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The coronavirus disease 2019 (COVID-19) pandemic has prompted a lot of

questions globally regarding the range of information about the virus’s possible

routes of transmission, diagnostics, and therapeutic tools. Worldwide studies

have pointed out the importance of monitoring and early surveillance

techniques based on the identification of viral RNA in wastewater. These

studies indicated the presence of the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) RNA in human feces, which is shed via excreta

including mucus, feces, saliva, and sputum. Subsequently, they get dumped

into wastewater, and their presence in wastewater provides a possibility

of using it as a tool to help prevent and eradicate the virus. Its monitoring

is still done in many regions worldwide and serves as an early “warning

signal”; however, a lot of limitations of wastewater surveillance have also

been identified.
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Introduction

Economic stability and the security of human health are

considerably affected by infectious diseases as they cause one-

fourth of the mortalities around the world. Even with the

development of advanced healthcare systems, viral infections still

continue to emerge (Bloom and Cadarette, 2019). The recent

outbreak of coronavirus disease 2019 (COVID-19) appeared to

be highly pathogenic and life-threatening, with high mortality

rates, affecting almost every country in the world (Ming, 2020).

The symptoms include fatigue, fever, dry cough, muscle pain, and

shortness of breath (Chen et al., 2020; Huang et al., 2020;

Muhammad et al., 2021; Egbuna et al., 2022). Initially, the

disease was believed to be pneumonia by healthcare officials;

however, a thorough analysis of the patient’s throat sample

detected a novel coronavirus (CoV) (Ulhaq et al., 2021). On

January 7, another CoV pathogen in humans was discovered;

provisionally, it was named novel coronavirus 2019 (nCoV-19) by

the World Health Organization (WHO). Because of its genetic

similarity with severe acute respiratory syndrome coronavirus

(SARS-CoV), it was then recognized as SARS-CoV-2 (severe

acute respiratory syndrome coronavirus 2) according to the viral

nomenclature scheme (Basit et al., 2021). The disease caused by

SARS-CoV-2 was initially named viral pneumonia; the WHO later

gave it the name coronavirus disease 2019 (COVID-19) due to the

presence of a number of unique disease symptoms of the lower

respiratory tract, such as difficulty in breathing (WHO 2019-nCoV

Situation Report-22). Moreover, patients also suffer from mental

dissatisfaction, acute kidney failure, and dysfunction of various

other organs in extreme cases of COVID-19 (Basit et al., 2021).

However, the incubation period fluctuates based on the patient’s

health status and immunity, where it can be shorter in older people

and in those with a weak immune system. COVID-19 is rapidly

transmitted through respiratory droplets due to its more

contagious characteristic (Jiang et al., 2020). More than 213

countries have reported over 40 million confirmed cases, with

nationwide lockdowns imposed to prevent the spread of the disease

(Kataki et al., 2021).

SARS-CoV-2 had been detected in the blood and in anal and

oropharyngeal swabs, along with urine samples of patients who

tested positive (Chen et al., 2020; Ren et al., 2020), indicating the

presence of this deadly viral RNA in the streamlets of wastewater

treatment plants (WWTPs) (Foladori et al., 2020). The swab

protocols are mostly used for the collection of target pathogens

from the environment and from patients (Colaneri et al., 2020;

Moore et al., 2021), but with various disadvantages. These

include the inability to perform collection from living

environments and the possibility of getting false-positive

signals due to the free RNA fragments of lysed viruses from

the environment and patients, as they can remain stable for long

periods of time. The European Union (EU) Commission

suggested a systematic surveillance approach for SARS-CoV-2
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in EU wastewaters (Commission, E, 2021). Patients infected with

SARS-CoV-2 do not always have the typical symptoms

(Nishiura et al., 2020), as almost 40%–50% of infections do

not show any symptoms (Oran and Topol, 2020), but can still

spread the virus (Gandhi et al., 2020). Both asymptomatic and

symptomatic individuals shed SARS-CoV-2 in the urine, saliva,

feces, and nasal fluids (Cevik et al., 2021). The analysis of fecal

samples is more sensitive for the detection of SARS-COV-2 as

feces contain a higher viral load (Yuan et al., 2021). Reports

showed that the presence of SARS-CoV-2 RNA in human feces

(Holshue et al., 2020; Song et al., 2020) and urine leads to the

shedding of the viral RNA in wastewater (Ding et al., 2020; Gao

et al., 2020; Holshue et al., 2020; Jiehao et al., 2020; Wang et al.,

2020; Woelfel et al., 2020). Several studies have identified the

viral RNA in wastewater (Ahmed et al., 2020a; Medema et al.,

2020). COVID-19 consequently causes alarming situations

worldwide, posing a cluster of questions for the scientific

community regarding the contemporaneous exploration of

epidemiological studies such as wastewater surveillance.

Therefore, methodologies need to be developed using

wastewater for epidemiological studies of human diseases such

as COVID-19.

The epidemiology of human viruses in wastewater can be

beneficial for population-based analysis of the epidemiology of

SARS-CoV-2 to prevent its further transmission (Hillary et al.,

2021). Viral detection of CoVs in wastewater was first developed

in 2013 (Wong et al., 2013). The genome of the human

coronavirus HKU1 (HCoV-HKU1) was identified in sewage

(Bibby and Peccia, 2013), and animal CoV had also been

found in surface water (Blanco et al., 2019). Environmental

surveillance (ES) based on wastewater sampling enables

the prediction of the condition of drainage areas with little

effort compared to conducting clinical surveys (Agrawal et al.,

2021). Pre-symptomatic and asymptomatic infected individuals

normally are not included in clinical surveys. Sample collection

and testing are usually expensive and time-consuming. A lot of

studies have shown that the monitoring of wastewater can detect

the outbreak of viruses such as norovirus and poliovirus faster

than clinical surveys (Hovi et al., 2012; Hellmér et al., 2014;

Daughton, 2020; Hata and Honda, 2020). Its potential advantage

is the possibility to conduct screening of a large population using

a few samples without depending on the availability of clinical

testing (Thompson et al., 2020), with transmission collections in

large geographic regions that can assist in rapid efforts by public

health authorities (Stadler et al., 2020).
Evidence of viral RNA in fecal
material

Coronavirus get into fecal material through the swallowing

of secretions from the upper respiratory tract, which is then
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mixed with food when it is not affected by gastric acid. Viral

replication in intestinal cells or infected immune cells plays a

role in the presence of CoV in feces (Ding et al., 2020; Gu et al.,

2020). Its replication in intestinal samples had been identified,

determining the gastrointestinal tract (GIT) of humans as a site

of SARS-CoV-2 infection (Ding et al., 2004). SARS-Cov-2

replication can be confirmed by the presence of the viral RNA

in feces (Wang et al., 2020). A study showed that the rectal

mucosa is altered by infection with SARS-CoV-2 and exhibited a

replication. The virus was replicated in the rectum during the

period of incubation, while the viral particles showed in the

epithelial cells of the patient’s intestine (Qian et al., 2021).

