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DNA methylation alterations
caused by Leishmania
infection may generate a
microenvironment prone
to tumour development

Ana Florencia Vega-Benedetti*, Eleonora Loi
and Patrizia Zavattari

Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari,
Cagliari, Italy
DNA methylation is an epigenetic signature consisting of a methyl group at the

5’ cytosine of CpG dinucleotides. Modifications in DNA methylation pattern

have been detected in cancer and infectious diseases and may be associated

with gene expression changes. In cancer development DNA methylation

aberrations are early events whereas in infectious diseases these epigenetic

changes may be due to host/pathogen interaction. In particular, in

leishmaniasis, a parasitic disease caused by the protozoan Leishmania, DNA

methylation alterations have been detected in macrophages upon infection

with Leishmania donovani and in skin lesions from patients with cutaneous

leishmaniasis. Interestingly, different types of cancers, such as cutaneous

malignant lesions, lymphoma and hepatocellular carcinoma, have been

diagnosed in patients with a history of leishmaniasis. In fact, it is known that

there exists an association between cancer and infectious diseases. Leishmania

infection may increase susceptibility to develop cancer, but the mechanisms

involved are not entirely clear. Considering these aspects, in this review we

discuss the hypothesis that DNAmethylation alterations induced by Leishmania

may trigger tumorigenesis in long term infection since these epigenetic

modifications may enhance and accumulate during chronic leishmaniasis.
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GRAPHICAL ABSTRACT
Introduction
Several works reported a possible association between

infectious diseases and cancer development but the

mechanisms leading to malignant transformation are not well

elucidated (Kopterides et al., 2007; Al-Kamel, 2017; van Tong

et al., 2017; Yasunaga and Matsuoka, 2018). Epigenetics is an

interesting research area whose study is increasing in pathogen

diseases while it is widely investigated in cancer. It refers to

heritable and reversible changes that affects the genetic material

packaging and expression without altering the DNA sequence.

The epigenetic regulatory network mainly includes DNA

methylation, histone modifications and non-coding RNAs

(Gal-Yam et al., 2008; Saavedra et al., 2012). Pathogens hijack

the epigenome of host cells generating a suitable environment

for their survival and replication. DNA methylation, an

epigenetic sign, is modulated by pathogens during their

interaction with host cells. The DNA methylation profile is

relevant for gene expression regulation and chromosome

stability. Bacteria, virus and parasites may alter the host

methylome and the enzymes or cofactors involved in DNA

methylation modulation (Silmon de Monerri and Kim, 2014).

In particular, several DNA methylation aberrations have been

detected in macrophages upon infection with the protozoan

Leishmania spp., responsible for leishmaniasis, a neglected

tropical disease (Marr et al., 2014).

Alterations in DNAmethylation pattern are also early events

in cancerogenesis, and they are tumour-specific signs. Therefore,

they are considered excellent diagnostic and useful prognostic
Frontiers in Cellular and Infection Microbiology 02
biomarkers (Gal-Yam et al., 2008). These aberrations frequently

lead to downregulation of tumour suppressor genes and

upregulation of oncogenes (Skvortsova et al., 2019). Pathogen

infections such as leishmaniasis can be considered tumour

promoters since they generate an environment prone to

malignancy development employing host colonization

strategies similar to cancer cells. In fact, cancer cases have

been reported in patients with a history of Leishmania

infection (Kopterides et al., 2007; Schwing et al., 2019). The

novelty of the present review resides in the description of a

possible association between Leishmania infection and cancer

onset due to changes in the DNA methylation profile.
DNA methylation

DNA methylation is an epigenetic signature consisting of a

methyl group at the 5’ cytosine of CpG dinucleotides. CpG sites

are distributed across the genome, in regulatory regions, at DNA

repetitive elements and gene bodies. Regions with high CpG

content termed CpG islands (CGI) are often located at gene

promoter regions. DNA methylation maintains genome stability

and regulates gene expression, in particular when methylated

CpG sites are located in promoter regions, i.e. a high content of

methylated cytosines is generally associated with transcriptional

downregulation whereas a hypomethylated state is frequently
frontiersin.org
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linked to gene expression upregulation. The addition of the

methyl group can be maintained during cell division but it is also

a reversible modification (Gal-Yam et al., 2008; Ambrosi et al.,

2017). Two protein families, DNA methyltransferases (DNMTs)

and Ten-eleven translocation (TET), together with protein

partners, are relevant players of the DNA methylation

pathway. DNMTs include three enzymes; DNMT1 restores the

methylation pattern of the new DNA strand during replication,

whereas DNMT3A and DNMT3B with their cofactor DNMT3L

are involved in de novo DNA methylation. DNMT1 and

DNMT3 mainly differ at the N-terminal domain mediating

their specific activity at genomic sites. DNMTs interact with

several accessory molecules such as DNMT3L, UHRF1 and

RNAs. DNMT3L acts dur ing genomic imprint ing

establishment regulating DNMT3-target specificity and

enzyme activity, while UHRF1 recruits DNMT1 to

hemimethylated DNA during replication (Lee et al., 2014;

Ambrosi et al., 2017). On the other hand, DNA demethylation

is catalysed by TET enzymes which are responsible for 5-

methylcytosine oxidation whose products are removed by the

DNA repair mechanism. TET family consists of three members

which contain or interact with CXXC domains, key sequences in

CpG regions recognition (Schubeler, 2015; Ambrosi et al., 2017).

