti-inflammatory effect (Xiong et al., 2020; Zhao

et al., 2021a). Meta-analysis demonstrated that XFBD alleviated

clinical symptoms in most patients with mild or moderate

COVID-19, and reduced the transition of mild patients to

severe disease (Runfeng et al., 2020; Wang et al., 2022).At

present, the symptomatic treatment of COVID-19 with

integrated traditional Chinese and Western medicine has been

clinically applied in China, and good therapeutic effects have

been achieved.

Currently, the National Health Commission of China

recommends the traditional Chinese medicine compound

Xuanfei Baidu Granule (XFBD) for the clinical treatment of

COVID-19 (Xie, 2020).

Xuanfei Baidu granule (XFBD) consists of 13 Chinese

materia herbs: bitter almond, atractylodes, artemisia annua,

patchouli, polygonum cuspidatum, verbena, reed root,

ephedra, coix seed, exocarpium, licorice, semen lepidii, and

gypsum (Zhao et al., 2021a). XFBD is a traditional Chinese

medicine compound for the treatment of anti-epidemic, which is

designed for the pathological characteristics of wet toxin (Xie,

2020). XFBD has the effects of inhibiting viral infections,

promoting the absorption of lung inflammation, and reducing

inflammatory factors.

A large number of clinical studies have shown that Xuanfei

Baidu granule (XFBD) can effectively relieve the clinical

symptoms of COVID-19 patients (Li et al., 2021a). The latest

clinical study found that XFBD combined with conventional

drugs significantly improved the clinical symptoms of COVID-

19 patients, increased the number of white blood cells and

lymphocytes, and decreased C-reactive protein and erythrocyte

sedimentation rate. This result suggested that XFBD had a

potential immunomodulatory role in the treatment of

COVID-19 (Xiong et al., 2020).

However, there is currently a lack of more in-depth and

systematic research on Xuanfei Baidu granule (XFBD) in the

treatment of COVID-19. And XFBD is a traditional Chinese

medicine compound, its complex components also hinder the

related research in the treatment of COVID-19. Molecular

dynamics can comprehensively and systematically simulate the

interaction and binding stability between small molecule

monomers and protein targets with the help of powerful

computing power.
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Molecular dynamics (MD) is an interdisciplinary subject

based on the knowledge of physics, chemistry, life science,

materials and other disciplines. It uses large computer clusters

(or even supercomputers) as the carrier, it aims to obtain data

such as microstructure, physical and chemical properties, and

performance characterization parameters of materials by

calculation (Santos et al., 2019). It is a supplement and in-

depth excavation of the traditional materials discipline mainly

based on experiments. Through the data obtained by calculation,

the mechanism behind the experiment is researched and

analyzed at multiple levels from the microscopic, mesoscopic

and macroscopic scales. So that it is not only limited to

“qualitative”, but can rise to the theoretical height of

“quantitative” (Anuar et al., 2021). It analyzes the behavioral

law of molecular motion by solving the potential function of

intermolecular interaction and the equation of motion, simulates

the dynamic evolution process of the system, and provides

microscopic quantities (such as: the coordinates and velocity

of molecules, etc.) and macroscopic observable quantities (such

as: the relationship between the temperature, pressure, heat

capacity of the system, etc.) (Sivakumar et al., 2020), so as to

study the equilibrium properties and mechanical properties of

the composite system, it is an effective research method to study

the properties of drugs and protein stability. Firstly, molecular

dynamics solves the equation of motion for a many body system

composed of atomic nuclei and electrons. Secondly, molecular

dynamics can not only directly simulate the macroscopic

evolution characteristics of matter, but also obtain calculation

results that are consistent with or similar to the experimental

results. Finally, molecular dynamics can give the microscopic

evolution process of the system from the atomic level, and

intuitively show the mechanism and law of the experimental

phenomenon. Therefore, molecular dynamics can provide a

clear picture of the microstructure, particle motion and their

relationship with macroscopic properties. Molecular dynamics

can also make our research more efficient, more economical, and

more predictable.

This study used bioinformatics to screen out potential

effective monomers from Xuanfei Baidu granule (XFBD). The

core intersection targets of XFBD and COVID-19 were screened

by GeneCards database. PPI, GO and KEGG were used to

analyze the potential associations between gene targets to

explore the mechanisms of action and potential pathways.

Molecular system movement was used to their simulate the

result of calculating interrelationships from the cellular level to

the chemical group level. Molecular docking was used to

determine the affinity of monomeric compounds and protein

targets, molecular dynamics was used to simulate the stability of

bound complexes. The research on the mechanism of XFBD in

the treatment of COVID-19 will promote its clinical application,

lay a solid foundation for related research and promote

further research.
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Material and methods

Identification and screening of
active compounds

Traditional Chinese Medicine Systems Pharmacology

Database (TCMSP, http://tcmspw.com/) was used to screen

and analyse all compounds of the thirteen Chinese medicinal

herbs in Xuanfei Baidu granule (XFBD) (Daina et al., 2019).