Occasionally, urine samples of infected individuals contain

viral RNA, but the swabs from the throat result as negative

(Xu et al., 2020). The SARS-CoV-2 RNA has been reported

earlier from throat and nasal swabs compared to fecal samples

(Zhang et al., 2020c). A lot of studies have shown this fact, as in

one case that revealed the SARS-CoV-2 RNA being contained in

throat and nasal swabs (TS and NS, respectively) for only 9 days

after ailment, while the fecal RNA remained for more than

20 days (Cai et al., 2020). Another report showed the viral RNA

in fecal material for up to 4–5 weeks (Cai et al., 2020; Zou et al.,

2020). Generally, infected patients are discharged from hospital

when the NS and TS samples are negative, even if the fecal

samples are still positive for SARS-CoV-2 RNA; consequently,

the oral–fecal route implication needs to be highlighted,

particularly in the context of the stability of the SARS-CoV-2

virus in sewage water. Moreover, its fecal shedding recommends

demonstrating the decontamination practices for toilets and the

observation of hygiene and sanitation practices (Parasa

et al., 2020).
Gastrointestinal symptoms of
COVID-19 and shedding of SARS-
CoV-2 in excreta

The presence of ACE2 in the intestinal cells confirms the

entry of SARS-CoV-2 in the GIT, with the presence of SARS-

CoV-2 in the stool and diarrhea having been reported

(Muhammad et al., 2021). Examination of the esophagus

revealed lymphocyte intrusion in the squamous epithelium,

stomach lamina propria, duodenum, and interstitial edema,

along with various gastrointestinal symptoms of COVID-19

such as nausea, vomiting, and diarrhea (Leung et al., 2003;

Memish et al., 2020). These symptoms were shown by nearly

2%–10% of patients (Wang et al., 2005; Gao et al., 2020; Wang

et al., 2020). The virus usually infects epithelial cells of the GIT

(Ding et al., 2020); moreover, the RNA of SARS-CoV2 has been

detected in 40%–85% of fecal samples, indicating a similar

frequency of the detection of SARS-CoV-2 RNA in feces to

respiratory secretions (Natarajan et al., 2022). According to Ling
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et al. (2020), 81.8% of studies on CoV reported the detection of

SARS-CoV-2 in stool samples. The viral load is nearly

108 copies/g of feces (Lescure et al., 2020; Pan et al., 2020;

Woelfel et al., 2020), 107 copies/ml when there is diarrhea, and

2.5 × 104 copies/ml in the case of urine (Hung et al., 2004). Viral

shedding in fecal material continues for almost 7 weeks after the

onset of the first symptom (Ding et al., 2020; Jiehao et al., 2020).

Globally, there are various reports on the replication and

infection of SARS-CoV-2 in the GIT, as shown in Table 1.

With the rapid growth of the global population, the emergence

and reemergence of human pathogenic viruses have prompted a

demand for surveillance systems that understand the dynamics

of infection in populations (Mao et al., 2020). The widespread

circulation of SARS-CoV-2 variants calls for wastewater-based

epidemiology to examine its magnitude and distribution in a

community by examining its biomarker levels in a sewage

network. Detection of the presence of SARS-CoV-2 in

wastewater can be utilized as a disease surveillance tool, which

has been supported worldwide by many researchers (Ahmed

et al., 2020a; Lodder and de Roda Husman, 2020).

The SARS-CoV-2 RNA has been reported in groundwater,

surface water, wastewater, sludge, and other hospital-related

water systems during the low- and middle-risk periods of

COVID-19 (Zhao et al., 2020). The concentration and the

molecular detection of SARS-CoV-2 RNA in wastewater

isolated from different localities throughout the world are

shown in Table 2. The necessity for surface hygiene can be

explained by the detection SARS-CoV-2 in the toilets of infected

patients (Ding et al., 2020). Moreover, SARS-CoV-2 was also

found in natural waters derived from areas with poor sanitation,

which has serious consequences on health and the environment

(Guerrero-Latorre et al., 2020). However, RNA detection in

wastewater lacks an appropriate standard protocol. The

method used to calculate the concentration of viruses is not

that effective for the recovery of these viruses (Haramoto et al.,

2009; Ye et al., 2016).
Approaches used in wastewater-
based epidemiology

Surveillance provides insights into the condition of the

outbreak in an area by testing the wastewater samples with

time. The surveillance data are used in three ways: to monitor

the presence of infections in a community, to track the infection

trends in a community, and to perform targeted screening of the

infections for moderation measures (CDC, 2022). There are

various types of wastewater-based epidemiology (WBE), which

require research for validation. The qualitative approach

examines the minimum level of infection, which detects

sensitivity, the semi-qualitative approach can indicate the

comparative level of infection in a community, while the
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quantitative approach can detect the absolute infection level and

is capable of performing comparisons across communities.

Initially, these approaches were used as tools to assess illegal

drug use within a community (Daughton, 2001) by quantifying

them with specific human metabolites in wastewater (Feng et al.,

2018). Sewage RNA collection can both indicate past and active

infections when considering the duration of RNA excretion

through the stool (Chen et al., 2020; Wu et al., 2020). Viral

shedding can occur right after infection; however, an infected

patient being identified through this system must show

symptoms and start treatments before clinical diagnosis

(Larsen and Wigginton, 2020). Surveillance via wastewater can

be used as an indicator of disease transmission and its ratios

increasing and decreasing, such as, traditionally, deaths,

hospitalizations, serological data, and test positivity (Rowe

et al., 2009). Similarly, daily surveillance of SARS-CoV-2 RNA
Frontiers in Cellular and Infection Microbiology 04
in wastewater can provide evidence, similar to daily individual

testing in a community, but with a less invasive and cost-effective

method reconfirming the already diagnosed cases. Population

size is important in the use of the quantitative approach, which

can determine the infected population (Daughton, 2012;

Daughton, 2018). Calibration of the monitoring of WBE is

important so that the data will be related to the infection rates,

which can be conducted utilizing quantitative PCR (qPCR) with

reverse regression of the known rates of infection (Bar-Or et al.,

2021). This will help in the estimation of the total number of

infected people, reliably enabling a comparison of the infection

rates in communities. Moreover, the monitoring information

should be presented and interpreted to the public for awareness;

experts and scientific authors can play an important role. The

involvement of policy makers, government health officials, and

leaders would also help in this regard (Daughton, 2020).
TABLE 1 Worldwide studies on the replication and infection of SARS-COV-2 in stool and fecal samples.