The expression of DNMT and TET enzymes varies during

development leading to DNA methylation pattern changes

that, with other epigenetic mechanisms, participate in the

silencing or activation of pathways for cellular stemness,

differentiation, proliferation, among others. For instance, TET1

and TET2 maintain stemness phenotype by interaction with

NANOG, a pluripotency protein (Lee et al., 2014; Ambrosi

et al., 2017).
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DNA methylation alterations in cancer
and infectious diseases

DNAmethylation alterations have been reported in different

pathologies, including cancer and infectious diseases. Normal

cells present global hypermethylation and unmethylated CGIs at

promoter regions, whereas cancer cells undergo a global

hypomethylation and hypermethylation at the 5’ gene

regulatory regions (Gal-Yam et al., 2008). High content of

methylated CpGs at promoter regions, frequently belonging to

tumour suppressor genes, is generally associated with gene

expression downregulation (Fadda et al., 2018; Loi et al., 2019;

Skvortsova et al., 2019; Vega-Benedetti et al., 2020; Vega-

Benedetti et al., 2022) (Figure 1). Methylated cytosines can

affect transcription factor (TF) binding and thus the

recruitment of the RNA polymerase to the transcription start

site. For example, Sp1 cannot bind to its consensus site at the

Retinoblastoma (RB) gene promoter whether it contains

methylated CpGs (Clark et al., 1997; Heberle and Bardet,

2019). Gain of methylation at enhancer regions could also

disrupt normal TF binding contributing to tumour suppressor

gene downregulation (Schubeler, 2015; Skvortsova et al., 2019)

(Figure 1). DNA methylation differently influences TF binding

and thus its function (Yin et al., 2017). Instead, in several

cancers, such as Wilms tumour, ovarian and breast

carcinomas, hypomethylation in satellite DNA could

predispose to chromosomal translocations (Feinberg and

Tycko, 2004; Gal-Yam et al., 2008). Loss of methylation at

retrotranspons may reactivate them leading to possible

dysregulation of normal gene expression (Suter et al., 2004).

Demethylation in cancer can also occur at promoter regions of
FIGURE 1

DNA methylation pattern in normal and cancer cells. In normal cells methyl group is widely distributed except for CGIs located at promoters
and enhancers of tumour suppressor genes enabling their transcription. In cancer cells hypermethylation is generally observed at regulatory
regions of tumour suppressor genes inhibiting their expression, whereas global hypomethylation is detected. Figure created using Servier
Medical Art images, licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com/.
frontiersin.org
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oncogenes increasing or reactivating their transcription. DNA

methylation works in combination with histone modifications

and nucleosome organization to regulate gene expression

(Skvortsova et al., 2019). Several experimental studies have

been performed to demonstrate the role of DNA methylation

changes in tumorigenesis. For instance, in mice models induced

hypomethylation led to chromosome instability and tumour

promotion, whereas DNMT inhibition prevented malignancy

development (Gal-Yam et al., 2008; Kulis and Esteller, 2010).

DNA methylation alterations are cancer-specific early events in

tumorigenesis resulting in promising diagnostic biomarkers.

These aberrations have been found in preneoplastic and

histologically normal tissues of people susceptible to develop

cancer (Feinberg and Tycko, 2004; Gal-Yam et al., 2008;

Saavedra et al., 2012; Luo et al., 2014; Wong Doo et al., 2016;

Micevic et al., 2017; Fadda et al., 2018; Loi et al., 2019). To note,

methylated-based biomarkers can be traced in cell-free DNA

from several matrices including plasma, stool, urine and bile

(Gal-Yam et al., 2008; Fadda et al., 2018; Vega-Benedetti et al.,

2020; Loi et al., 2022). Moreover, DNA methylation alterations

are useful prognostic biomarkers in several cancers including

cutaneous melanoma, lung adenocarcinoma, ovarian, breast and

cervical cancer (Fleischer et al., 2014; Guo et al., 2018; Guo et al.,

2019; Wang et al., 2019; Yang et al., 2020).

On the other hand, in infectious diseases microbes hijack the

epigenome of host cells, including DNA methylation, to elude

host defensive mechanisms and promote their survival. Previous

evidence showed that virus, bacteria and parasites manipulate

the transcription of host defence genes leading to

immunosuppression (Paschos and Allday, 2010; Gómez-Dıáz

et al., 2012; Silmon de Monerri and Kim, 2014). To achieve this

aim different strategies are employed, for instance viral DNA

integration in host genome induces DNA methylation changes

in flanking regions, enabling viral latency. Modulation of host

enzymes, such as the DNA methyltransferases, promotes

modifications in DNA methylation pattern during hepatitis B

(HBV) and Epstein-Barr virus (EBV) infections (Silmon de

Monerri and Kim, 2014). Helicobacter pylori infection induces

epigenome modification of host cells such as hypermethylation

of FOXD3 promoter, a key participant in apoptosis. The bacteria

Mycobacterium leprae facilitates its dissemination in the host

through DNA demethylation at promoters of genes involved in

the epithelial-mesenchymal transition (Silmon de Monerri and

Kim, 2014). Regarding parasites, they may regulate host DNA

methylation pattern during cell invasion or through protein

secretion delivered by vesicles (Silmon de Monerri and Kim,

2014). In vivo and in vitro assays showed DNA methylation

modifications upon Toxoplasma gondii and Leishmania

donovani infection (Hari Dass and Vyas, 2014; Marr et al.,

2014). In agreement with pathogen modulation of host

defence system, many altered genes upon Leishmania infection
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participate in host immune response including the following

mechanisms: cytotoxicity mediated by Natural killer cells,

interaction between cytokines and their receptors, chemokine/

adipocytokine signalling and leukocyte migration (Marr

et al., 2014).
Leishmania infection:
Host/parasite interplay

Leishmaniasis is a neglected tropical disease caused by

different species of the protozoan Leishmania such as L.