Compounds of XFBD are screened according to two key

parameters, namely oral bioavailability (OB) and drug

similarity (DL), in the assessment categories of absorption,

distribution, metabolism and excretion. OB was defined as the

degree to which active ingredients are used by the body (Ru et al.,

2014). OB largely determines the effect of the compound on the

disease, DL is used to screen and refine candidate compounds

early in drug development. In this study, the active compounds

in XFBD were selected according to the criterion of OB≥30%

and DL≥0.18 (Xu et al., 2012).
The intersection of disease and drug
gene targets

We used the GeneCards (https://genecards.weizmann.ac.il/

v3/), “COVID-19” and “SAR-Cov-2” were uesd to be the key

words to obtain the disease gene targets, and COVID-19-related

genes were screened from genecard with relevance score≥5 as

the threshold, relevance score is a comprehensive evaluation of

the association between genes and research diseases. We also

imported the 13 Chinese materia herbs of Xuanfei Baidu granule

(XFBD) into genecards to obtain drug gene targets. The drug

gene targets and the disease gene targets were combined through

the venny website to obtain intersection gene targets.
Xuanfei Baidu granule treatment of
COVID-19 interaction protein targets
(Protein-Protein Interaction)
network building

The STRING database was used to analyze the protein-

protein interaction (PPI) of Xuanfei Baidu granule (XFBD) in

the treatment of COVID-19. STRING database covers the

majority of known human protein–protein interaction

information (Szklarczyk et al., 2019). In order to further clarify

the interaction between potential protein targets, all potential

therapeutic protein targets of XFBD on COVID-19 were

imported into Cytoscape 3.7.1 to analyze (Shannon et al.,

2003), we defined the protein type as “Homo sapiens”, and

obtained relevant information on protein interactions by

STRING database. Finally, the network topology parameters
Frontiers in Cellular and Infection Microbiology 04
were analyzed by Cytoscape 3.7.1, and the hub protein targets

were screened out according to the criterion that the node degree

value and the betweenness center value were greater than the

average value.
The gene target enrichment analysis

The interaction gene targets were used in DAVID database

for gene ontology (GO) functional annotation and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis. We obtained the molecular function (MF), cellular

component (CC) and related biological process (BP) of the

gene targets through GO enrichment. The disease-related

targets obtained from screening were input into the DAVID

database by entering the list of target gene names and selecting

the species as “homo sapiens” (Huang Da et al., 2009). In this

study, KEGG pathway enrichment analysis was performed on

the relevant signaling pathways involved in the target, and gene

target screening was performed under the condition of p<0.05.

The main biological processes and signaling pathways of Xuanfei

Baidu Granules (XFBD) on COVID-19 were analyzed. This

study visualized the results of GO enrichment and KEGG

enrichment by the Omicshare Tools platform (Cao et al., 2022).
Network diagram of “ Disease-core
target gene-drug “

Cytoscape 3. 7. 1 network map software was used to

construct a disease-core target gene-drug network and conduct

topological analysis. The core gene targets can be screened based

on the node degree value greater than two times the median

(Cao et al., 2022).
Component target molecular docking
and validation of the docking protocol

Molecular docking was used to study the molecular affinity

of Xuanfei Baidu granule (XFBD) small-molecule potent

antiviral compounds with COVID-19 protein targets. The

protein crystal structure used for docking was downloaded

from the PDB database, and the 3D structure of the small

molecule was downloaded from the PUBCHEM database, and

energy minimization was performed under the MMFF94 force

field. In this study, AutoDock Vina 1.1.2 software was used for

molecular docking work. Before docking, PyMol 2.5 was used to

process all receptor proteins, including removal of water

molecules, salt ions and small molecules (Kim et al., 2016).

Then set up the docking box, use the PyMol plugin center of

mass.py to define the center of the docking box based on the
frontiersin.org
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position of the crystal ligand, and set the box side length to 22.5

angstroms. In addition, ADFRsuite 1.0 was used to convert all

processed small molecules and receptor proteins into the

PDBQT format necessary for docking with AutoDock Vina

1.1.2. When docking, the exhaustiveness of the global search is

set to 32, and the rest of the parameters remain the default

settings. The output highest scoring docked conformation was

considered to be the binding conformation for subsequent

molecular dynamics simulations (Kim et al., 2016). The study

used the original crystal ligand of the protein target as a positive

reference, and we analyzed and compared the binding posture of

the original crystal ligand and protein, the chemical bond length

and the chemical bond angle by re-docking the original crystal

ligand and protein. Finally, the consistency of the binding mode

can indicate the correctness of the molecular docking protocol

(Cao et al., 2022).
Molecule dynamics

The highest scoring conformations determined by molecular

docking analysis were further validated by running 50ns

molecular dynamics simulations. Molecular dynamics (MD)

simulation is a comprehensive set of molecular simulation

methods combining physics, mathematics and chemistry. This

method mainly relies on Newtonian mechanics to simulate the

motion of molecular systems, we calculate macroscopic

properties such as thermodynamic quantities of a system by

taking samples from an ensemble of different states of a

molecular system.

In this study, all-atom molecular dynamics simulations were

performed based on the small molecule and protein complexes

obtained from the molecular docking results as the initial

structure, and the simulations were performed using AMBER

18 software (Maier et al., 2015). The charge of the small molecule

was calculated in advance by the antechamber module and the

Hartree–Fock (HF) SCF/6-31G* of the gaussian 09 software

before the simulation. Afterwards, small molecules and proteins

were described using the GAFF2 small molecule force field and

the ff14SB protein force field, respectively. Each system used the

LEaP module to add hydrogen atoms to the system, added a

truncated octahedral TIP3P solvent box at a distance of 10 Å,

and added Na+/Cl- to the system to balance the system charge

(Harrach and Drossel, 2014). Finally, the simulated topology and

parameter files were exported.