Virus Sample No. of
patients

Location Symptoms Reference

Live SARS-CoV-2 Stool 2 China No diarrhea Wang et al.,
2020

Cultivation of
SARS-CoV-2

Single stool
specimen

1 China Severe pneumonia Zhang et al.,
2020b

Viral RNA Feces Multiple China Infected gastrointestinal cells Ding et al., 2020

SARS-CoV-2 RNA Fecal 113 Nguyen Abdominal pain, vomiting, and nausea Natarajan et al.,
2022

SARS-CoV-2 RNA Fecal 22 China Fever and respiratory symptoms Zhang et al.,
2020d

2019-nCoV RNA Fecal 14 China Severe symptomatic stage Zhang et al.,
2020e

Viral RNA Fecal 28 China Gastrointestinal symptoms Udugama et al.,
2020

Viral RNA Fecal 9 Hongkong Gastrointestinal symptoms (nausea, loss of appetite, diarrhea, vomiting, and
abdominal pain or discomfort)

Cheung et al.,
2020

Viral RNA Stool swab 1 China Mild fever and diarrhea Cho and Ha
2020

SARS-CoV-2 RNA Fecal 3 UK COVID positive symptoms Vaselli et al.,
2021

SARS-CoV-2 RNA Stool 7 USA Mild to moderately severe illness Kujawski et al.,
2020

SARS-CoV-2 RNA Loose bowel
movement

1 USA Abdominal discomfort, nausea and vomiting Holshue et al.,
2020

SARS-CoV-2 RNA Anal swabs 4 China COVID symptoms + admission to hospital Zhang et al.,
2020c

SARS-CoV-2 RNA Stool samples 93 China With critical, severe, moderate, and mild symptoms Zhang Y. et al.,
2020

SARS-CoV-2 RNA Stool 212 China Pediatric patients with SARS-CoV-2 infection Yuan et al., 2020

SARS-CoV-2 RNA Stool 4 Singapore Mild respiratory tract infection Young et al.,
2020

SARS-CoV-2 RNA Stool 3 China Mild to moderate severity and fever Xing et al., 2020

SARS-Cov-2 RNA Stool 2 Germany One is asymptomatic, one is symptomatic Hoehl et al.,
2021
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; nCoV, novel coronavirus.
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SARS-CoV-2 surveillance in wastewater

The wastewater surveillance approach is presently utilized all

over the world as an effective tool for SARS-CoV-2 RNA

monitoring (Bivins et al., 2020). It is not only limited to the

detection of COVID-19, but was also previously utilized for

viruses such as hepatitis A and poliovirus (Asghar et al., 2014; La

Rosa et al., 2014; Bivins et al., 2020). This surveillance method is

currently utilized in almost 55 countries across the world with a

declaration from over 250 organizations to analyze wastewater

samples for SARS-CoV-2 RNA from more than 2,690 sites,

including surface waters and WWTPs (Naughton et al., 2021).

Some of these observations were done even before the

appearance of the first positive case clinically (Medema et al.,

2020). Therefore, this surveillance technique is useful in

indicating the presentation of SARS-COV-2 and other viruses

in communities along with the estimation of its effectiveness in

the healthcare field (Kitajima et al., 2020). Wastewater can be a

factor in the outbreak of SARS viruses because of improper

sewage systems (McKinney et al., 2006). Retrospectively, in

2004, wastewater epidemiology was used for SARS-CoV,

which found that almost 30% of disinfected wastewater and

100% of untreated water contained the virus during the first

outbreak in China (Wang et al., 2005). The prevalence of SARS-

CoV-2 was determined by detecting the RNA copies of the virus

in the Australian sewage basin using reverse transcription

quantitative PCR (RT-qPCR). This surveillance method was

also used in the USA to study the strains of SARS-CoV-2,

their phylogeny, ancestry, and the effectiveness of

interventions for public health in reference to the outbreak

(Nemudryi et al., 2020). Wastewater surveillance for COVID-

19 around the world is shown in Table 3.

In Australia, wastewater surveillance detected the SARS-

CoV-2 RNA using sequencing and qPCR (Agrawal et al., 2021);

however, further studies are needed to understand the reliability

of the analysis. A lot of studies have described the detection of
Frontiers in Cellular and Infection Microbiology 05
SARS-CoV-2 within sewage or wastewater in USA, Australia,

France, and Netherlands (Lodder and de Roda Husman, 2020;

Medema et al., 2020; Nemudryi et al., 2020; Wu et al., 2020;

Wurtzer et al., 2020b). Most of these studies were done without

treatments and had a maximum concentration of 106 copies/L

(Wurtzer et al., 2020a). These studies, along with several other

continuous efforts in different regions of the world, were

conducted to provide updates on the community prevalence of

SARS-CoV-2 and its epidemiology. This surveillance method

can also be used as a “warning signal” to alleviate the spread of

infection in communities, as an outline describing the ethical

issues in relation to the basic approach to sanitation (Murakami

et al., 2020).

ES can help provide information on the transmission of

infection within a community before clinical surveillance is

done. This serves as an early warning system, as the shedding

of SARS-CoV-2 begins even before the onset of symptoms in

an infected person (Jones et al., 2020). It can also highlight the

underreported characteristics from clinical surveillance due to

several testing policies; thus, ES can assist in better monitoring

of the incidences of COVID-19 (Choi et al., 2018). It can also

be beneficial in international airports, voyage ships, and

aircraft for monitoring the SARS-CoV-2 drifts among

travelers (Medema et al., 2020). Analysis at the molecular

level in a community can paint a picture of the existing and

emerging variants of the virus (Izquierdo-Lara et al., 2021). An

alarming fact is that, in many poor countries, the virus is

transported to treatment plants for the dumping of human

waste, which accounts for almost 900 million public globally

(WHO, 2017). Underground water or soil can also become

contaminated due to lack of sanitation. A number of previous

outbreaks also showed viral shedding via human excreta (Goh

et al., 2013; Zhou et al., 2017; Yeo et al., 2020). The

consequences of COVID-19 indication in wastewater were

given by Nghiem et al. (2020), with a description of the fecal–

oral transmission routes by Heller et al. (2020).
TABLE 2 Details of the reported molecular detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater.

Sampling
location

Water
type

Virus detection method Sequence confirmation Detection results: positive rate and
maximum concentration (copies/L)

Reference

Australia Untreated
wastewater

Electronegative membrane-direct
RNA extraction; ultrafiltration

Direct sequence of qPCR products
(Sanger+MiSeq)

22% and 1.2 × 102 Ahmed
et al., 2020a

Netherlands Untreated
wastewater

Ultrafiltration Not done 58% not available Medema
et al., 2020

USA Untreated
wastewater

PEG precipitation Direct sequencing of qPCR
products (Sanger)

71% and >2 × 105 Wu et al.,
2020

France Untreated
water

Ultracentrifugation Not done 100% and >106.5 Wurtzer
et al., 2020a

USA Untreated
wastewater

Ultrafiltration Re-amplification by regular PCR
followed by Sanger sequencing

100% and >3 × 104 Nemudryi
et al., 2020

Italy Sewage PEG–dextran method Nested RT-PCR assays and one
real-time qPCR assay

50% (6/12) shown La Rosa
et al., 2020
fro
PEG, polyethylene glycol; qPCR, quantitative polymerase chain reaction.
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Understanding COVID-19 epidemiology
through wastewater surveillance

The presence of the viral RNA of SARS-CoV-2 in wastewater

creates the possibility of employing it as a tool to study viral

genomics, epidemiology, and prevalence, as well as possible

eradication from the community (Kitajima et al., 2020). The

transmission routes of SARS-CoV-2 include seepage wastewater

as reusable water, biosolid products from sludge, thrusting,

mixing, and microbial vaporizer. Viruses need to be viable to

cause infection through these systems. According to updated

information, the viability of CoVs decreases in wastewater, and

their infectivity should also be diminished upon transfer from

feces to effluent and then to treatment plants and the

environment (La Rosa et al., 2020). The epidemiology of

wastewater can be an important method to trace the viral

circulation in a community in order to evaluate the prevalence

and genomic diversity (Sinclair et al., 2008; Xagoraraki and

O’Brien, 2020).