braziliensis/amazonensis, responsible for the development of

the cutaneous and muco-cutaneous clinical forms, and L.

infantum/donovani, causative agents of visceral leishmaniasis

(Afrin et al., 2019; WHO, 2020). This parasite has a complex life

cycle, alternating two stages: the flagellated promastigote and the

amastigote forms. Once it is injected in the host by the bite of a

female sandfly (Lutzomyia species), promastigotes enter

macrophages where they replicate as amastigotes. Leishmania

parasites successfully colonize macrophages due to their

capability to avoid host defence mechanisms by modulating

their surface molecules and host immune response including

macrophage activation and antigen processing (Robert

McMaster et al., 2016; Afrin et al., 2019). These strategies

favour protozoan survival and establishment within the host

(Marr et al., 2014; Robert McMaster et al., 2016; Al-Kamel,

2017). Interestingly, parasites manipulate host epigenome. i.e.

DNA methylation, histone modifications and non-coding RNA,

altering gene expression and thus signalling pathways (Parmar

et al., 2020; Roy et al., 2020). Marr et al. reported several

differentially methylated CpG sites in macrophages upon

infection with L. donovani (Marr et al., 2014). Genes affected

by these altered features are implicated in the following

signalling pathways: JAK/STAT, MAPK, Notch and Wnt

signalling, focal adhesion, among others (Marr et al., 2014).

Moreover, low methylation level at FLI1 promoter was observed

in cutaneous lesions from patients with L. braziliensis infection

and in IL-6 treated macrophages infected with the same

Leishmania sp. (Almeida et al., 2017). As observed in the

experiments performed by Almeida et al., IL-6 affects

methylation of CpGs in the FLI1 promoter suggesting that

cellular communication and the surrounding environment are

important variables during parasite/host interaction (Almeida

et al., 2017).

Although macrophages are the main host cells for

Leishmania spp., dendritic cells responsible for antigen

presentation also phagocytose parasites and migrate to lymph

nodes. Leishmania infection progression is mainly regulated by a

complex interplay between macrophages and dendritic cells. IL-
frontiersin.org
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12 produced by infected dendritic cells triggers a cascade of

events leading to macrophage classical activation involved in

parasiticidal activity, whereas IL-10 and TGF-b released by

infected macrophages result in alternative macrophage

activation and thus in parasite survival (Liu and Uzonna,

2012). However, some Leishmania species such as L. infantum

present high tropism to hepatocytes establishing a strong

interaction with their membrane and regulating gene

expression although parasite internalization has not been

confirmed (Kausalya et al., 1993; Rodrigues et al., 2019). Little

is known about the factors that guide Leishmania tissue tropism

(Seblova et al., 2015). Few genes that may contribute to the

disease tropism have been identified in different Leishmania

species (Peacock et al., 2007). Tropism may also depend on host

susceptibility including immunity and genetics, and on parasite

virulence (Chang and McGwire, 2002; Reithinger et al., 2002).

This evidence suggests that Leishmania is able to hijack the

epigenome, in particular DNA methylation, and regulate the

transcriptional machinery not only of antigen-presenting cells

but also of other cell types located at the infection site, such as

fibroblasts and hepatocytes (Almeida et al., 2017; Rodrigues

et al., 2019). It is not clear whether these changes occur due to

molecules, including methyltransferase inhibitors, activators,

and ncRNAs, released by Leishmania spp. and delivered via

exosomes and/or microvesicles before parasite internalization

and/or only when the pathogen is already inside macrophages

(Silverman et al., 2010a; Coakley et al., 2015; Lambertz et al.,

2015; Robert McMaster et al., 2016). Since parasite

internalization is not reported in some immune cells, such as

T cells, and in non-immune cells, extracellular vesicles

communication may have a key role in cell epigenome
Frontiers in Cellular and Infection Microbiology 05
modification. It has been reported that extracellular vesicles

released by L. major target T cells leading to an increase

production of IL-4 (Silverman et al., 2010b; Coakley et al.,

2015). The interaction between the molecules released by

parasites and the host epigenome is not fully established. Of

note, the glycoprotein GP63 and the elongation factor-1a (EF-

1a) secreted by Leishmania spp. have been reported to alter host

pathways regulating kinases and phosphatases activity

(Lambertz et al., 2012; Robert McMaster et al., 2016). Other

released molecules, LmS3a, a ribosomal protein, and

lipophosphoglycan glycoconjugates (LPP) regulate T-cell

activation, iNOS gene expression and nitric oxide production

(Ouaissi and Ouaissi, 2005). Parasites, including Leishmania

spp. and Trypanosoma cruzi, also alter exosomes content and

release from the infected cells. In this way, they are able to

regulate the crosstalk between host cells and thus the host

response against infection. This evidence supports vesicles as

an useful signal transmission mechanism between parasites,

parasites and host cells, and from host cells to the surrounding

environment (Silverman et al., 2010a; Hassani and Olivier, 2013;

