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ceftazidime-avibactam during
infection treatment in
Pseudomonas aeruginosa
through D179Y mutation in
one of two blaKPC-2 gene
copies without losing
carbapenem resistance
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and Aniela Wozniak1,2,3*
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Universidad Católica de Chile, Santiago, Chile, 2Millennium Initiative for Collaborative Research On
Bacterial Resistance (MICROB-R), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad
de Medicina, Universidad del Desarrollo, Santiago, Chile, 3Clinical Laboratories Network, Red de
Salud UC-CHRISTUS, Santiago, Chile, 4Australian Institute for Microbiology & Infection, Faculty of
Science, University of Technology, Sydney, Australia, 5Grupo de Resistencia Antimicrobiana en
Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biologı́a, Pontificia Universidad Católica
de Valparaı́so, Valparaı́so, Chile, 6Genomics & Resistant Microbes group (GeRM), Instituto de
Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clinica Alemana, Universidad del
Desarrollo, Santiago, Chile
Ceftazidime/Avibactam (CAZ/AVI) is frequently used to treat KPC-producing

Pseudomonas aeruginosa (KPC-PA) and Enterobacterales. CAZ/AVI resistance

is driven by several mechanisms. In P. aeruginosa this mainly occurs through

alteration of AmpC, porins, and/or efflux pump overexpression, whereas in

Enterobacterales it frequently occurs through D179Y substitution in the active

site of KPC enzyme. This aminoacid change abolishes AVI binding to the KPC

active site, hence inhibition is impaired. However, this substitution also

decreases KPC-mediated resistance to carbapenems (“see-saw” effect). The

goal of this work was to characterize the in vivo acquisition of CAZ/AVI

resistance through D179Y substitution in a KPC-PA isolated from a

hospitalized patient after CAZ/AVI treatment. Two KPC-PA isolates were

obtained. The first isolate, PA-1, was obtained before CAZ/AVI treatment and

was susceptible to CAZ/AVI. The second isolate, PA-2, was obtained after CAZ/

AVI treatment and exhibited high-level CAZ/AVI resistance. Characterization of

isolates PA-1 and PA-2 was performed through short and long-read whole

genome sequencing analysis. The hybrid assembly showed that PA-1 and PA-

2A had a single plasmid of 54,030 bp, named pPA-1 and pPA-2 respectively.
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Each plasmid harbored two copies of the blaKPC-containing Tn4401b

transposon. However, while pPA-1 carried two copies of blaKPC-2, pPA-2 had

one copy of blaKPC-2 and one copy of blaKPC-33, the allele with the D179Y

substitution. Interestingly, isolate PA-2 did not exhibit the “see-saw” effect. The

blaKPC-33 allele was detected only through hybrid assembly using a long-read-

first approach. The present work describes a KPC-PA isolate harboring a

plasmid-borne CAZ/AVI resistance mechanism based on two copies of

blaKPC-2-Tn4401b and D179Y mutation in one of them, that is not associated

with loss of resistance to carbapenems. These findings highlight the usefulness

of a fine-tuned combined analysis of short and long-read data to detect similar

emerging resistance mechanisms.
KEYWORDS

ceftazidime/avibactam resistance, pseudomonas aeruginosa, D179Y substitution,
blaKPC-2 gene, Tn4401b transposon
Introduction

Pseudomonas aeruginosa is one of the most frequent

causative agents of healthcare-associated infections and poses a

major concern due to its outstanding ability to develop

resistance to antimicrobial agents (Botelho et al., 2019).