Wastewater systems can provide an opportunity to detect

the virus extracted from feces (Carducci et al., 2006; La Rosa and

Muscillo, 2013). With this method, monitoring the

epidemiology of the virus has become possible, with the

traditional techniques being somehow limited due to viral

infections that do not cause any symptoms (Johansson et al.,

2014; Qi et al., 2018). Figure 1 shows the surveillance process

related to sludge and wastewater.

It is rather difficult to determine the circulation of a virus in a

community through comparisons between regions with varied

capabilities of viral diagnosis (Ortiz-Ospina and Hasell, 2020).

Viral surveillance is an impartial method of evaluating the viral

spread in different regions, even when there is a limitation in
Frontiers in Cellular and Infection Microbiology 06
resources and diagnosis. Monitoring can also enable the

detection of changes in the viral strains with genomic analysis

from an evolution perspective (Lodder et al., 2013; La Rosa

et al., 2014).

Wastewater surveillance can detect viruses even at low

levels, such as when there is a decrease in cases due to

healthcare interventions (Asghar et al., 2014). Moreover, it is

important when a novel virus or strain is introduced into a

population (Sinclair et al., 2008; Savolainen-Kopra et al., 2011)

due to seasonal changes or fluctuations (Sedmak et al., 2003;

Hellmér et al., 2014; Prevost et al., 2015). Therefore, these

strategies can be useful as an “early warning” system

(Xagoraraki and O’Brien, 2020) to determine any alterations

in public health involvement, as in the case of social isolation

and lockdowns with the recurrence of SARS-CoV-2. A lot of

preventive measures can be implemented by performing

wastewater analysis for viruses and by being able to detect

any novel viruses earlier than clinical detection (Ng et al.,

2012; Fernandez-Cassi et al., 2018; Bibby et al., 2019). The

total number of affected individuals can be estimated by

detecting the RNA copy numbers of SARS-CoV-2 in

untreated wastewater via catchment site and by using the

Monte Carlo simulation. This statistical method is employed

to resolve complex issues and determine possible outcomes

using estimates (Sin and Espuña, 2020), which is a simple and

easy-to-use concept. The estimation of almost 1,090 infected

patients with clinical observations was conducted using this

method (Ahmed et al., 2020a). Studies have pointed out the

need for more strategies and molecular-based assays to

validate the presence of viruses in water, which will increase

the accuracy of wastewater surveillance.
TABLE 3 Worldwide studies on wastewater surveillance.

Sample Location Technique used Reference

Raw wastewater samples France RT-qPCR Wurtzer et al., 2020a

3 sewage samples China RT-qPCR Wang et al., 2020

Wastewater treatment plant France RT-qPCR Trottier et al., 2020

Wastewater samples Pakistan RT-qPCR Sharif et al., 2020

Primary sewage sludge US metropolitan area RT-qPCR Peccia et al., 2020

Wastewater samples Canada RT-qPCR assay Neault et al., 2020

Sewage samples Netherlands RT-PCR Medema et al., 2020

Untreated wastewater Italy SARS-CoV-2 RNA La Rosa et al., 2020

Raw water samples at a pumping station Argentina RT-qPCR Iglesias et al., 2021

Influent wastewater samples Japan Several PCR-based assays Hata and Honda, 2020

Wastewater of sewage systems Spain RT-PCR Fernández-de-Mera et al., 2021

Human sewage Brazil RT-qPCR Fongaro et al., 2021

Wastewater treatment plants India RT-qPCR Arora et al., 2022

Treated and untreated wastewater Chile RT-qPCR Ampuero et al., 2020

Wastewater Australia RT-qPCR Ahmed et al., 2020a

Sewage sludge USA RT-qPCR Peccia et al., 2020
SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; RT-qPCR, reverse transcription quantitative polymerase chain reaction.
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Limitations in wastewater surveillance
In diagnostics, various factors can affect the reliability of the

results (Bustin et al., 2009; Medema et al., 2020; Pecson et al.,

2021). False-positive errors can result from high sensitivity

developed via the analysis of wastewater samples using poor

RT-PCR assays (Ahmed et al., 2022). The application of WBE

can be a bit difficult due to poor sanitation and the lack of

treatment plants for wastewater (Ahmed et al., 2021; Jakariya

et al., 2021). Therefore, currently, it is not likely to entirely alter

the viral RNA levels in wastewater for its prevalence (Larsen and

Wigginton, 2020). Several limitations of wastewater surveillance

have been identified, such as in relating the identified infected

cases and the virus levels. As viral excretion can be altered during

the infection period, delays can occur due to different time

frames, capturing altered population distributions due to

traveling, and fluid dilution from precipitation, among others

(La Rosa et al., 2020). Moreover, the risk of genome stability in

wastewater, alterations in the sampling type, poor efficiency of

the viral concentration technique, and unavailability of a

sensitive screening assay can limit the quantification of viral

detection, especially when the concentration is low. The

pandemic can become worse when appropriate testing trials

fail to efficiently determine patients infected with SARS-CoV-2

(Mercer and Salit, 2021). Additionally, these patients are

extremely contagious either at the pre-asymptomatic or the

asymptomatic stage. Hence, without a proper screening assay,

they can infect healthy individuals earlier than they can be

identified for isolation or hospitalization (Oran and Topol,

2020). Consequently, for the accurate detection of COVID-19,

new molecular-based methods have been recently developed.

These include a microarray-based method, loop-mediated
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isothermal amplification (LAMP) method, RNA targeting

CRISPR (clustered regularly interspaced short palindromic

repeats) diagnosis, rolling circle amplification-based method,

and nanopore targeted sequencing (NTS) (Basit et al., 2021).

Some of these diagnostic methods have not been

independently assessed or approved by authorities of healthcare

systems. The iAMP COVID-19 detection kit (Atila BioSystems,

Mountain View, CA, USA) based on isothermal amplification

(LAMP) technology has been approved by the U.S. Food and

Drug Administration (FDA) with 100% sensitivity (BioSystems,

A, 2020). Another kit, Sherlock™ CRISPR (Sherlock Biosciences,

Boston, MA, USA), which is based on CRISPR technology, can

detect SARS-CoV-2 with a specificity of 100% (Biosciences, S,

2020), while the microarray method allows the detection of

various microbial agents through the amplification of nucleic

acids with high specificity (Vora et al., 2004) and previously

showed results of the detection of CoVs (Shi et al., 2003). The

limit of detection and the clinical sensitivity are considered crucial

criteria for commercial molecular diagnostics in the case of

COVID-19 diagnosis (Bachelet, 2020; Tang et al., 2020).