Coakley et al., 2015). Therefore, in leishmaniasis exosomes may

be an alternative system for molecules delivery to different cell

types, such as T cells, fibroblasts and hepatocytes, possibly

leading to their function dysregulation.
Association between infectious
diseases and cancer

Previous works reported a casual association between cancer

and infectious disease including bacteria, virus and parasite
FIGURE 2

Carcinogenic mechanisms triggered by pathogens. Pathogens promote several events to survive in the host including inflammation, DNA
alterations, immune response dysregulation and cell cycle modulation, increasing susceptibility to tumorigenesis. Figure created using Servier
Medical Art images, licensed under a Creative Commons Attribution 3.0 Unported License; https://smart.servier.com/.
frontiersin.org
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infection (Machicado and Marcos, 2016; van Tong et al., 2017;

Yasunaga and Matsuoka, 2018; Schwing et al., 2019).

Pathological conditions due to infectious diseases contribute to

tumour onset and on the other hand cancer cells and

surrounding environment lead to a susceptible landscape for

pathogen infection (Schwing et al., 2019). Pathogens promote

several carcinogenic mechanisms including chronic

inflammation, immune response modulation and a series of

other events that may trigger further cell function

alterations (Figure 2).
Infection-associated inflammation

Inflammation is a biological response to cellular damage due

to injury or infection and its chronicity increases cancer risk

(Shalapour and Karin, 2015). It enhances reactive oxygen and

nitrogen species production leading to DNA damage

(Machicado and Marcos, 2016; Schwing et al., 2019). For

instance, it has been reported that liver fluke infection results

in an overproduction of free radicals due to the inflammatory

environment consisting of eosinophils, macrophages,

neutrophils and the released cytokines. On one hand, a

persistent oxidative stress condition triggers lipid peroxidation

whose toxic products together with free radicals may induce

DNA damage and dysregulate cell homeostasis (Andrade et al.,

2012; Bahrami et al., 2014; Kim et al., 2016). On the other hand,

Clonorchis sinensis-associated prolonged inflammation

maintains elevated cytokines and NF-kB levels inducing

further proinflammatory responses such as nitric oxide

production, responsible for the DNA repair inhibition and the

induction of COX-2 expression, involved in cell growth

modulation (Kim et al., 2016). This persistent environment

promotes cholangiocarcinoma development (Kim et al., 2016).

Trichomonas vaginalis infection increases susceptibility to

develop prostate cancer through a secreted protein triggering

cell proliferation and inflammation, possibly contributing to

angiogenesis (Twu et al., 2014). In leishmaniasis chronic

inflammation due to parasite persistence orchestrates a

tumour microenvironment characterized by hypoxia, altered

expression of COX-2 and NF-kB-target genes (Gregory et al.,

2008; Charpentier et al., 2016; Al-Kamel, 2017). However,

Leishmania upregulates anti-inflammatory response reducing

NF-Kb and inflammasome activation and increasing IL-10 to

generate a safe niche for its survival (Mahanta et al., 2018; Afrin

et al., 2019; Lecoeur et al., 2020; Parmar et al., 2020). Leishmania

may disturb oxygen supply to the tissue lesions contributing to a

complex scenario including proinflammatory and anti-

inflammatory macrophages (Charpentier et al., 2016; Schatz

et al., 2018; Saunders et al., 2021).
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Genomic instability induced by
infections, a malignancy promoter

Genomic instability, a carcinogenic mechanism, including

point mutations, structural chromosomal aberrations and DNA

strand breaks, can be caused by pathogen infections (van Tong

et al., 2017). In fact, an association between parasitic infections

and lymphoid neoplasia has been reported. Burkitt’s lymphoma

(BL) cases are common in endemic malaria regions with high

Plasmodium falciparum transmission. P. falciparum may induce

C-Myc translocation in B cells predisposing patients to develop

BL (Torgbor et al., 2014; van Tong et al., 2017). Previous

evidence shows that missense mutations at TP53 gene were

more frequent in patients with Schistosoma japonicum-induced

rectal cancer than in non-schistosomiasis rectal cancer, whereas

Schistosoma mansoni targets p53 altering its expression and may

cause somatic mutations in BCL2 and C-Myc oncogenes

inducing colorectal cancer (van Tong et al., 2017). In

leishmaniasis ROS and RNS, produced as a host defence

mechanism, may lead to DNA strand breaks and increase

cancer risk. Mononuclear leukocytes from infected patients

presented increase DNA damage compared to healthy subjects

(Oliveira and Cecchini, 2000; Kocyigit et al., 2005; Almeida et al.,

2013). These results suggest that pathogen-induced DNA

damage play a key role in cellular transformation (van Tong

et al., 2017).
Cell cycle regulation in pathogen
infection and cancer progression