Carbapenemases are the most important acquired resistance in

P. aeruginosa because it confers resistance to all beta-lactams

and because some of them are encoded in mobile genetic

elements that facilitate their dissemination. The most frequent

carbapenemase in P. aeruginosa worldwide is VIM (Karlowsky

et al., 2018; Karlowsky et al., 2019; Kiwei et al., 2021). In a recent

report including more than 400 beta-lactam resistant P.

aeruginosa isolates in Europe, 37% were VIM positive,

followed by NDM and IMP (Torrens et al., 2022). In contrast

to the worldwide distributed class B beta-lactamase-producing P.

aeruginosa, KPC-producing P. aeruginosa (KPC-PA) has been

mostly reported in American countries like Argentina (Pasterán

et al., 2012; Ramıŕez et al., 2013), Brazil (Luna et al., 2012),

Trinidad y Tobago (Akpaka et al., 2009), United States (Poirel

et al., 2010), Chile (Enberg et al., 2020; Costa et al., 2021)

Colombia (Villegas et al., 2007; Rada et al., 2021) and also in

China (Kiwei et al., 2021). A recent Chilean study showed that

among 61 carbapenemase-producing P. aeruginosa isolates, 54%

harbored KPC, and the remaining 46% produced VIM (Costa

et al., 2021).

Ceftazidime-avibactam (CAZ/AVI) is a novel antimicrobial

combination that gathers ceftazidime, a well-known

cephalosporin, with avibactam, a beta-lactamase inhibitor highly

active against class A carbapenemases such as KPC. Notably,

while avibactam also inhibits class C and some D enzymes, it does

not exhibit activity against class B carbapenemases (Ehmann et al.,

2012), Currently, CAZ/AVI is one of the main antibiotic
02
alternatives used to treat infections by KPC-producing bacteria,

including KPC-PA (Temkin et al., 2017) and KPC-producing

Enterobacterales (Shields et al., 2017a). Unfortunately, CAZ/AVI

resistance in P. aeruginosa is not uncommon, with reported

resistance rates of 10-16% among isolates of carbapenem-

resistant P. aeruginosa not harboring class B beta-lactamases

(Kazmierczak et al., 2018; Karlowsky et al., 2018; Karlowsky

et al., 2019). Globally, CAZ/AVI resistance occurs through

several mechanisms: changes in the omega-loop of the KPC or

AmpC enzymes; porin mutations; increased copy number and/or

expression of blaKPC genes; and increased expression of efflux

pumps (Botelho et al., 2019; Coppi et al., 2020). D179Y

substitution in the omega-loop of KPC-2 (designated KPC-33

variant) has been associated with CAZ/AVI resistance in

Enterobacterales (Wang et al., 2020). While the specific

mechanism of CAZ/AVI resistance conferred by the D179Y

mutation has not been completely characterized, some studies

suggest it may be related to hydrogen bonds stabilizing the

interaction of the enzymatic active site with CAZ, decreasing its

affinity to AVI (Winkler et al., 2015; Barnes et al., 2017). Other

studies have reported that D179Y alters the acylation of KPC,

decreasing the inactivation constant of AVI by ~70,000-fold

(Compain and Arthur, 2017). Indeed, experiments with purified

KPC-33 demonstrated a 20-fold increase in the concentration of

AVI needed to inhibit 50% of CAZ hydrolysis. Also, KPC-33

exhibited a 10-fold higher efficiency hydrolyzing CAZ as

compared to wild-type (WT) KPC-2 (Tsivkovski and

Lomovskaya, 2020). Interestingly, the D179Y substitution

restores the susceptibility to carbapenems in Enterobacterales,

known as the “see-saw” effect (Shields et al., 2017a; Haidar

et al . , 2017; Shields et al . , 2017b). In contrast to

Enterobacterales, CAZ/AVI resistance in P. aeruginosa has been

mostly associated with point mutations in chromosomal genes
frontiersin.org
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coding for AmpC and OXA-539 beta-lactamases (Fraile-Ribot