Ligands were parameterized using a generic amber force

field (GAFF) using a combination of AmberTools18 and

ACPYPE 51 protocols (Wang et al., 2006). After the initial

addition of hydrogen atoms to each system, the system uses the

steepest descent algorithm for vacuum minimization. Solvent

was then added and the system ions were equilibrated using

counter ions (Na+/Cl-). The proteins were all energy minimized

using the steepest descent method and the conjugate gradient
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method. This was followed by an NVT and NPT ensemble (1000

ps, dt of 2 fs) and an MD run (100 ns, dt of 2 fs) at 298 K

temperature and 1 bar pressure using the skip integrator

algorithm. The coordinates and energy of the system are saved

every 10 ps. Finally, 50ns production simulations were carried

out for each system under periodic boundary conditions. For all

simulations, the van der Waals force (vdw) cutoff and short-

range electrostatic interactions were set to 10 Å. The Particle-

Mesh-Ewald (PME) method is used to evaluate long-range

electrostatic interactions. Molecular dynamics simulation

trajectories include protein-ligand complex root mean square

deviation (RMSD), root mean square fluctuation (RMSF), radius

of gyration and solvent accessible surface area (SASA).
MMGBSA binding free energy calculation

The binding free energy was investigated using the MM-

PBSA method, and the conformational stability was studied in

detail. The binding free energies between proteins and ligands

for all systems were calculated by the MM/GBSA method (Hou

et al., 2011). The molecule dynamics trajectory of 50 ns was used

for calculation, and the specific formula is as follows:

DGbind = DGcomplex − DGreceptor+DGligand

� �

= DEinternal + DEVDW + DEelec + DGGB+DGSA

In the formula, Einternal represents internal energy, EVDW

represents van der Waals interaction and Eelec represents

electrostatic interaction. The internal energy includes bond

energy (Ebond), angular energy (Eangle) and torsional energy

(Etorsion); GGB and GGA are collectively referred to as

solvation free energy, where GGB is the polar solvation free

energy and GGA is the non-polar solvation free energy. For this

paper, the GB model developed by Nguyen was used for

calculation (igb = 2). The non-polar solvation free energy

(GSA) was calculated based on the product of surface tension

(g) and solvent accessible surface area (SA), GSA = 0.0072 ×

SASA15. The entropy change is ignored in this study due to high

computational resource consumption and low precision (Cao

et al., 2022).
Results

Identification of potentially active
compounds in Xuanfei Baidu granule

In total, 178 potential compounds in Xuanfei Baidu granule

(XFBD) were retrieved from the TCMSP database with the

criteria of DL≥0.18 and OB≥30%, by further improving the

OB score (OB≥74%), five core active compounds in XFBD were

screened out, shown in Table 1.
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Obtained common gene targets
by intersection

We obtained 1308 Xuanfei Baidu granule (XFBD) gene

targets and 4600 COVID-19 gene targets. A total of 548

intersection gene targets were processed by Venny, shown

in Figure 1.
Core intersection target screening and
PPI network diagram

We obtained intersection genes targets of relevance score

through GeneCards, relevance score≥5 which were considered as

a core intersection gene target, through STRING database

analysis of 33 mapping of the core intersection gene targets of

COVID-19 and XFBD, the study constructed the PPI network

interaction map of the target protein of XFBD in the treatment

of COVID-19, shown in Figure 2A. 11 core genes (such as CSF2,

IFNG, NLRP3, etc.) were obtained by setting the interaction

score (confidence degree>0.95), and the study used the 11 core

gene targets to reconstruct the core PPI network, shown

in Figure 2B.
GO and KEGG enrichment analysis

The 33 intersection gene targets were imported into the

DAVID database for enrichment analysis. Under the condition

of p<0.05, the GO enrichment analysis yielded a total of 277 GO

entries, including 239 BP entries, 23 CC entries, and 15 MF

entries. According to the number of targets contained, the top 10

BP, CC andMF compressions were screened. The results showed

that in biological processes, biological processes were highly

correlated with inflammation and viral replication, mainly

involving the cytokine-mediated signaling pathway,

inflammatory response, and immune response. Among cell

components, extracellular space, extracellular region and cell

surface account for a relatively large amount. In molecular

functions, cytokine activity, protein binding and receptor
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binding are relatively high, shown in Figures 3A–F. KEGG

pathway analysis yielded 72 pathways with p<0.05. According

to the number of targets contained, the first 15 pathways were

screened. The results showed that the enriched pathways

involved multiple pathways related to inflammation and

immune response, mainly coronavirus disease COVID-19,

influenza A, cytokine-cytokine receptor interaction and other

signaling pathways, shown in Figures 3G, H.
Disease-core gene target-drug network

The disease-core gene target-drug network was constructed

to show the main signal pathway and biological process of

Xuanfei Baidu granule (XFBD) in the treatment of COVID-19,

shown in Figure 4.
Molecular docking

The 11 core intersection gene targets were selected for

molecular docking. The stability of receptor-ligand binding

depends on the binding energy. The lower the binding energy

of the complex, the more stable the receptor-ligand binding

conformation. The results show that the binding of CSF2/I-SPD

complex is mainly maintained by hydrogen bonding and

hydrophobic interaction. For example, I-SPD can form

hydrogen bonding with GLN-43 on CSF2 protein, and also

with TYR-71, LEU-42, ILE-104, PRO-105 forms a hydrophobic

interaction, shown in Figure 5A. The binding of CSF2/Vestitol

complex is mainly through hydrophobic interaction, for

example, the small molecule Vestitol and PRO-76, LEU-42,

TYR-71, ILE-104, PRO-105 on the protein form hydrophobic

interaction, shown in Figure 5B. In the NLRP3/I-SPD binding

complex, the small molecule I-SPD forms hydrogen bonds with

GLN-468, SER-470, ALA-72, and also with VAL-197, GLU-473,

LEU-472, TYR-476, PHE -419 forms a hydrophobic interaction.