Cell cycle dysregulation, i.e. constant cell proliferation and

apoptosis inhibition, upon pathogen infection is a frequent

process that promotes cancer onset (Machicado and Marcos,

2016). Function of p53, a key player in cell cycle progression, is

altered during Theileria spp. and Cryptosporidium parvum

infections possibly due to its cellular mislocalization or

cont inuous degradat ion favour ing ce l l ma l ignant

transformation (Hayashida et al., 2013; Benamrouz et al.,

2014). Alterations in APC and b-catenin genes, involved in

Wnt signalling pathway, are altered in C. parvum infection

affecting actin cytoskeleton organization and other cellular

processes that might result in neoplasia development

(Benamrouz et al., 2014). This cell cycle dysregulation is also

observed in viral infection through the production of oncogenic

factors. For example, Human T-cell leukaemia virus type 1

synthesizes Tax, a viral replication protein, which is

responsible for the activation of Wnt and NF-Kb pathways

and the inhibition of DNA repair resulting in cell malignant

transformation. (Yasunaga and Matsuoka, 2018). In
frontiersin.org

https://doi.org/10.3389/fcimb.2022.984134
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Vega-Benedetti et al. 10.3389/fcimb.2022.984134
leishmaniasis the parasite modulates host cell survival and death;

Leishmania through released factors or surface proteins, such as

the lipophosphoglycan, hijack the apoptosis machinery leading

to its inhibition in infected macrophages (Ouaissi and Ouaissi,

2005), whereas elevated oxidative stress during infection leads to

the death of other immune cell types (Almeida et al., 2013).
Immune response evasion, a common
survival strategy of pathogens and
cancer cells

An immunological association between pathogen infection

and cancer has been suggested (Ouaissi and Ouaissi, 2005;

Silmon de Monerri and Kim, 2014; Machicado and Marcos,

2016; Schwing et al., 2019). Similar strategies are orchestrated by

pathogens and tumour cells to evade host immune response

enabling their survival and proliferation (Ouaissi and Ouaissi,

2005). Leishmania spp. immune-modulate host system

activating Th2 response and reducing Th1 protective defence.

In visceral leishmaniasis caused by L. chagasi this altered balance

between Th1 and Th2 may cooperate to acute leukaemia

development (de Vasconcelos et al., 2014). This immune

environment favours infection progression avoiding pathogen

killing and it increases susceptibility to tumour formation as well

(Ouaissi and Ouaissi, 2005; Machicado and Marcos, 2016;

Schwing et al., 2019). Moreover, previous evidence shows that

T. cruzi and Leishmania spp. manage to kill immune cells and

inhibit apoptosis of host cells. Alteration of apoptotic pathways

is a strategy employed also by tumours to prevent their clearance

by immune cells (Ouaissi and Ouaissi, 2005).
Pathogen coinfections

Association between infectious diseases and cancer

development become more complex when simultaneous

pathogen infections occur, possibly cooperating to

tumorigenesis by triggering cell proliferation, inflammation

and inducing genomic/epigenomic alterations (van Tong et al.,

2017; Yasunaga and Matsuoka, 2018). For example, Strongiloides

stercolaris, the pathogen agent of a chronic gastrointestinal

parasitic infection, promotes proliferation of human T-cell

leukaemia virus type 1-infected cells increasing the risk to

develop adult T-cell leukaemia/lymphoma (Gabet et al., 2000;

Yasunaga and Matsuoka, 2018). P. falciparum and EBV are

associated with BL, a frequent children tumour in tropical

Africa. BL has been diagnosed in hyperendemic malaria

regions and EBV was first discovered in BL tumour biopsies

(Torgbor et al., 2014). P. falciparum interacts with B cells and

impairs their function leading to an uncontrolled proliferation

including EBV-infected B cells and on the other hand the

parasite inhibits EBV-specific T cell immunity reactivating
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virus cycle and promoting chromosome aberrations. This

environment may lead to the onset and expansion of

malignant B-cells and consequent BL development (van Tong

et al., 2017). BL has been also reported in a human

immunodeficiency virus (HIV)-infected subject presenting

leishmaniasis (Boutros et al., 2006; Schwing et al., 2019). HIV-

mediated immunosuppression facilitates parasite replication and

dissemination, whereas Leishmania interferes with monocytes

and macrophages normal function increasing dNTP levels,

essential for efficient HIV replication and thus favouring HIV

progression (Mock et al., 2012; Zijlstra, 2014). Moreover, few

cases of Kaposi sarcoma and Leishmania infection in HIV-

positive patients have been reported, all these patients

presented typical lesions of Kaposi sarcoma with high

Leishmania parasitaemia (Kopterides et al., 2007). No

association with malignant transformation has been reported

in cases of coinfection of Leishmania and other pathogens, such

as P. falciparum and T. cruzi (Martinez et al., 2018).
DNA methylation, an epigenetic
sign, linking infectious disease
and cancer onset

DNA methylation is a fascinating landscape that needs to be

further explored in infectious diseases. Few works focused their

attention on DNA methylation alterations upon pathogen

infection highlighting their importance during host cell

colonization and suggesting an increased predisposition to

develop cancer. These aberrations may result in transcriptional

dysregulation affecting normal cell function and the surrounding

environment (Silmon de Monerri and Kim, 2014; Robert

McMaster et al., 2016). H. pylori infection induces changes in

DNA methylation at the promoter regions of THBS1, GATA-4

and FOXD3, associated with angiogenesis, cell differentiation

and apoptosis, promoting gastric cancer development.