et al., 2017; Wang et al., 2020). In addition, several changes in

chromosomal genes have been reported in CAZ/AVI resistant

clinical isolates of P. aeruginosa: ftsI, nalD, dnaK, ctpA, together

with increased expression of MexAB-OprM efflux pump system

(Castanheira et al., 2019). Herein, we report the in vivo emergence

of high-level CAZ/AVI resistance in a clinical isolate of KPC-PA

bearing two copies of blaKPC, one of which developed the D179Y

substitution. Interestingly, the development of CAZ-AVI

resistance did not result in concomitant carbapenem

susceptibility. The finding of KPC-33 was detected through a

multi-step hybrid assembly pipeline using long and short-read

whole-genome sequencing (WGS) platforms.
Materials and methods

Patient and isolates

This work was approved by the Ethical Committee of

Pontificia Universidad Católica de Chile. Isolates were obtained

from a 77-year-old male patient admitted in February 2019 due to

a dissecting abdominal aortic aneurysm. Two days after surgical

repair, a urine culture performed due to tachycardia and

abdominal pain, yielded a KPC-PA (isolate PA-1). The isolate

was susceptible to amikacin, colistin and CAZ/AVI. Therapy with

colistin plus CAZ/AVI was started immediately. After 16 days of

therapy, fever and clinical worsening occurred and the patient

developed respiratory failure and shock, requiring vasoactive

support and mechanical ventilation. A culture from an

endotracheal aspirate obtained at that moment yielded a CAZ/

AVI resistant KPC-PA isolate (isolate PA-2). Therefore CAZ/AVI

was replaced by a combination of colistin plus amikacin. The

patient developed renal impairment with hypernatremia and

hypokalemia that were managed with hypotonic fluids and

intravenous loads, respectively. Finally, the patient exhibited a

good clinical response after 48 days of colistin therapy, with

disappearance of the fever and decreasing inflammatory

parameters, and was discharged after 127 days of hospitalization.
Antimicrobial susceptibility testing

Antimicrobial susceptibility was determined through the

agar dilution method as per Clinical Laboratory Standards

Institute (CLSI) recommendations (CLSI, 2019). Susceptibility

to CAZ/AVI, ceftolozane/tazobactam and aztreonam were

determined using the broth microdilution method using

SensiTitre Antimicrobial Susceptibility Testing System

according to manufacturer`s instructions (Thermo Fisher

Scientific, United States). Susceptibility categorization was

performed using the breakpoints proposed by the CLSI

guidelines (CLSI, 2019).
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Carbapenemase detection

Isolates were initially assessed for carbapenemase activity

through Carba-NP testing as per CLSI recommendations (CLSI,

2019). The presence of KPC, OXA-48, IMP, VIM and NDM was

determined using the immunochromatographic test NG-CARBA 5

(NG-BIOTECH®, France). Further, molecular confirmation was

performed using PCR targeting carbapenemase genes blaKPC,

blaOXA-48, blaNDM, blaIMP, blaIMI, blaGES and blaVIM, as previously

described (Wozniak et al., 2012). DNA from carbapenemase-

producing clinical isolates previously characterized in our

laboratory was used as positive controls (Wozniak et al., 2012).
Analysis of outer membrane proteins

SDS-PAGE analyses of the insoluble outer-membrane

fraction were performed as described (Wozniak et al., 2012).

Briefly, 2mL of overnight culture were centrifuged, resuspended

in 10mM Tris HCl pH8, sonicated for 2min and centrifuged at

7,000g for 5min. The supernatant obtained was centrifuged at

13,000g for 45min, and the pellet was resuspended in 10mM

Tris-HCl pH8 with 2% Triton X-100 and incubated at 37°C for

30min. The suspension was centrifuged at 13,000g for 45min

and the pellet containing outer membrane proteins was

resuspended in 100mM Tris-HCl pH8 with 2% SDS. A

volume containing 50µg of protein was incubated at 98°C for

5min and analyzed in a 12.5% polyacrylamide gel at 100V. Gels

were stained overnight in 0.1% Coomassie blue and washed with

1% acetic acid. Susceptible P. aeruginosa ATCC 27853 was

included as control.
Whole genome sequencing analysis

Isolates PA-1 and PA-2 were sequenced using both short-

read and long-read WGS. For short-read sequencing, a 350 bp

insert DNA library was prepared using Illumina DNA Prep Kit

(formerly Nextera Flex), using the Hackflex protocol (Gaio et al.,

2022). Sequencing was performed in an Illumina Platform

PE150, at the University of Technology Sydney’s Bioscience

Laboratory (Sydney, Australia). The Q30 obtained was > 90% for

both isolates. De novo assembly was performed using SPADES

version 3.7 package (Bankevich et al., 2012). Genomic

annotation of the recovered draft genomes was performed

with Prokka tool 1.11 (Seemann, 2014). Final visualization was

made using Geneious™. For long-read sequencing, an Oxford

Nanopore platform was used. A Ligation Library was prepared

and sequenced on a GridION device at the Garvan Institute of

Medical Research (Sydney, Australia).