In addition, we also observed that I-SPD and ARG-422 form

cationic pi conjugation, shown in Figure 5C. The binding of

NLRP3/Pachypodol suggested that the small molecule
TABLE 1 The core active compounds in Xuanfei Baidu Granules (XFBD) Binding free energies and energy components.

MOL_ID Molecule Name OB MW Alogp Caco2 BBB DL

MOL013287 Physovenine 106.219 262.34 2.08 0.50 0.20 0.18

MOL012922 I-SPD 87.34 327.41 3.09 0.75 0.20 0.54

MOL007207 Machiline 79.64 285.37 2.82 0.78 0.08 0.23

MOL005890 pachypodol 75.06 356.40 2.99 0.83 0.11 0.39

MOL000500 Vestitol 74.65 272.32 3.14 0.85 0.29 0.20
frontiersin
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Pachypodol forms hydrogen bonds with VAL-197, GLU-200

and GLU-213, and also forms hydrophobic interactions with

LEU-199 and PRO-196 on the protein, shown in Figure 5D,

molecular docking result scores are shown in Figure 6.
Molecular dynamics results

The root mean square partiality of molecular dynamics

simulation is used to reflect the movement process of the

complex. The larger the RMSD value of the complex, the more

severe the fluctuation and the more intense the movement. On

the contrary, the movement is stable. The RMSD of the four

systems gradually converged in the first 5 ns of the simulation,

and kept stable fluctuations in the subsequent simulations. It is

suggested that the motion of the four complexes is stabilized
Frontiers in Cellular and Infection Microbiology 07
after the combination of the kinetics. In comparison, CSF2/

Vestitol (red line) has the lowest RMSD, followed by NLRP3/I-

SPD, then CSF2/I-SPD, and finally NLRP3_Pachypodol,

indicating that the stability of these complexes is CSF2/I-SPD,

CSF2/Vestitol, NLRP3/I-SPD, NLRP3/Pachypodol. However, it

is worth emphasizing that the RMSD results of all complexes

suggest that small molecules can bind to proteins and maintain a

relatively stable state. The results are shown in Figure 7.
Combined free energy calculation results

Based on the trajectory of the molecular dynamics

simulation, we calculated the binding energy using the

MMGBSA method, which can more accurately reflect

the binding mode of small molecules and target proteins. The
FIGURE 1

Intersection targets-active ingredient networks. Targets of the intersection of Xuanfei Baidu granule (XFBD) and COVID-19.
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binding energies of CSF2/I-SPD, CSF2/Vestitol, NLRP3/I-SPD,

and NLRP3_Pachypodol complexes were -20.89 ± 1.32 kcal/mol,

27.57 ± 2.78 kcal/mol, -30.52 ± 1.17 kcal/mol, and -21.65 ± 3.36

kcal/mol. The negative values indicate that both molecules have

binding affinity for the target protein, and lower value indicate

stronger binding. Obviously, our calculations show that these

molecules and the corresponding proteins have a certain binding

affinity and are very strong. Among them, NLRP3/I-SPD and

CSF2/Vestitol have higher binding energies. For the binding

energy of the NLRP3/I-SPD complex, the energy decomposition

shows that the van der Waals energy is the main contribution

energy. For the binding energy of the CSF2/Vestitol complex, the

energy decomposition shows that the electrostatic energy is the

main contribution energy. The experimental results are shown

in Table 2.
Hydrogen bond analysis

Hydrogen bonds are one of the strongest non-covalent

binding interactions. The more the number, the better the

binding. The results suggest that the number of hydrogen bonds

between small molecules and NLRP3 is significantly more than

the number of hydrogen bonds with CSF2. Combining the above

binding modes, we can see that the number of hydrogen bonds is

small. The interaction of molecules and NLRP3 may be

dominated by hydrogen bonding, especially the NLRP3/I-SPD

complex with the strongest binding energy. The interaction of

small molecules with CSF2 may not mainly occur through

hydrogen bonding, but through hydrophobic interaction. The

results are shown in Figure 8.
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The stability of the target protein at the
residue level

To explore the local fluctuations of macromolecular proteins

at the residue level, the vibrations of each residue after

compound binding were explored as root mean square

fluctuations (RMSF). RMSF can reflect the flexibility of

proteins during molecular dynamics simulations. Usually, after

the drug binds to the protein, the flexibility of the protein

decreases, thereby achieving the effect of stabilizing the protein

and exerting the effect of enzymatic activity. The RMSF of the

CSF2 and NLRP3 proteins after binding different small

molecules is generally low, indicating that the protein as a

whole has good rigidity, shown in Figure 9. It is worth noting

that for CSF2, the decrease in RMSF after the binding of Vestitol

small molecule indicates a significant decrease in protein

rigidity; however, for NLRP3, the effect of I-SPD and

Pachypodol on protein RMSF was not different.
Analysis of the radius of gyration

The radius of gyration (Rg) reflects the compactness of the

embodiment and can reflect the degree of binding of the system.