Currently, there are only two kinds of commercial diagnostic

tests: serological tests to detect CoV-2 antibodies in serum and

molecular diagnostics to determine viral RNA in respiratory

specimens (Sheridan, 2020). The next-generation sequencing-

based method Swab-Seq is another technique utilizing RT-PCR

primers, which has exclusive molecular codes for the sequencing

of many samples (Bloom et al., 2020). Decentralized wastewater

samples are quite difficult to manage due to the rigorous sample

collection process for households (Takeda et al., 2021). Analysis of

the high-risk points is needed as a solution to this problem, which

includes quarantine areas, hospitals, and healthcare services.
FIGURE 1

Steps of wastewater-based epidemiology (WBE) by testing wastewater to monitor the outbreak of SARS-CoV-2..
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Furthermore, samples from sludge plants (collected from

decentralized systems) should be collected (UNDP, 2020).

Various shareholders need to be involved in the processes of a

monitoring framework, including sampling, analysis, information

feedback, and any subsequent action or decision-making. Sample

analysis would require equipment for the health and research

sectors involving national and international platforms for

wastewater surveillance (UN Women, 2020). Budgets should be

established for prevention and response, along with the

establishment of committees to meet regional and international

goals (Takeda et al., 2021). The calibration of viral RNA needs to

be performed against the exact number of cases presented by

marking and targeting biomarkers (Daughton, 2020). The future

of wastewater surveillance needs to be assessed more in light of

vigorous epidemiological data, as enormous limitations of testing

potential have been observed over time, especially in communities

where delays in testing can occur.
SARS-CoV-2 diagnosis from wastewater
samples

The presence of SARS-CoV-2 in wastewater samples can be

confirmed by determining the viral RNA sequence with qPCR

(WHO, 2020). In this regard, the positive control can be shown

by determining the plasmid with the complete nucleocapsid

gene of SARS-CoV-2 (Wu et al., 2020). Different pretreatment

techniques are usually performed during the sampling of

wastewater to ensure efficient detection with maximum viral

concentration. A lot of approaches for the enrichment of

different viruses have been recently used, including PCR

assays; however, there is still a lack of a standard protocol. The

initial diagnostic test was based on the specific primers and

sequences for PCR. This test was developed based on previous

research works on the detection of SARS-CoV-2 (Udugama

et al., 2020). Several companies have started commercializing

them for a faster supply of tests (Vandenberg et al., 2021).

The active sampling approach has been demonstrated for the

quantification of SARS-CoV-2 in wastewater, along with the

trends of infection (Graham et al., 2020; Castro-Gutierrez et al.,

2022), with several methods to determine concentrations having

been advised for wastewater (Rusiñol et al., 2020; Barril et al.,

2021; Cervantes-Aviles et al., 2021; Chik et al., 2021; Philo et al.,

2021). Most of these focused on extrinsically sourced viral

controls in water (Kantor et al., 2021). Filtration, nuclease

treatment, and freeze–thaw methods are among the reputable

and rapid procedures for viral RNA separation from host RNA

(Marston et al., 2013; Dupinay et al., 2014; Hall et al., 2014). The

main aim is to avoid the reduction of the overall viral RNA

quantity during separation from the host RNA (Victoria et al.,

2008; Hall et al., 2014). In this regard, microfluidic devices are far

more dependable compared to the traditional methods because

of their requirement of less volume of biological samples for
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disease biomarker testing within a short time. Moreover, parallel

analysis assays based on a single microfluidic device can provide

the best statistical results (Verpoorte and De Rooij, 2003; Zhang

et al., 2013). The gold standard for SARS-CoV-2 diagnostic

is RT-PCR (Carter et al., 2020), which is specific, reliable,

and sensitive. Numerous costly instruments and highly trained

professionals are needed to perform the tests, which is a concern

in developing countries (Afzal, 2020). On the contrary, the RT-

LAMP test reduces the detection time to almost 30 min, enabling

rapid detection (Lamb et al., 2020). The available microfluidic

kits offer a rapid, cost-effective, and precise detection overall;

therefore, they are appropriate in settings where resources are

scarce for point-of-care testing (POCT). Integrated microfluidic

devices have applications in whole-genome sequencing,

COVID-19 progression, and intratracheal neutralization of a

virus (Jamiruddin et al., 2022).

Polymerase chain reaction
In molecular biology, PCR is the quick and broadly used

method to make DNA copies from thousands to millions

containing the fragment of a gene. A very small quantity of

DNA (genetic material) can be amplified by PCR and provide

adequate evidence of the DNA or gene segment for comprehensive

study. Most viral diseases are diagnosed using PCR due to its

broader impact and reliability, indicating its value for routine use in

the diagnosis of various infections such as COVID-19 (Basit et al.,

2021). The etiological agent of COVID-19 is SARS-CoV-2, which

is an RNA virus that can be converted to complementary DNA

(cDNA) by the process of reverse transcription through the reverse

transcriptase enzyme. Subsequently, with the use of specific

primers, the DNA sample is amplified by PCR and then further

processed by gel visualization and gene sequencing (Setianingsih

et al., 2019). However, for the diagnosis of COVID-19, PCR is the

most recommended test. Microfluidics coupled with PCR

(MFQPCR) results can be accelerated, providing fast (up to 1 h)

and accurate results (Zhou et al., 2014). However, there are certain

limitations to the use of PCR. These include obtaining false-

positive results, a long processing time, and low specificity and

sensitivity. With quantitative microbial risk assessment, MFQPCR

can quantitatively detect various pathogens in freshwater

contaminated by waterfowl feces (Ishii et al., 2014) with high

sensitivity. Wastewater contains a large number of pathogenic

RNA viruses (Miura et al., 2015; Kobayashi et al., 2017), and

microfluidic POCT has an advantage over traditional assays

because it employs transportable devices and can carry out tests

at diverse sampling sites (Telenti et al., 2021). However,

conventional PCR assays are quite rigorous and labor-intensive

(Le Guyader et al., 1994; Aw et al., 2009).

Real-time PCR
During the pandemic, the most widely used and most

favored method for COVID-19 diagnosis was real-time RT-

PCR, due to RNA being the genetic material and its several
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advantages, which significantly helped in the detection of

infection in the early phases (Corman et al., 2020).

Comparatively, real-time RT-PCR has high specificity and

sensitivity compared to general PCR, and the procedure is

simple and quantitative (Noh et al., 2017). Considerable efforts

have been exerted toward the improvement of the real-time

RTPCR method in order to overcome its disadvantages when

carrying out the procedure (Basit et al., 2021).

Loop-mediated isothermal amplification
method

Among the molecular-based diagnostic methods used for

COVID-19, the most prominent during the recent outbreak has

been the LAMP method. It has higher sensitivity and specificity

rates and amplifies the nucleic acids (DNA/RNA) very rapidly.