Short-read and long-read sequences were assembled using

two different hybrid assembly approaches: Unicylcler and

Trycycler (Wick et al., 2017; Wick et al., 2021). Of note,
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Unicycler uses a short-read-first approach and Trycycler uses a

long-read-first approach. For Trycycler assembly, a set of 12

assemblies made with three different assemblers, using different

random subsets as input, were generated. The three assemblers

used were Flye (Kolmogorov et al., 2019), Miniasm (Heng Li,

2016) and Raven (Vaser and Šikić, 2021). The clustering of

assemblies was evaluated manually in a phylogenetic tree, and

after confirming that the three assemblies were concordant in

the plasmids and chromosomes generated, a consensus sequence

was generated. The resistome characterization, genome

annotation, and visualization of the hybrid assemblies were

performed using the Comprehensive Antibiotic Resistance

Database (CARD) Resistance Gene Identifier (RGI) v1.0.0

(McArthur et al., 2013), Prokka v1.11 (Seemann, 2014) and

CGView Builder v1.0.0 (Grant and Stothard, 2008).

Raw sequence data were deposited in BioProject No.

PRJNA839103 in the Sequence Read Archive of the National

Center for Biotechnology Information with BioSample accession

numbers SAMN28535839, SAMN28535840 for PA-1 and PA-2

respectively. Final assembly of chromosomes were deposited in

Genbank with accession numbers CP097709 and CP097710, for

PA-1 and PA-2 respectively. Final assembly of plasmids were

deposited in Genbank with accession numbers CP097845 and

CP097844 for pPA-1 and pPA-2 respectively.
Confirmation of KPC D179Y substitution

To confirm the KPC D179Y substitution, a forward primer that

included the nucleotide change G532T at the 3’ end was designed.

The same primer with the WT nucleotide was also designed. The

primers used were: WT-F: GCGCGCGGCGATGAGGTATC;

Mut-F: GCGCGCGGCGATGAGGTATA; Rev: CTTGCCG

CTCGGTGATAATC. Two PCR reactions were done for each

isolate: one with primers WT-F and WT-Rev, and the other one

with primers Mut-F and Mut-Rev; both PCR reactions produced a

640 bp amplicon. It was expected that PCRwith primersMut-F and

Mut-Rev produced a 640 bp amplicon for PA-2, and no amplicon

for PA-1. PCR with primers WT-F and WT-Rev was expected to

produce a 640 bp amplicon for both isolates.
Results

Phenotypic and genotypic
characterization of the isolates

A summary of the susceptibility profile of PA-1 and PA-2 is

presented in Table 1. Briefly, PA-1 exhibited resistance to all tested

antimicrobials tested except for colistin, amikacin, and CAZ/AVI

withminimuminhibitoryconcentrations (MIC)of≤2,≤8and4mg/
mL, respectively. PA-2 exhibited the same susceptibility profile of

PA-1, except forCAZ/AVI,which resulted in aMICof>256mg/mL
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(Table 1). Both isolates exhibited carbapenemase activity as