For the CSF2 protein, the Rg after combining two small

molecules acts at 13.7 angstroms; for the NLRP3 protein, the

compactness after combining the small molecules is about 23.8

angstroms. The overall values are low, implying that the system

is denser and more closely combined. It is worth mentioning

that the CSF2 protein is smaller, and the Rg of CSF2 is smaller

than that of NLRP3, the results are shown in Figure 10.
A B

FIGURE 2

Protein-protein interaction (PPI) network. (A) PPI network of protein target, (B) PPI network of core protein target (confidence>0.95).
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FIGURE 3

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of related genes. (A) The top 10 terms in biological
processes (BP) were greatly enriched. (B) The subnetwork displayed the first 10 BP terms and related genes. (C) The top 10 terms in cellular
components (CC) were greatly enriched. (D) The subnetwork displayed the first 10 CC terms and related genes. (E) The top 10 terms in
molecular function (MF) were greatly enriched. (F) The subnetwork displayed the first 10 MF terms and related genes. (G) The first 15 KEGG
pathways were showed. (H) the subnetworks displayed the first 15 KEGG pathways and related.
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Analysis of solvent accessible
surface area

Solvent accessible surface area is calculated as the interface

surrounded by solvent. This solvent behaves differently under

different conditions and is therefore a useful parameter for

studying protein conformational dynamics in a solvent

environment. The contact area between the four complexes

and water is similar, and the small molecule has little effect on

the effect of protein and water, the results are shown

in Figure 11.
Discussion

This study explored the pharmacological mechanism of

Xuanfei Baidu granule (XFBD) in the treatment of COVID-19

by molecular docking and molecular dynamics simulation

based on molecular system movement. For the first time, it

was found that the important active chemical components I-

SPD and Pachypodol in XFBD could reduce the inflammatory

response and apoptosis by inhibiting the activation of NLRP3,

and reduce the production of inflammatory response. And I-
Frontiers in Cellular and Infection Microbiology 10
SPD and Vestitol could inhibit the activation and chemotaxis

of inflammatory cells through CSF2, prevent the generation of

inflammatory storm. Therefore, Vestitol, Pachypodol and I-

SPD in XFBD could effectively treat COVID-19 through

NLRP3 and CSF2 and reduce the clinical symptoms

of patients.
Bioinformatics analysis of XFBD

Pachypodol, I-SPD and Vestitol in XFBD play a role in

treating COVID-19 by acting on NLRP3, CSF2, and relieve the

clinical symptoms of SAR-Cov-2 infection.

Pachypodol and I-SPD reduce inflammation and apoptosis

by inhibiting the activation of NLRP3, thereby exerting

protective effects on the respiratory and nervous systems of

patients. Analysis of protein interaction network PPI suggested

that NLRP3 was closely related to viral infections and

inflammatory responses targets, GO analysis results suggest

that NLRP3 is mainly located in extracellular space, KEGG

pathway analysis found that NLRP played a role in

coronavirus disease COVID-19, influenza A and other

pathways. The analysis results suggest that the SARS-CoV 3a
FIGURE 4

Disease-core gene target-drug network. Square nodes represent gene targets, triangular nodes represent signaling pathways (KEGG), and
octagonal nodes represent gene ontology (GO) of related genes.
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protein, as a transmembrane pore-forming viral protein, can

activate the NLRP3 inflammasome by forming ion channels in

macrophages. At the same time, NLRP3 is found to play a role in

pathways such as influenza A, and the inflammasome NLRPS

can induce the production of the inflammatory cytokine IL-10 in

host cells, resulting in an inflammatory cytokine storm.
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Inflammatory cytokine storms can cause acute respiratory

distress syndrome (ARDS) and acute lung injury (ALI).

Vestitol and I-SPD mainly act on CSF2 to suppress cytokine

storm and infiltration of immune cells. CSF2 was closely related

to inflammatory targets in PPI. GO analysis results suggest that

CSF2 is mainly located in extracellular region. KEGG pathway
B

C

D
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FIGURE 5

Molecular docking of active ingredients and core targets. (A) CSF2/I-SPD, (B) CSF2/Vestitol, (C) NLRP3/I-SPD, (D) NLRP3/Pachypodol.
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FIGURE 6

Screening docking results between ligands and receptors.
FIGURE 7

Complex root mean square deviation (RMSD) difference over time. ns, nanosecond.
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analysis found that CSF2 played a role in cytokine-cytokine

receptor interaction and other pathways. CSF2 can be seen as an

attractive mediator. CSF2 is produced as a pro-inflammatory

cytokine by many cells, including macrophages, T cells,

endothelial cells, and epithelial cells. CSF2 can control the

production and differentiation of granulocytes and

macrophages, and CSF2 has the effect of promoting

tissue inflammation

However, the current bioinformatic analysis results can only

predict potential relationships between drugs and gene targets

and proteins. Therefore, the use of molecular docking and
Frontiers in Cellular and Infection Microbiology 13
molecular dynamics in this study can verify the potential

relationship of XFBD in the treatment of COVID-19.
Analysis of molecular docking and
molecular dynamics

There is a strong affinity between active ingredient of

medicine (such as Pachypodol, I-SPD and Vestitol) and the

protein targets (such as NLRP3 and CSF2) through molecular

docking tests. Molecular dynamics suggest that they can
TABLE 2 Binding free energies and energy components predicted by MM/GBSA (kcal/mol).