Interestingly, some of these aberrations are long-lasting

modifications that persist after eradication of the bacteria

(Alvarez et al., 2013; Cheng et al., 2013; Silmon de Monerri

and Kim, 2014). In EBV infection, activation of DNA

methyltransferases and transcriptional regulation of BIM, an

apoptosis inducer, and CDH1, a cell-cell adhesion protein, may

also play a key role in gastric cancer onset (Paschos and Allday,

2010; Silmon de Monerri and Kim, 2014). Another correlation

has been indicated between the presence of HBV in

hepatocellular carcinoma and aberrant DNA methylation in

host cells. In fact, a nuclear viral protein regulates the

expression of DNMT1 and DNMT3A enzymes, relevant

players in mechanisms that modulate the methylome (Paschos

and Allday, 2010). Human papillomavirus (HPV) infection is

considered an important risk factor for cervical cancer

development. Two viral oncoproteins, E6 and E7, alter cellular

DNA methylation of tumour suppressor genes, such as CCNA1,
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CADM1 and DAPK1, through the formation of a complex with

DNMT1 and probably with transcription factors (Woodman

et al., 2007; Yanatatsaneejit et al., 2020; Singh et al., 2022). HPV-

linked methylation aberrations are useful for prognosis and

identification of cervical cancer subtypes (Yang et al., 2020).

As mentioned previously, it is well known the involvement of

DNA methylation alterations, despite their aetiology, in

tumours. DNA methylation alterations may dysregulate gene

expression and affect a cascade of events promoting

tumorigenesis (Feinberg and Tycko, 2004) and they are also

considered specific tumour signatures useful for prevention and

diagnosis since they precede mutations (Kulis and Esteller,

2010). However, cancer development is the result of the
Frontiers in Cellular and Infection Microbiology 08
accumulation of genetic and epigenetic alterations (Kulis and

Esteller, 2010). Table 1 summarizes the DNA methylation-

related alterations detected in pathogen infection-

associated cancer.
May DNA methylation alterations in
leishmaniasis trigger tumorigenesis?

Long-term Leishmania infect ion causes chronic

inflammation favouring accumulation of epigenetic and

genetic mutations that can promote cancer development.
TABLE 1 DNA methylation-related alterations in pathogen infection-associated cancer.

Affected genes/
proteins

Function Associated
pathogen

Associated
cancer

References

Genes with altered
methylation

THBS1
(Thrombospondin 1)

Angiogenesis inhibitor Helicobacter
pylori

Gastric cancer (Alvarez et al., 2013)

GATA-4
(GATA Binding Protein 4)

Cellular specification and
differentiation promoter

Helicobacter
pylori

Gastric cancer (Alvarez et al., 2013)

FOXD3 (Forkhead Box D3) Transcriptional regulator in
several biological processes

Helicobacter
pylori

Gastric cancer (Cheng et al., 2013; Silmon de Monerri
and Kim, 2014)

BIM (Bcl-2 Interacting
Mediator Of Cell Death)

Apoptosis inducer Epstein–Barr
virus

Gastric cancer (Paschos and Allday, 2010; Silmon de
Monerri and Kim, 2014)

CDH1 (E-cadherin 1) Cell-cell adhesion protein Epstein–Barr
virus

Gastric cancer (Paschos and Allday, 2010)

CCNA1 (Cyclin-A1) Cell cycle regulator Human
papillomavirus

Cervical
cancer

(Woodman et al., 2007; Yanatatsaneejit
et al., 2020; Singh et al., 2022)

CADM1
(cell adhesion molecule 1)

Cell adhesion protein; cell
junction organizer

Human
papillomavirus

Cervical
cancer

(Yanatatsaneejit et al., 2020; Singh et al.,
2022)

DAPK1
(death associated protein

kinase 1)

Apoptosis inducer Human
papillomavirus

Cervical
cancer

(Yanatatsaneejit et al., 2020; Singh et al.,
2022)

Altered DNMTs (DNA
Methyltransferases)

DNMTs expression and
activation

DNA methylation inducer Epstein–Barr
virus

Gastric cancer (Paschos and Allday, 2010; Silmon de
Monerri and Kim, 2014)

DNMTs expression DNA methylation inducer Hepatitis B
virus

Hepatocellular
carcinoma

(Paschos and Allday, 2010)
TABLE 2 Cancer pathway’s genes, associated with altered CpG sites methylation upon infection with L. donovani.

Gene name Function Associated cancers References

CTBP1 (C-terminal binding protein 1) Transcription corepressor Melanoma, leukaemia, breast and colon cancer, among others (Blevins et al.,
2017)

CTBP2 (C-terminal binding protein 2) Transcription corepressor Breast, colon and lung cancer, among others (Stankiewicz
et al., 2014)

RASSF5 (Ras Association Domain Family
Member 5)

Tumour suppressor Colorectal cancer, hepatocellular carcinoma, osteosarcoma, among others (Li et al., 2018)

AXIN1 Signalling regulator in Wnt
pathway

Hepatocellular carcinoma; colon and gastric cancer, among others (Mazzoni and
Fearon, 2014)

DVL2 (Dishevelled Segment Polarity
Protein 2)

Key factor in signal
transduction (Wnt pathway)

Hepatocellular carcinoma; breast cancer (Mei et al.,
2020)

STAT3 (signal transducer and activator of
transcription 3)

Transcription activator Colorectal cancer, hepatocellular carcinoma, breast cancer, T cell/B cell
lymphoma, non-small cell lung cancer, among others