indicated by a positive Carba-NP test. Immunochromatographic

detection of carbapenemases showed that both isolates produced a

KPCenzyme,whichwas later confirmed throughPCRtargeting the

blaKPCgene (datanot shown). Since alteredproductionof theOprD

porin may also affect CAZ/AVI activity, the porin profile was

analyzed through SDS-PAGE of the insoluble outer membrane

fraction. As shown in Figure 1, the band corresponding to OprD

was absent in both clinical isolates as compared to the susceptible

control. Therefore, an OprD-mediated resistance to CAZ/AVI in

PA-2 was unlikely.
Short-read and long-read WGS analyses

Our genomic in-silico MLST analysis revealed both isolates

belonged to ST654 and they harbored a blaKPC-2 gene embedded in

a typical Tn4401b transposon.Mutations in several chromosomally-

encoded genes frequently associated with CAZ/AVI resistance were

analyzed; no differences were found between both isolates. However,

severalmutations in genes associatedwith CAZ/AVI resistance were

present in both isolates respect toWT strain PAO-1 (Table 2). An 8

bpdeletionatnucleotide235wasobserved inmexT,whichresulted in
TABLE 1 Antimicrobial susceptibility profile of P. aeruginosa isolates.

MIC (mg/mL) (category*)

Antimicrobial Agent PA-1 PA-2

amikacin ≤8 (S) ≤8 (S)

gentamycin 8 (I) 8 (I)

ampicillin >32 (R) >32 (R)

ampicillin/sulbactam >32 (R) >32 (R)

cefoperazone/sulbactam >64 (R) >64 (R)

piperacillin/tazobactam >128 (R) >128 (R)

cefixime >4 (R) >4 (R)

cefepime >32 (R) >32 (R)

cefotaxime >128 (R) >128 (R)

ceftazidime >128 (R) >128 (R)

ceftazidime/avibactam# 4 (S) >256 (R)

ceftolozane/tazobactam# >32 (R) >32 (R)

aztreonam# >32 (R) >32 (R)

cotrimoxazole >80 (R) >80 (R)

meropenem >16 (R) >16 (R)

imipenem >16 (R) >16 (R)

colistin ≤2 (S) ≤2 (S)

nitrofurantoin >128 (R) >128 (R)

fosfomycin >256 (R) >256 (R)

ciprofloxacin >4 (R) >4 (R)
*Categories were assigned according to CLSI 2019 guidelines: R, resistant; I,
intermediately resistant; S, susceptible. MIC, Minimum Inhibitory Concentration.
#Antimicrobials that were evaluated through broth microdilution method (Sensititre,
Thermo Scientific).
*Susceptibility pattern of PA-1 and PA-2 differ only in ceftazidime/avibactam MIC (bold
values).
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FIGURE 1

SDS-PAGE analysis of outer membrane protein extraction of isolates PA-1 and PA-2. Weight (kDa) of the Molecular Weight Standard (Std MW)
bands used in protein electrophoresis is indicated next to the bands. P. aeruginosa ATCC 27853 was used as a control isolate. OprD was located
based in its molecular weight of 48,4 kDa and according to previous reports (Rodrıǵuez-Beltrán et al., 2015).
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a frameshift from amino acid 80. In addition, mexZ had a 2 bp

deletion at positions 550 and 551, which produced a frameshift from

amino acid 184. Both changes inMexT andMexZwere predicted to

result in a loss of protein function according to PROVEAN analysis

(Choi et al., 2012). Other changes observed in chromosomal genes

were predicted to produce minor or no changes in protein function

according toPROVEANanalysis (Table 2). BothPA-1andPA-2had

the same allele of the endogenous ampC gene (PDC-3),WTalleles of

mexAB-oprM operon, the same polymorphisms in transcriptional

regulators MexT, MexD, MexZ, NalC and NalD, and the same

variant of OprD porin. Despite OprD porin had a deletion of two

aminoacids and29 aminoacid substitutions respect toPAO-1 strain,

these alterationswere neutral according to PROVEANanalysis. This

OprDprotein variantwas reported as functional (Suresh et al., 2020).

According to these data, no evident differences were found between

both isolates that could explain CAZ/AVI resistance in PA-2.