System name CSF2/I-SPD CSF2/Vestitol NLRP3/I-SPD NLRP3/Pachypodol

DEvdw -31.85 ± 0.83 -35.21 ± 1.70 -39.13 ± 4.72 -26.90 ± 1.87

DEelec -74.07 ± 6.98 1.43 ± 2.49 -77.18 ± 10.66 -15.70 ± 5.59

DGGB 88.70 ± 7.47 10.83 ± 2.40 90.77 ± 6.69 24.61 ± 4.35

DGSA -3.67 ± 0.11 -4.63 ± 0.15 -4.97 ± 0.18 -3.65 ± 0.23

DGbind -20.89 ± 1.32 27.57 ± 2.78 -30.52 ± 1.17 -21.65 ± 3.36
DEvdW: van der Waals energy.
DEelec: electrostatic energy.
DGGB: electrostatic contribution to solvation.
DGSA: non-polar contribution to solvation.
DGbind: binding free energy.
B
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A

FIGURE 8

Changes in the number of hydrogen bonds between small molecule ligands and protein receptors in complex system simulations (A) CSF2/I-
SPD, (B) CSF2/Vestitol, (C) NLRP3/I-SPD, (D) NLRP3/Pachypodol.
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maintain a very stable binding state, and then play a

pharmacological role in the treatment of COVID-19.

I-SPD could stably act on NLRP3 and CSF2, especially NLRP3/

I-SPD showed strong stability. Molecular docking showed that the

binding energies of small molecules to NLRP3 and CSF2 reached

-7.9 and -8.0. Based on the trajectory of the molecular dynamics

simulation, we calculated the binding energy using the MMGBSA

method, which could more accurately reflect the binding mode of

small molecules and target proteins. The binding free energy results

showed NLRP3/I-SPD and CSF2/I-SPD were -39.13 ± 4.72 kcal/

mol and -31.85 ± 0.83 kcal/mol, for the binding energy of the

NLRP3/I-SPD complex, the energy decomposition showed that the

van der Waals energy was the main contributing energy. In

the molecular dynamics simulation, the RMSDs of NLRP3/I-SPD

and CSF2/I-SPD both converged gradually in the first 5 ns of the

simulation and preserved stable fluctuations in subsequent

simulations, implying that the kinetics of the four complexes are

stabilized after binding, and CSF2/I-SPD binding was more stable

than NLRP3/I-SPD. NLRP3/I-SPD binding results suggested that

small molecule I-SPD forms hydrogen bonds with GLN-468, SER-

470, ALA-72, and also formed with VAL-197, GLU-473, LEU-472,

TYR-476, PHE-419 Hydrophobic interaction.
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The binding of Pachypodol to NLRP3 is relatively stable,

molecular docking showed that the binding energies of small

molecules to NLRP3 reached -8.2. The binding free energy

results show NLRP3/Pachypodol was -26.90 ± 1.87kcal/mol.

The number of hydrogen bonds of NLRP3/Pachypodol is

relatively stable. The high fluctuation of residues in NLRP3/

Pachypodol may be due to the influence of its own multiple

peptide chains. NLRP3/Pachypodol binding results suggested

that small molecule Pachypodol formed hydrogen bonds with

VAL-197, GLU-200, GLU-213, and also formed with LEU-199

and PRO-196 Hydrophobic interaction.

Vestitol combined with CSF2 can form stable complexe, but

there were some abnormal fluctuations, which may be due to the

influence of the number and angle of binding bonds. molecular

docking showed that the binding energies of small molecules to

CSF2 reached -7.9. The binding free energy results showed

CSF2/Vestitol was -35.21 ± 1.70 kcal/mol, for the binding

energy of the CSF2/Vest i to l complex , the energy

decomposition showed that electrostatic energy was the main

contributing energy. We found that RMSF decreased after CSF2

bound to the small molecule Vestitol, suggesting that protein

rigidity was significantly decreased. CSF2/Vestitol binding
B

A

FIGURE 9

Changes in the stability of protein targets at the residue level (A) CSF2/I-SPD and CSF2/Vestitol. (B) NLRP3/I-SPD and NLRP3/Pachypodol.
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results suggested that PRO-76, LEU-42, TYR-71, ILE-104,

PRO-105 on smal l molecu le s and pro te ins form

hydrophobic interactions.

We presented the microscopic evolution process of the

complex system from the level of small molecules and protein

residues through molecular docking and molecular dynamics.

Computer simulations visualized the binding states of NLRP3/I-

SPD, CSF2/I-SPD, NLRP3/Pachypodol and CSF2/Vestitol. The

simulation results showed that the combination of the four

complexes can remain relatively stable in the kinetic

simulation, thus providing theoretical support for the role of

small molecule drugs.

There are certain differences between Xuanfei Baidu

granule (XFBD) and traditional single small molecule drugs

in the treatment of COVID-19 (Choudhury et al., 2021; Yan

et al., 2021). Because Xuanfei Baidu granule (XFBD) as a

traditional Chinese medicine compound contains thousands

of active small molecules, XFBD can treat diseases through
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multiple small molecular components acting on multiple

disease-related target proteins, while reducing the adverse

drug reactions. Therefore, molecular docking and molecular

dynamics can be used to more deeply and objectively study

the mechanism of action of small molecules in XFBD that

coordinate and interact with each other to treat COVID-19.

Some studies have used network pharmacology methods to

enrich the targets and pathways of traditional Chinese

medicines (such as: Lung Cleansing and Detoxifying

Decoction (LCDD)) and explore their therapeutic effects on

COVID-19 (Xu et al., 2021). This study not only analyzed and

drawed on relevant network pharmacology research results,

but also used the supercomputer platform to simulate the

relationship between small molecule drugs and protein

targets through molecular dynamics. For example,

molecular dynamics can show the moverment stable

between small molecule drugs and protein targets. The root

mean square deviation partiality (RMSD)of molecular
B

A

FIGURE 10

Analysis of protein folding state and overall conformation (A) CSF2/I-SPD and CSF2/Vestitol. (B) NLRP3/I-SPD and NLRP3/Pachypodol. ns,
nanosecond.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.965273
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Xiong et al. 10.3389/fcimb.2022.965273
dynamics simulation can reflect the movement process of

the complex.