The method’s procedure involves DNA polymerase and specific

primers that synthesize the targeted DNA. The temperature

range for this method is 60–65°C, which is a change from that of

the ordinary process as it did not denature the strands but only

displaced them (Nagamine et al., 2002). At the end point of

detection through the LAMPmethod, the amplified products are

further analyzed using gel electrophoresis. Additionally, due to

the exponential amplification feature of LAMP, four different

primers can detect six different target sequences at the same time

(Francois et al., 2011). Within a very short time or a maximum

of an hour, up to more than 109 copies of the targeted sequence

of loop-form DNA can be amplified by the LAMP assay, with the

final product being in the form of many inverted repeats. The

use of LAMP for the clinical diagnosis of COVID-19 appears to

be extremely useful, reliable, and cost-effective as it does not

require expensive instruments or reagents/chemicals. In this

case, the ORF1b region of SARS-CoV-2 is targeted and

amplified by six primers to establish effective viability. A

schematic illustration of the combined reverse transcription

LAMP and vertical flow visualization (RT-LAMP-VF) assay is

shown in Figure 2.

Enzyme-linked immunosorbent assay
The enzyme-linked immunosorbent assay (ELISA)

technique utilizes enzyme immunoassay to detect the ligand in

a liquid sample. The antibodies are used against the antigen

(Alhajj and Farhana, 2022). This is commonly used in molecular

research and diagnostics due to its high reproducibility and

specificity, but the traditional ELISA has shown a lot of

drawbacks, including difficult procedures, long assay time (4–

6 h), and the high volume of reagent used (100 ml). These
limitations affect its application in clinical diagnosis (Tan et al.,

2017). However, these downsides can be overcome by

combining ELISA with microfluidic technology (microfluidic-

assisted ELISA). The sample volume can be reduced by almost

20-fold with the capillary force, which pulls the reagent into the

reaction chamber during the immunoassay. This results in an
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overall reagent saving of 5- to 10-fold (Ghosh et al., 2020). The

total assay time can also be lessened by 50%, which reduces the

inclusive cost of labor (Thaitrong et al., 2013).
Coronavirus disease modeling using
microfluidics

Microfluidic technology is based on the complexity of

multicellular and cellular interactions on a microscopic scale,

the reproduction of biochemical forces via tissue engineering,

and the use of organ-on-a-chip technology (Li et al., 2012). The

recreation of the cellular microenvironment is the biggest

challenge in tissue engineering for CoV research (Prakash

et al., 2012). Devices related to microfluidics have been

successfully used so that cell-based virus assays could be

developed (Berkenbrock et al., 2020b). Tissue engineering

related to microfluidics can assist in elucidating the entry

mechanism of CoV and the persistence of infection in cells.

Antiviral drug discovery can also be accelerated in this manner

(Tatara, 2020).

At present, public health communities around the world

have been challenged by the high infection and death rates of the

recently emerged COVID-19. Such scenarios require the

infection to be diagnosed accurately and rapidly in order to

control the COVID-19 epidemic, which is only possible with the

use of molecular-based diagnostics coupled with microfluidics.

Microfluidics can improve diagnostic methods so that a cost-

effective and efficient strategy is developed (Udugama et al.,

2020). RT-LAMP is an amplification technique for nucleic acids

commonly utilized for clinical samples for the effective detection

of SARS-CoV-2 (point-of-care) (Mautner et al., 2020). The field

of microfluidics can be an alternative to time-consuming

benchtop assays. Microfluidic devices capable of manipulating

minute amounts of fluids and extracting information from

them have been enabled by microelectronics and micro-

electromechanical systems (MEMS) (Manz et al., 1990;

Prakash et al., 2012).

Recently, a lot of microdevices have been devised to detect

small-sized pathogens such as viruses (Yang and Yamamoto,

2016; Zhu et al., 2020). The WHO has recommended the use of

qPCR with the combination of RT-PCR (qRT-PCR) for the

detection of COVID-19 (Corman et al., 2020). The LAMP

technique has now become a commonly used method for

molecular diagnostics in benchtop assays, which are based on

somewhat constant temperatures for amplification, i.e., between

60°C and 65°C (Notomi et al., 2000). This is compatible with the

technique of reverse transcriptase for SARS-CoV-2 benchtop

assay (Hong et al., 2004). The benchtop assay based on RT-

LAMP showed similar positive results to the RT-qPCR-based

protocol in the diagnosis of COVID-19, which was approved by

the WHO (Lu et al., 2020). This new protocol can be used for
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home testing, being applied to microdevices with less risk of

spreading the virus. Therefore, the LAMP protocol is now

considered a simple method with enormous advantages to be

used in microfluidic devices for testing (Nguyen et al., 2020).

The devices related to microfluidics utilize serological testing

to detect Zika virus (ZIKV), Middle East respiratory syndrome

coronavirus (MERS-CoV), and dengue virus (DENV). Hence, it

is also a promising approach to detecting SARS-CoV-2

(Berkenbrock et al., 2020a). These devices are much more
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efficient and have taken advantage of well-established

benchtop assays (implemented in macroscopic analysis tools

rather than in miniaturized portable devices), which have been

adapted to miniaturized lab-on-a-chip versions. One of the

reasons for this is the recent concentrated research effort on

SARS-CoV-2, which has unveiled its genetic material, proteins,

and other molecules that form the virus, as well as the memory

antibodies for the disease (Berkenbrock et al., 2020a; Cao et al.,

2020; Li et al., 2020; Turoňová et al., 2020).
A

B

FIGURE 2

Schematic illustration of the reverse transcription loop-mediated isothermal amplification and vertical flow visualization (RT-LAMP-VF) assay.
Figure adopted from Huang et al. (2018). (A) RT-LAMP was executed in a water bath at a constant temperature. (B) The products of RT-LAMP
were detected by using a vertical flow visualization strip.
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Recent advancements

National wastewater surveillance systems were introduced

and implemented worldwide following the COVID-19

pandemic to better understand the extent of SARS-CoV-2

infection in communities. The quantitative monitoring of

SARS-Cov-2 within raw sewage can be a good indicator of the

progression of viral circulation in a population (Bonanno

Ferraro et al., 2021). The Centers for Disease Control and

Prevention (CDC) has provided many predictions using

various models to estimate future deaths from COVID-19

(Wang et al., 2022). Nevertheless, several advanced techniques

have been developed so that the population-level spread of the

disease can be tracked statistically (Salathe et al., 2012). Some

models have revealed predictive analytic expertise for deaths and

hospitalizations (Kissler et al., 2020). Various research groups

have been working on wastewater surveillance for COVID-19,

including sewage monitoring with the SARS2-EWSP (SARS-

CoV-2 Early Warning Wastewater Surveillance Platform), Utah

State, in New York (Utah DEQ, 2022) and Tempe, Arizona’s

COVID-19Wastewater Dashboard (Tempe, 2021). The study by

Peccia et al. concluded that delaying the sample processing of

sludge can wear away the potential of this approach (Larsen and

Wigginton, 2020). Recent findings from Bangladesh displayed

many contamination results in surface water due to failure in

fecal sludge management services (Amin et al., 2020). Risks of

waterborne infections can increase due to viral contamination by

groundwater recharge in rural areas (Organization, W. H and

UniCeF, 2010). On the other hand, various wastewater studies

from high-income areas with good sanitation systems are also

well-documented (Ahmed et al., 2021; Ahmed et al., 2020b;