To obtain a more detailed genomic analysis, hybrid

assemblies were performed using short and long-read data for

each isolate. Using Unicycler (short-read-first approach), isolate
Frontiers in Cellular and Infection Microbiology 05
PA-1 generated two circular scaffolds of 7,046,950 bp and 54,030

bp long, and isolate PA-2 generated two linear scaffolds of

6,969,342 bp and 71,243 bp, and a circular scaffold of 40,443

bp. Scaffolds of 54,030 bp (PA-1) and 40,443 bp (PA-2)

corresponded to plasmids based on the presence of plasmid

replication control genes and were named pPA-1 and pPA-2,

respectively. Plasmid pPA-1 harbored two copies of the blaKPC
gene, each one contained in a Tn4401b transposon separated by

8,687 bp, whereas plasmid pPA-2 had only one copy of the

Tn4401b transposon containing blaKPC-2 according to Unicycler

assembly. In contrast, using Trycycler (long-read-first approach)

both isolates generated the same two circular scaffolds of

7,048,060 bp and 54,030 bp long. The Trycycler assembly

showed both plasmids, pPA-1 and pPA-2 carried two copies

of blaKPC, both of which were harbored in a Tn4401b transposon

structure. Interestingly, while both copies in PA-1 were WT

blaKPC-2, in isolate PA-2 one of the copies was a WT blaKPC-2
gene and the other copy had a G532T base change that produced

D179Y substitution in the omega-loop of KPC-2 and was
frontiersin.org
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therefore a blaKPC-33 allele. To further corroborate this point

mutation, the short reads of PA-1 and PA-2 were mapped

against both blaKPC alleles. No reads of PA-1 aligned with the

blaKPC-33 sequence. In contrast, analysis of PA-2 showed a

balanced mapping of reads aligning with blaKPC-2 and blaKPC-

33, respectively (Figure 2). A pair-wise alignment between the

chromosomes of PA-1 and PA-2 demonstrated they were

identical except for four 1-bp insertions/deletions and five 1-

bp substitutions (99.99% identity) (Figure 3). Pair-wise

alignment of plasmids pPA-1 and pPA-2 showed they were

identical, except for nucleotide change in position G532T of the

blaKPC gene, which resulted in the D179Y amino acid

substitution (Figure 3).
Confirmation of the co-existence of
blaKPC-2 and blaKPC-33 alleles in PA-2
by PCR

The single nucleotide substitution of blaKPC-33 with respect

blaKPC-2 was further confirmed by PCR using primers specific to

eachof thealleles.Todoso,wedesignedtwoidentical forwardprimers

with a single nucleotide difference between them in the 3`end, which

corresponded to the G532T change associated to the blaKPC-33 allele.
Frontiers in Cellular and Infection Microbiology 06
This nucleotide variation prevented the complete 3`end annealing of

theprimer againstWTblaKPC-2. PCRwithprimersdirected toblaKPC-

2 amplified a 640 bp fragment as expected in both isolates PA-1 and

PA-2, while primers directed to blaKPC-33 only amplified the 640 bp

fragment in PA-2 (Figure 4). Therefore, the presence of blaKPC-33 was

confirmed only in isolate PA-2.
Discussion

In the present work, we characterized a KPC-PA clinical

isolate that developed CAZ/AVI resistance in vivo through

D179Y mutation in one of two blaKPC-2 genes that were

harbored in a plasmid. Isolate PA-2 had >64-fold increase in

CAZ/AVI MIC with respect to PA-1, but did not exhibit a

decrease in carbapenem resistance (“see-saw” effect) as observed

in Enterobacterales (Shields et al., 2017a; Shields et al., 2017b;

Tsivkovski and Lomovskaya, 2020). The presence of both KPC-2

and KPC-33 is most likely responsible for the absence of the

“see-saw” effect. This “all in one” resistant phenotype includes

resistance to CAZ/AVI and to carbapenems, since the cost

associated with the acquisition of blaKPC-33 alone is offset by

blaKPC-2. In a previous work from our group, we described a

D179Y mutation in the blaKPC-2 gene of a clinical isolate of P.
TABLE 2 Sequence analysis of PA-1 and PA-2 acquired resistance genes and chromosomal genes associated with CAZ/AVI resistance compared
to PAO-1 control strain.