(Yu et al., 2014)

WNT5A (Wingless-Type MMTV
Integration Site Family, Member 5A)

Secreted signalling protein
(Wnt pathway)

Melanoma, chronic lymphocytic leukaemia, thyroid, colorectal, gastric and
ovarian cancer, among others

(Asem et al.,
2016)
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During acute and chronic infection, amastigotes ensure their

survival within phagolysosomes developing semi-quiescent and

dormant stages, i.e. reducing or shutting down expensive

metabolic processes and maintaining a slow or very slow

growth (Saunders et al., 2021). Leishmania chronic infection

and cancer lead to a susceptible environment allowing the

progression of both diseases (Al-Kamel, 2017; Schwing et al.,

2019). It is known that many cancers arise from infection sites

(Al-Kamel, 2017). The pathophysiologic contribution of

Leishmania spp. in cancer onset is not well elucidated but

many patients with prior Leishmania spp. infection developed

tumours (Al-Kamel, 2017). To note, it is believed that

approximately 120 million people have a chronic infection

(Saunders et al., 2021), thus monitoring infection parameters

achieve great relevance to prevent and early diagnose cancer in

endemic regions. The tumour cases reported in patients with

leishmaniasis included basal and squamous cell carcinoma,

lymphoma, leukaemia, hemangiosarcoma and hepatocellular

carcinoma, summarized in Al-Kamel (Al-Kamel, 2017).

DNA methylation aberrations induced by Leishmania spp.

infection may be a possible factor that trigger cell malignant

transformation since DNA methylation alterations are frequent

early events in cancer. It has been reported that a macrophage
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cell line infected with L. donovani displays DNA methylation

changes in loci linked to pathways frequently altered in cancer

(Marr et al., 2014). The affected genes were CTBP1, CTBP2,

RASSF5, AXIN1, DVL2, STAT3 and WNT5A (Table 2) (Marr

et al., 2014). Some of these gene-related pathways have been

above described in pathogen infection-associated cancer.

AXIN1, DVL2 and WNT5A are involved in Wnt signalling

that regulates several processes such as proliferation,

differentiation and adhesion. Wnt5A has been related to

cancer-associated inflammation through macrophage

recruitment. CTBPs corepressors are involved in cell cycle and

WNT gene family regulation (Stankiewicz et al., 2014; Blevins

et al., 2017). As aforementioned, Wnt pathway abnormal

activation and mutations or mislocalization of its members are

frequently observed in infectious diseases and are considered

possible tumour promoters (Benamrouz et al., 2014; Mazzoni

and Fearon, 2014; Asem et al., 2016; Yasunaga and Matsuoka,

2018; Mei et al., 2020). RASSF5 may be implicated in p53 activity

regulation, a key cell cycle guardian frequently altered in

infectious diseases leading to cancer onset (Hayashida et al.,

2013; Benamrouz et al., 2014; Li et al., 2018). DNA methylation

aberrations may explain the altered expression of these genes

and thus signalling pathways dysregulation. In fact, these altered
A

B C

FIGURE 3

DNA methylation alterations upon Leishmania infection possibly leading to tumorigenesis. (A) Leishmania molecules, possibly delivered by
exosomes, induce DNA methylation changes in macrophages and maybe in T cells. Parasite dissemination to different tissues may induce
methylome alterations in other cell types, such as fibroblasts and hepatocytes, through Leishmania/host cell interaction. Cancer development
may arise through different ways during chronic leishmaniasis: (B) increased number of cells with DNA methylation alterations; (C) additional
methylome alterations in target cells. Figure created using Servier Medical Art images, licensed under a Creative Commons Attribution 3.0
Unported License; https://smart.servier.com/.
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loci showed a significant differential methylation with a range

from 3% to 9% between infected and non-infected cells (Marr

et al., 2014). Notably, although these alterations are located in

the gene body and not in regulatory regions, they may also

modify gene expression. Long-term consequences of chronic

infection in the epigenetic modulation may lead to further

methylome alterations in the target cells such as T cells,

hepatocytes and fibroblasts, and an increased number of

infected cells than in previous phases of infection that may

induce aberrations in neighbour cells, probably contributing to

the occurrence of malignancy (Figure 3). Additional DNA

methylation aberrations in target cells may be caused by

Leishmania released molecules delivered by extracellular

vesicles, whereas a higher number of infected macrophages

may enhance parasite dissemination to visceral organs,

resulting in amastigotes and/or exosome release towards other

target cells. In agreement with this statement, few works

reported cancer-specific methylation alterations several years

before mature B-cell neoplasm (MBCN) diagnosis (Wong Doo

et al., 2016; Georgiadis et al., 2017; Loi et al., 2019). In fact, in a

prospective MBCN cohort analysis Loi et al. found a

hypermethylation event at a CGI associated with SHANK1

gene (differential methylation of 3%) in blood samples

collected around 10 years prior to diagnosis (Loi et al., 2019).