Kumar et al., 2020; Medema et al., 2020; Randazzo et al., 2020;

Rimoldi et al., 2020; Wurtzer et al., 2020a). A significant positive

correlation was found between new COVID-19 cases and the

viral load in wastewater, suggesting the potential value of clinical

testing and wastewater data monitoring in cities (Hoar et al.,

2022). Nevertheless, there is still inadequate progress made in

the use of wastewater surveillance to monitor the trends in

COVID-19, regardless of the applications of several techniques

(Bivins et al., 2020; Zahedi et al., 2021). A systematic review

reported the detection of almost 7,644 (29.2%) positive samples

out of a total of 26,197 samples collected from 66 studies (Shah

et al., 2022). Similarly, there are reports of wastewater

surveillance done in different settings, including colleges,

hospitals, nursing homes, and dormitories (Gonçalves et al.,

2022). Reports from the USA showed high consistency between

the results of clinical testing of COVID-19 and wastewater

samples collected from college residents (Colosi et al., 2021).

The viral RNA detected in wastewater from Arizona University

campus was directed for specific clinical testing to isolate

infected individuals. Eventually, positive wastewater samples

provided an early warning of the presence of infection,
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preventing possible disease transmission (Betancourt et al.,

2021). Another study from a university in the US identified

asymptomatic COVID-19 cases that were not detected clinically

(Gibas et al., 2021). A lot of infected cases were detected by

following the SARS-CoV-2 presence in sewage in nursing places

in Spain within a time frame of 5–19 days (Davó et al., 2021).

The hospital wastewater in Slovenia was found to contain SARS-

CoV-2 RNA with a low prevalence of COVID-19 reported at the

time (José Gonçalves et al., 2021). In Spain, the estimation of a

high proportion of active spillers from SARS-CoV-2 RNA in

wastewater indicated infection in individuals who are

asymptomatic (Chavarria-Miró et al., 2021). Moreover,

positive signals at a minimum of 33 times within 3 months

were detected in New South Wales, in which raw sewage

inflowing accounted for most of the positive cases, followed by

treated effluents after filtration, primary sludge, and river

samples (Shah et al., 2022). High sample positivity was

reported by Peccia et al., which resulted in positive detections

in almost 17,661 samples (20.6%) from primary sludge (Peccia

et al., 2020).
Discussion

Better management of the pandemic requires the precise and

timely identification of individuals with SARS-CoV-2, which

relies on using suitable testing in various clinical settings for

better clinical decision-making (Daughton, 2020). The RNA

level of SARS-CoV-2 in sewage correlated with the prevalence

of COVID-19, highlighting the efficacy of sewage surveillance as

a monitoring tool (Medema et al., 2020). Although there has

been a significantly increase in testing capability in developed

countries, obvious disproportions in some countries are still

evident, especially in developing regions where there is a lack of

testing facilities and clinical infrastructure (Abdullahi et al.,

2020; Giri and Rana, 2020). This issue must prompt the WHO

to encourage researchers to focus their exertions on developing

point-of-care assays for community use (Organization, 2020).

Advanced techniques such as isothermal amplification methods

(e.g., RT-LAMP) are widely adopted because of their low cost

and fast processing time, but a lot of false-positive results have

also been reported due to nonspecific amplification. This raises

concerns regarding their extensive implementation (Rolando

et al., 2020). Modern diagnostics provides core diagnostic

solutions to carry out large numbers of tests in a timely

manner (Pfefferle et al., 2020). An accurate diagnosis of a

disease is vital to containing its spread, as a study has

estimated that 80% of positive cases of COVID-19 were

originally spread by undetected infections (Peccia et al., 2020).

Molecular assays are being developed so that the clinical

sensitivity and ease-of-use of diagnostic tests can be enhanced

(Chan et al., 2020).
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With the official announcement of the COVID-19 pandemic

by the WHO on March 11, 2020, millions of lives worldwide

have been negatively affected by the virus (Franchi, 2020). The

developmental timelines of the COVID-19 vaccines were quite

long (Corey et al., 2020), along with the risk of SARS-CoV-2

immunity declining with time (Kissler et al., 2020). Therefore, a

powerful, authentic, and simultaneous indicator can assist in

timely interventions for public health in the case of outbreaks.

Various tracking measures have been used for COVID-19,

including death rates, confirmed cases, and hospitalizations.

However, inefficiencies were discovered in the distribution

processes, assembly, and data collection, including reporting

delays (Lipsitch and Santillana, 2019). As an acknowledgment to

fill such gaps, several recent works have revolved around the

potential use of WBE corresponding to clinical testing

(Thompson et al., 2020; Venugopal et al., 2020). WBE has

been successfully used to track various uses of drugs and other

factors. Recently, its popularity has increased in water-related

areas with its practical implications via its ability to identify

underreported and asymptomatic patients with infectious

diseases (Sims and Kasprzyk-Hordern, 2020). The LAMP

protocol is now considered a simple method with enormous

advantages for use in microfluidic devices for testing. Combined

with reverse transcription, it can be a better option for the

monitoring of COVID-19 infection through WBE. Nevertheless,

its practical applications in the surveillance of COVID-19 have

only been associated with clinical testing capacity (Amoah et al.,

2021). More research is needed to address its wide application.

Currently, a wide range of clinical examinations and molecular

diagnostics for suspected cases can reduce the occurrence of false-

negative results; moreover, a detailed and careful examination of

the commercial tests must be conducted to identify errors and

regulate the efficacy of the approved tests (Sharfstein et al., 2020).

These would help in better understanding COVID-19 diagnostics

to improve the monitoring of emerging infectious diseases in the

future. The development of better laboratory assays should not

delay the effort to develop rapid diagnostic tests, even with the low

precision during the early phase of the outbreak, as rapid tests can

play a significant role in the fight against infection in the initial

days while highly efficient assays are in the development stages

(Ramdas et al., 2020).
Future remarks

Independent assessments of emerging technologies can

provide alternative diagnostic solutions with faster and better

screening of individuals with suspected infection. The

implementation of targeted, timely, and appropriate testing to

reduce the effects of the epidemic is necessary. Generally,

epidemic testing is hampered by the lack of options other than

test applications for clinical diagnosis and the detection of

infections. The wastewater surveillance approach needs to
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frequently increase the number of populations tested until the

key level of detection of positive cases is achieved in order to

directly indicate the infection spread in a community. Hence, more

rigorous testing is needed to increase the ratio significantly.