PA-1 PA-2 PROVEAN*

Acquired
resistance
genes

blaKPC-2 blaKPC-2, blaKPC-33 NA

Chromosomal genes associated to CAZ/AVI resistance&

ampC T105A (PDC-3 alelle) T105A (PDC-3 alelle) Neutral

blaOXA-397 WT WT NA

mexAB-oprM WT WT NA

oprD V127L, E185Q, P186G, V189T, E202Q, I210A, E230K, S240T,
N262T, T276A, A281G, K296Q, Q301E, R310E, G312R, A315G,
L347M, M372V, S373D, D374S, N375S, N376S, V377S, K380Y,
N381A, Y382G, G383L, S403A, Q424E, D378G, D379Y

V127L, E185Q, P186G, V189T, E202Q, I210A, E230K, S240T,
N262T, T276A, A281G, K296Q, Q301E, R310E, G312R, A315G,
L347M, M372V, S373D, D374S, N375S, N376S, V377S, K380Y,
N381A, Y382G, G383L, S403A, Q424E, D378G, D379Y

Neutral

nalD T43I T43I Neutral

nalC G71E G71E Neutral

mexZ 550C and D551T:
Frameshift from aminoacid 184

D550C and D551T:
Frameshift from aminoacid 184

Deleterious

mexD E257Q, S845A E257Q, S845A Neutral

mexT D235-241 (8 bp deletion): Frameshift from aminoacid 80 D235-241 (8 bp deletion): Frameshift from aminoacid 80 Deleterious

mexR WT WT NA

dnaK WT WT NA

ftsI WT WT NA

nfxB WT WT NA

esrC WT WT NA

ctpA WT WT NA
&, All the amino acid changes are expressed based in PAO-1 sequence.
*, Predicted impact of amino acid change on protein function.
NA, Not applicable; WT, Wild Type.
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A B

DC

FIGURE 2

Short reads of PA-1 (A, B) and PA-2 (C, D) mapped against blaKPC-2 (A, C) and blaKPC-33 sequences (B, D). Position 532 is indicated in a vertical
rectangle, and it has “G” in blaKPC-2 and “A” in blaKPC-33..
A B

FIGURE 3

Chromosomes of isolates PA-1 (A) and PA-2 (B) and plasmids pPA-1 and pPA-2 C. Red arrowheads in A and B represent genes that are
associated with antimicrobial resistance. The resistome of plasmids pPA-1 and pPA-2 C is composed only by two blaKPC-2 genes in pPA-1 and
both blaKPC-2 and blaKPC-33 genes in pPA-2. Grey bars represent coding sequences (CDS) whose gene names are shown for annotated genes or
not shown for hypothetical proteins (hp). Transposase genes: associated with transposition events; hin_1, hin_2, dinG, soj: genes associated
with DNA processing and repair; xerC: gene associated with plasmid replication control.
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aeruginosa, but CAZ/AVI resistance was not addressed that time

(Wozniak et al., 2019). This KPC-PA isolate had a negative

immunochromatographic test, therefore, it is unlikely that it had

an additional WT blaKPC-2 copy. However, this isolate was

resistant to meropenem and imipenem, therefore no “see-saw”

effect was observed. According to these findings, the “see-saw”

effect may be observable in Enterobacterales, but not necessarily

in P. aeruginosa . This could be explained because

Enterobacterales are much more dependent on carbapenemase

function than P. aeruginosa, which has a variety of additional

mechanisms for carbapenem resistance, e.g., efflux pump

overexpression, porin alteration, AmpC and OXA enzymes

alterations, among others (Botelho et al., 2019). In fact, several

mutations in chromosomal genes associated with CAZ/AVI

resistance were observed in both PA-1 and PA-2. Notably,

isolate PA-1 was susceptible to CAZ/AVI, despite having these

alterations. Most of the mutations observed have been previously

reported in CAZ/AVI resistant isolates. NalC is a repressor of

the positive regulator of MexAB-OprM and G71E mutation was

described in aztreonam resistant isolates (Braz et al., 2016). NalD

is a repressor of MexAB-OprM operon, and the mutation

observed in this work has been observed in CAZ/AVI resistant
Frontiers in Cellular and Infection Microbiology 08
P. aeruginosa (Castanheira et al., 2019). MexT is a

transcriptional regulator that activates the expression of

MexEF-OprN multidrug efflux system. The mutation observed

in MexT has been reported in multi-drug resistant P. aeruginosa

with decreased expression of OprD porin (Epp et al., 2001).