Therefore, the results of this study could further explain the

mechanism of action and related signaling pathways of XFBD in

the treatment of COVID-19.
Pachypodol and I-SPD can reduce
inflammation and apoptosis
through NLRP3

As an essential component of the innate immune system, the

NLRP3 inflammasome is important for antiviral host defense,

and its abnormal activation can lead to pathological tissue

damage during infection.

The NLRP3 inflammasome is a high molecular weight

protein complex composed of the upstream sensor protein

NLRP3 and the downstream effector protein caspase-1

(Lamkanfi and Dixit, 2012). When caspase-1 is activated, it
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promotes the activation of cytokines IL-1b and IL-18 (Mangan

et al., 2018), which eventually leads to cell rupture and apoptosis

(Liu et al., 2016; Orning et al., 2019; Liu et al., 2020). During

COVID-19, the NLRP3 inflammasome is overactivated

(Ratajczak et al., 2021), leading to the production of IL-1b/18
and promoting cytokine storm (Lin et al., 2019). Viruses are

stimulators of cytokine release syndrome development (Tisoncik

et al., 2012). Cytokine storm usually causes patients to express

clinical symptoms such as fever, hypotension, and hypoxemia

(Shimabukuro-Vornhagen et al., 2018). Elevated levels of IL-1b
produced by the NLRP3 inflammasome further activate

neutrophils, resulting in increased levels of the neutrophil

extracellular traps (NETs) production. High levels of NETs

lead to increased clot formation associated with COVID-19

and damage to endothelial and alveolar cells (Zhao et al.,

2021b). Activation of NLRP3 requires at least two steps:

initiation and activation (Xue et al., 2019). The first step of

initiation is activation of the nuclear factor kappa B (NF-kB)
signaling pathway (Gritsenko et al., 2020). NF-kB can enhance
B

A

FIGURE 11

Analysis of Solvent Accessible Surface Area (SASA) (A) CSF2/I-SPD and CSF2/Vestitol. (B) NLRP3/I-SPD and NLRP3/Pachypodol. ns, nanosecond.
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the transcription of pro-IL-1b, pro-IL-18 and NLRP3 (Afonina

et al., 2017). Moreover, the oligomerization of NLRP3 and the

assembly of NLRP3 and pro-caspase-1 into the NLRP3

inflammasome (Strowig et al., 2012), which is mainly

composed of adenosine triphosphate (ATP) (Karmakar et al.,

2016), oxidized mitochondrial DNA (ox-mtDNA)) (Jia et al.,

2020), and mitochondrial reactive oxygen species (mtROS)

(Zhong et al., 2016) participated in the completion. SARS-

CoV-2 can cross the BBB into the central nervous system,

directly infect brain tissue, and affect human neural progenitor

cells and brain organoids (Zhang et al., 2020).

I-SPD and Pachypodol have the ability to penetrate the

blood-brain barrier and inhibit NLRPS3-mediated inflammatory

responses in the central nervous system. SARS-CoV-2 invades

brain tissue in two ways: the hematogenous pathway and the

neuronal retrograde pathway. BBB permeability is increased in

patients with neurodegenerative diseases, promoting SARS-

CoV-2 neuroinvasion (Zubair et al., 2020). NLRP3 is activated

by SARS-CoV-2 in the central nervous system, and high levels of

peripheral cytokines (such as IL-1b and IL-6) can directly pass

through the BBB or reduce BBB integrity (Mohammadi et al.,

2020), inducing peripheral leukocytes and monocytes

penetration, impairs immune homeostasis in the brain

(Heneka et al., 2013; Yan et al., 2020). At the same time,

NLRP3 promotes the aggregation of peptides into pathogenic

fibrils and the production of inflammatory cytokines, promotes

mitochondrial dysfunction and apoptosis (Freeman and Swartz,

2020), and evolves into neurological lesions.

Therefore, we believe that I-SPD and Pachypodol can reduce

the inflammatory response and apoptosis caused by the new

coronavirus by acting on NLRP3, thereby exerting a protective

effect on the respiratory and nervous systems of patients.
Vestitol and I-SPD prevent the
generation of inflammatory storm and
the infiltration of immune cells by
inhibiting the overexpression of CSF2

Colony-stimulating factor 2 (CSF2), also known as

granulocyte-macrophage colony-stimulating factor (GM-CSF)

(Damiani et al., 2020). CSF2 is produced and secreted by many

different types of cells, mainly monocytes, macrophages and

eosinophils (Hamilton and Anderson, 2004), and normally

regulates inflammatory responses and immune activation (Shi

et al., 2006).

CSF2 can induce the survival and activation of macrophages

and neutrophils, promote the maturation of alveolar

macrophages, and play the functions of phagocytosis and

killing of viruses (Mehta et al., 2015). The transcription factor

PU.1 potentiates the promoting effect of CSF2 on the maturation

of alveolar macrophages (Berclaz et al., 2007). Elevated levels of
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CSF2 in alveolar macrophages stimulate the production of

reactive oxygen species (ROS). CSF2 affects the activation and

proliferation of immune cells (Hamilton, 2008), and plays an

important role in maintaining immune homeostasis in lung

tissue (Rösler and Herold, 2016).