Nevertheless, diagnostic tests were never intended for mass

surveillance. These tests are not only time-consuming and costly,

but they can also pose serious exposure risks to those who

administer them. Alternatives should be used to solve the

problem of diagnostic tests being costly and time-consuming by

increasing the quantity of conventional diagnostic tests and

minimizing the number of tests mandatory to determine a

positive case. Utilizing WBE as an early warning system can

reduce the high demand for diagnostic testing by supplementing

shortages in the supply chain due to limited manufacturing

capacity. The usefulness of WBE can be extended by targeting

endogenous biomarkers that were significantly increased during

the disease outbreak. However, more research is needed with

regard to virus detection in wastewater corresponding to its

transmission by highlighting diverse geographic areas and

collections from wastewater facilities. A comparison of sludge

and inflow from the same wastewater plants can help in

determining which approach is more sensitive to decrease the

case numbers in a population.

Conclusion

Viral surveillance can be an impartial method for evaluating

the viral spread in different regions, even when there is a limitation

of resources and diagnosis. These surveillance strategies can be

used as “early warning” systems. Studies have pointed out the need

for additional strategies and molecular-based assays to validate the

presence of enveloped viruses in water, which will increase the

accuracy of wastewater surveillance.
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M., Hervás, D., Moreno, I., et al. (2021). Detection of environmental SARS-CoV-2
RNA in a high prevalence setting in Spain. Transboundary Emerging Dis. 68 (3),
1487–1492. doi: 10.1111/tbed.13817

Foladori, P., Cutrupi, F., Segata, N., Manara, S., Pinto, F., Malpei, F., et al. (2020).
SARSCoV-2 from faeces to wastewater treatment: What do we know? A review. Sci.
Total Environ. 743, 140444. doi: 10.1016/j.scitotenv.2020.140444

Fongaro, G., Stoco, P. H., Souza, D. S. M., Grisard, E. C., Magri, M. E., Rogovski,
P., et al. (2021). The presence of SARS-CoV-2 RNA in human sewage in Santa
catarina, Brazil, November 2019. Sci. Total Environ. 778, 146198. doi: 10.1016/
j.scitotenv.2021.146198

Franchi, T. (2020). The impact of the covid-19 pandemic on current anatomy
education and future careers: A student's perspective. Anat Sci. Educ. 13 (3), 312–
315. doi: 10.1002/ase.1966

Francois, P., Tangomo, M., Hibbs, J., Bonetti, E. J., Boehme, C. C., Notomi, T.,
et al. (2011). Robustness of a loop-mediated isothermal amplification reaction for
diagnostic applications. FEMS Immunol. Med. Microbiol. 62 (1), 41–48. doi:
10.1111/j.1574-695X.2011.00785.x

Gandhi, M., Yokoe, D. S., and Havlir, D. V. (2020). Asymptomatic transmission,
the achilles’ heel of current strategies to control covid-19 Vol. 382 (United States:
Mass Medical Soc), 2158–2160.

Gao, Q. Y., Chen, Y. X., and Fang, J. Y. (2020). 2019 novel coronavirus infection
and gastrointestinal tract. J. dig. dis. 21 (3), 125. doi: 10.1111/1751-2980.12851

Ghosh, S., Aggarwal, K., Vinitha, T. U., Nguyen, T., Han, J., and Ahn, C. H.
(2020). A new microchannel capillary flow assay (MCFA) platform with
lyophilized chemiluminescence reagents for a smartphone-based POCT detecting
malaria. Microsyst Nanoeng. 6, 5. doi: 10.1038/s41378-019-0108-8

Gibas, C., Lambirth, K., Mittal, N., Juel, M. A. I., Barua, V. B., Brazell, L. R., et al.
(2021). Implementing building-level SARS-CoV-2 wastewater surveillance on a
university campus. Sci. Total Environ. 782, 146749. doi: 10.1016/
j.scitotenv.2021.146749

Giri, A. K., and Rana, D. R. (2020). Charting the challenges behind the testing of
COVID-19 in developing countries: Nepal as a case study. Chin. Med. Journals
Publ. House Co. 2, 53–56. doi: 10.1016/j.bsheal.2020.05.002
frontiersin.org

https://doi.org/10.2166/wst.2006.475
https://doi.org/10.1371/journal.pone.0270168
https://doi.org/10.1371/journal.pone.0270168
https://doi.org/10.1016/j.jwpe.2021.101947
https://doi.org/10.1016/S2666-5247(20)30172-5
https://doi.org/10.1128/JCM.00310-20
https://doi.org/10.1128/AEM.02750-20
https://doi.org/10.1002/jmv.25825
https://doi.org/10.7326/M20-0991
https://doi.org/10.1016/S0140-6736(20)30211-7
https://doi.org/10.1053/j.gastro.2020.03.065
https://doi.org/10.1016/j.jes.2021.01.029
https://doi.org/10.1016/j.trac.2018.06.004
https://doi.org/10.1016/j.cmi.2020.05.009
https://doi.org/10.1128/AEM.00433-21
https://doi.org/10.1128/AEM.00433-21
https://doi.org/10.1126/science.abc5312.
https://doi.org/10.1126/science.abc5312.
https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
https://doi.org/10.1101/2020.03.27.20043752
https://doi.org/10.1021/bk-2001-0791.ch020
https://doi.org/10.1016/j.scitotenv.2011.11.015
https://doi.org/10.1016/j.scitotenv.2011.11.015
https://doi.org/10.1016/j.scitotenv.2017.11.102
https://doi.org/10.1016/j.scitotenv.2020.139631
https://doi.org/10.1016/j.scitotenv.2020.139631
https://doi.org/10.1016/j.cmi.2021.02.003
https://doi.org/10.1002/path.1560
https://doi.org/10.1101/2020.04.03.20052175
https://doi.org/10.1186/1743-422X-11-32
https://doi.org/10.1186/1743-422X-11-32
https://doi.org/10.1007/s11430-017-9129-x
https://doi.org/10.1016/j.scitotenv.2017.08.249
https://doi.org/10.1111/tbed.13817
https://doi.org/10.1016/j.scitotenv.2020.140444
https://doi.org/10.1016/j.scitotenv.2021.146198
https://doi.org/10.1016/j.scitotenv.2021.146198
https://doi.org/10.1002/ase.1966
https://doi.org/10.1111/j.1574-695X.2011.00785.x
https://doi.org/10.1111/1751-2980.12851
https://doi.org/10.1038/s41378-019-0108-8
https://doi.org/10.1016/j.scitotenv.2021.146749
https://doi.org/10.1016/j.scitotenv.2021.146749
https://doi.org/10.1016/j.bsheal.2020.05.002
https://doi.org/10.3389/fcimb.2022.978643
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Maryam et al. 10.3389/fcimb.2022.978643
Goh, G. K.-M., Dunker, A. K., and Uversky, V. (2013). Prediction of intrinsic
disorder in MERSCoV/HCoV-EMC supports a high oral-fecal transmission. PloS
curr. 5. doi: 10.1371/currents.outbreaks.22254b58675cdebc256dbe3c5aa6498b
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(2021). Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-
19 disease prevalence area. Sci. Total Environ. 755, 143226. doi: 10.1016/
j.scitotenv.2020.143226
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