MexZ is a repressor of the MexXY operon and alterations in

mexZ have been described in CAZ/AVI resistant P. aeruginosa

isolates (Castanheira et al., 2019). Mutation T105A in AmpC

(PDC-3 allele) confers reduced susceptibility to imipenem,

ceftazidime, and cefepime (Rodrıǵuez-Martıńez et al., 2009).

Our results suggest that these mutations may not confer CAZ/

AVI resistance alone, but they may contribute to

overall resistance.

Hybrid assembly using short and long-read data is an

excellent approach to predict putative plasmids, resistance

genes, and beta-lactamase gene variants (Khezri et al., 2021).

The G532T mutation in blaKPC gene responsible for D179Y

substitution, was observable only in the hybrid assembly

obtained with Trycycler; it was not observable in the short-

read assembly, nor in the hybrid assembly made with Unicycler.

The short reads (350 bp long) are unable to cover both KPC-

Tn4401 copies (28,699 bp) present in plasmids pPA-1 and pPA-
FIGURE 4

Agarose gel electrophoresis of PCR products obtained in the amplification of PA-1 and PA-2 DNA using primers for amplification of blaKPC-2
(left) and blaKPC-33 (right). Both primer pairs amplify a fragment of 640 bp. Band sizes (bp) of the Molecular Weight Standard (Ld 100 bp) are
indicated next to the bands.
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2, and Unicycler considered both blaKPC-2 and blaKPC-33 alleles

as a single gene. In contrast, long reads (with an average length

of 40,000 bp) can cover both KPC-Tn4401 copies. However,

Trycycler requires manual intervention from the user, it is more

time-consuming and therefore is more challenging for high-

throughput assembly. In a previous report a short-read WGS

analysis of a CAZ/AVI resistant clinical isolate of KPC-

producing K. pneumoniae determined that 46% of blaKPC
reads were blaKPC-33 and 54% were blaKPC-2 (Gaibani et al.,

2020). A similar short-read WGS analysis of a clinical isolate of

K. pneumoniae that developed high-level CAZ/AVI resistance

after antibiotic treatment showed that 28% of the reads covering

blaKPC gene were blaKPC-2 and 72% were blaKPC-33 (Sun et al.,

2021). Both articles mentioned above concluded that these

isolates consisted of a mixed population containing both CAZ/

AVI-resistant and CAZ-AVI-susceptible bacteria, which is

commonly interpreted as heteroresistance. Our results show

that interpretation of short-read data must be done with

caution because this strategy not always allows discrimination

between mixed populations and gene duplication with

subsequent mutation. These findings underscore the actual

value of long-read WGS methods and hybrid assembly

combining short and long-read data.

The plasmids described in this work, pPA-1 and pPA-2,

were similar to pPA2047 a 43,660 bp plasmid from P. aeruginosa

recently reported in Argentina (>65% identity) (Cejas et al.,

2022), and to pPae-13, a plasmid that was recently reported in a

KPC-PA clinical isolate in the same Institutional Hospital as the

present work (>60% identity) (Wozniak et al., 2021). It is

possible that replicative transposition of blaKPC-containing

Tn4401b transposon in pPae-13 plasmid had produced pPA-1,

and pPA-2 subsequently evolved through point mutation.

Development of high-level CAZ/AVI resistance upon CAZ/VI

treatment greatly compromises the usefulness of this antibiotic

combination for the treatment of KPC-PA infections, being colistin

the most plausible option, with the subsequent associated renal

impairment, like the one described in the present case. The lack of

better therapeutic options together with the genetic characteristics of

KPC-PA, i.e., location of blaKPC genes in Tn4401b transposon,

carriage by the high-risk clone ST654, make this finding highly

concerning, particularly in regions where KPC-PA is frequent.
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