This evidence supports the hypothesis that weak DNA

methylation changes observed upon Leishmania spp. infection

may enhance during long-term infection predisposing

tumorigenesis (Figure 3). To further support the possible

association between Leishmania spp. infection and cancer

onset susceptibility, DNA methylation alterations at FLI1

promoter region, a gene dysregulated in melanoma, have been

detected in macrophages infected with L. braziliensis in vitro and

in fibroblasts from cutaneous lesion biopsies as well (Almeida

et al., 2017; Ramani et al., 2017). To note, it is believed that

epigenetic modulation, including DNA methylation, has a main

role in fibroblasts transformation into cancer-associated

fibroblasts (CAFs) and this process can be mediated by

exosomes, a frequent vehicle used in parasite/host

communication. CAFs are an essential component of tumour

microenvironment and they can also infiltrate and metastasize

together with tumour-specific cells (Ping et al., 2021). Cancer

onset in leishmaniasis wounds could arise even several years

after apparent healing reinforcing the relevance of chronic

infections and the persistence of parasite-associated alterations

in host cells. Some cases of basal cell carcinoma in patients with

Leishmania infection have been reported. Therefore, cutaneous

leishmaniasis can be considered a predisposing factor for skin

malignancies (Suster and Ronnen, 1988; Morsy et al., 1992;

Yavuzer et al., 2001; Mangoud et al., 2005; Asilian et al., 2012;

Morsy, 2013; Schwing et al., 2019). Another type of tumour

reported in patients with leishmaniasis is the T-cell lymphoma

that may arise in consequence of chronic antigenic stimulation

and immunosuppression due to leishmaniasis (Al-Kamel, 2017).
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Interestingly, Leishmania vesicles target T cells altering their

function (Silverman et al., 2010b; Coakley et al., 2015). In 2003, a

case report of a patient with hepatocellular carcinoma with pre-

existing visceral leishmaniasis and chronic hepatitis C has been

published (Precone et al., 2003; Kopterides et al., 2007). As

aforementioned, it has been reported Leishmania/hepatocyte

membrane interaction and gene expression alterations in these

target cells (Rodrigues et al., 2019). Therefore, it is reasonable to

wonder whether this interplay induces host DNA methylation

changes leading to gene dysregulation, cell dysfunction and

probably cell malignant transformation in long-term

infections. Further studies are needed to elucidate a possible

association between visceral leishmaniasis and cancer onset.

DNA methylation alterations induced by Leishmania spp.

may result in an immune response dysregulation that leads to a

non-correct surveillance and enables eventual malignant cells at

the leishmanial lesion to elude immune detection (Al-Kamel,

2017). Leishmania infection activates mTOR pathway triggering

cell proliferation and altering the balance of M1/M2 macrophages

polarization, a biological process regulated by DNA methylation

modifications and other mechanisms (Li et al., 2020). The

increased M2 macrophage polarization represents an

appropriate niche for Leishmania survival and on another hand

it has a key role in angiogenesis, tumour formation and

progression (Kumar et al., 2018; Yao et al., 2019; Zou et al.,

2020). However, it is not elucidated how mTOR signalling is

activated in leishmaniasis (Kumar et al., 2018). Marr et al.

reported DNA methylation alterations in CpG sites associated

with LARS2 and RPTOR genes, involved in the mTOR pathway

(Marr et al., 2014). These authors also reported methylation

alterations at IL-10, an M2 macrophage marker, frequently

altered in inflammation processes and secreted by many tumour

types to suppress T cells response (Ouaissi and Ouaissi, 2005;

Marr et al., 2014). Figure 3 depicts the hypothesis described in this

section regarding cancer onset in patients with leishmaniasis.
Discussion

In this review we propose a possible mechanism for cancer

onset during leishmaniasis. The protozoan Leishmania

manipulates the epigenome, including DNA methylation, of

host cells to enable its survival and replication (Robert

McMaster et al., 2016). Changes in the DNA methylation

profile may lead to gene expression dysregulation and cell

dysfunction. Several DNA methylation modifications due to

Leishmania infection are associated with genes involved in

cancer pathways such as Wnt signalling and cell cycle

regulation, and in immune mechanisms including cytokines

signalling and Natural killer cells-mediated cytotoxicity (Marr

et al., 2014). Case reports describe cancer onset in patients with

long term infection suggesting the persistence or even worsening

of the cell and tissue alterations caused by Leishmania (Kopterides
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et al., 2007; Schwing et al., 2019). DNAmethylation alterations are

also early events during tumorigenesis and few events of DNA

methylation changes can be found even 10 years before cancer

onset (Wong Doo et al., 2016; Georgiadis et al., 2017; Loi et al.,

2019). Considering these characteristics, it is plausible that the

association between parasitic infection and cancer may reside in

these epigenetic changes. Long-term Leishmania infection may

lead to a high number of altered cells and further increase DNA

methylation aberrations in host cells enhancing patient

susceptibility to cancer onset. An increased number of infected

macrophages may allow parasite dissemination and induce

methylome alterations in neighbour cells. These alterations are

possibly induced by Leishmaniamolecules delivered by exosomes

to different cell types including T cells, fibroblasts and hepatocytes

resulting in cell dysfunction. Further studies are necessary to

explore parasite/host cells interplay, including non-immune cells,

to elucidate the consequences of DNA methylation changes

during infection. Since a correlation between host DNA

methylation alterations and cancer risk has been reported in

other pathogen diseases such as H. pylori, EBV, HBV and HPV

infection, it can be expected a similar mechanism in leishmaniasis.

The comprehension of these molecular aberrations and the

association between leishmaniasis and cancer could be useful to

monitor infected patients in constant follow up and thus the

progression of both pathologies.
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