CSF2 regulates the Th1 immune response by inducing the

production of dendritic cells (Wang et al., 2000; Miller et al.,

2002). Interestingly, CSF2 can exert protective effects in humans.

CSF2 can regulate the metabolism of vascular collagen

(Ponomarev et al., 2007; Li et al., 2015; Shiomi and Usui,

2015), promote the proliferation and migration of vascular

endothelial cells, thereby contributing to the process of

angiogenesis (Tisato et al., 2013), and induce keratinocyte

proliferation and migration, which in turn stimulates wound

healing (Szabowski et al., 2000; Barrientos et al., 2008). CSF2 has

been shown to protect the lung by restoring barrier function and

stimulating epithelial cell proliferation (Huang et al., 2011), and

the alveolar epithelium exerts a protective effect against oxidative

stress-induced mitochondrial damage (Sturrock et al., 2012).

However, when SARS-CoV-2 infected lung tissue, CSF2 was one

of the most up-regulated genes in the cells. A cohort study

demonstrated a positive correlation between CSF2 and disease

severity in COVID-19 patients (Zhao et al., 2021c). High levels

of CSF2 are found in the blood of severe COVID-19 patients

(Wu and Yang, 2020), so CSF2 is a proxy for excessive

inflammation in severe COVID-19 patients (Kluge et al.,

2020). When CSF2 is overexpressed in the body, activated

monocytes induce T cell death, resulting in lymphopenia,

pathological hyperinflammatory immune response, pulmonary

fibrosis and severe immune cell infiltration (Xing et al., 1996).

The crucial downstream signaling of CSF2R has been shown

to involve JAK2/STAT5 (Lehtonen et al., 2002), ERK (Hansen

et al., 2008; Achuthan et al., 2018), NF-kB and the

phosphoinositide 3-kinase-AKT pathway (Perugini et al., 2010;

Van De Laar et al., 2012). CSF2 is regulated by JAK2, and when

activated by phosphorylation, regulates the proper

differentiation and maturation of macrophages (Notarangelo

and Pessach, 2008), and participates in various intracellular

signaling pathways such as STAT5 and MAPK (Hansen et al.,

2008). Janus kinase (JAK) activates tyrosine kinase, which then

phosphorylates STAT3. Phosphorylated STAT3 activates NF-kB
and upregulates the expression of inflammatory cytokines,

thereby enhancing inflammation, cell damage and fibrosis

(Cao et al., 2022). Macrophages repolarize through the CSF2/

CSF2R axis to acquire the M1 phenotype (Ao et al., 2017).

Mouse experiments confirmed that CSF2-IRF4 signaling can

upregulate MHC class II expression (Van Der Borght et al.,

2018). CSF2 enhances the antigen-presenting capacity of

macrophages by increasing the expression of MHC-II (Ushach

and Zlotnik, 2016). CSF2 upregulates IRF4 expression by

enhancing JMJD3 demethylase activity (Yashiro et al., 2018),

and activated IRF4 can upregulate CCL17 expression in
frontiersin.org

https://doi.org/10.3389/fcimb.2022.965273
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Xiong et al. 10.3389/fcimb.2022.965273
monocytes/macrophages, mediating the production of

inflammation (Achuthan et al., 2016). CSF2 produces airway

inflammation by activating airway eosinophils after segmental

allergen challenge (Liu et al., 2002). CSF2 induces infiltration

and activation of eosinophils in the Th2 network (Nakagome

and Nagata, 2011), producing and releasing specific granule

proteins in vitro (Nagata et al., 1998), ultimately leading to

airway pathology. The use of anti-CSF2 receptor monoclonal

antibodies to target patients with severe pulmonary disease in

COVID-19 can significantly improve clinical symptoms (De

Luca et al., 2020; Temesgen et al., 2020).

Therefore, we believe that I-SPD and Vestitol inhibit the

overexpression of CSF2 and prevent the generation of

inflammatory storm and infiltration of immune cells,

preventing mild and common COVID-19 patients from

turning into severe ones.
The mechanisms analysis of Xuanfei
Baidu in the treatment of COVID-19

The summary of the mechanisms analysis of Xuanfei Baidu

granule (XFBD) in the treatment of COVID-19 is shown in

Graphical Abstract.
Conclusion

This study revealed the pharmacological mechanism of

Xuanfei Baidu Granule (XFBD) in the treatment of COVID-

19 through molecular docking and molecular dynamics

simulation. The results showed that the important active

chemical components I-SPD and Pachypodol in Xuanfei

Baidu Granules (XFBD) can reduce the inflammatory

response and apoptosis by inhibiting the activation of

NLRP3, and reduce the production of inflammatory

response. I-SPD and Vestitol can inhibit the activation and

chemotaxis of inflammatory cells through CSF2, preventing

the generation of inflammatory storm.

Therefore, Vestitol, Pachypodol and I-SPD in Xuanfei Baidu

Granules (XFBD) can effectively alleviate the clinical symptoms

of COVID-19 patients through NLRP3 and CSF2.

Current molecular docking and molecular dynamics

analyses are difficult to quantify. Since the research

based on molecular dynamics is still in the stage of

simulation analysis, the body function is a continuous and

dynamic process. The process of disease occurrence, drug

development and efficacy are also dynamic. This study will

verify the pharmacological mechanism of Xuanfei Baidu

Granules (XFBD) in the treatment of COVID-19, as well as

the target and related signaling pathways of active ingredients

through cell experiments in the future.
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