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Human polyomaviruses (HPyVs) can cause serious and deleterious infections in

human. Yet, themolecular mechanism underlying these infections, particularly in

polyomavirus nephropathy (PVAN), is not well-defined. In the present study, we

aimed to identify human genes with codon usage bias (CUB) similar to that of

HPyV genes and explore their potential involvement in the pathogenesis of

PVAN. The relative synonymous codon usage (RSCU) values of genes of HPyVs

and those of human genes were computed and used for Pearson correlation

analysis. The involvement of the identified correlation genes in PVAN was

analyzed by validating their differential expression in publicly available

transcriptomics data. Functional enrichment was performed to uncover the

role of sets of genes. The RSCU analysis indicated that the A- and T-ending

codons are preferentially used in HPyV genes. In total, 5400 human genes were

correlated to the HPyV genes. The protein-protein interaction (PPI) network

indicated strong interactions between these proteins. Gene expression analysis

indicated that 229 of these genes were consistently and differentially expressed

between normal kidney tissues and kidney tissues from PVAN patients.

Functional enrichment analysis indicated that these genes were involved in

biological processes related to transcription and in pathways related to protein

ubiquitination pathway, apoptosis, cellular response to stress, inflammation and

immune system. The identified genes may serve as diagnostic biomarkers and

potential therapeutic targets for HPyV associated diseases, especially PVAN.
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Introduction

Human polyomaviruses (HPyVs) are a group of 13 viruses

characterized by a circular double-stranded DNA infecting a

significant margin (30%-90%) of the human population

worldwide (Dalianis and Hirsch, 2013; Wu et al., 2021).

HPyVs are endowed with a characteristic genetic material

allowing them to produce viral proteins such as the large and

small T antigens in the early region and the proteins of the

capsid (VP1, 2, and 3) (Moens et al., 2007; Burkert et al., 2014;

Cook, 2016). Among the HPyVs, 11 are known to frequently

infect humans, and six of them are linked with human diseases

(Ahsan and Shah, 2006; Klufah et al., 2021). Nevertheless, little is

known about the molecular mechanisms involved in the

pathogenesis of infections due to these viruses.

Studies have indicated that, following infection, HPyVs can

integrate in the genome and persist in various tissues such as

spleen, brain and kidneys (Feng et al., 2008; Bertz et al., 2020;

Wang et al., 2020; Jin et al., 2021); these viruses can be

reactivated from latency and infect additional tissues in

immunocompromised patients (Wiedinger et al., 2014; Yang

and You, 2020). The most documented HPyVs are BKPyV

(HPyV1 or Betapolyomavirus hominis) associated with PVAN

(PVAN) in renal transplant recipients, late-onset hemorrhagic

cystitis, ureteral stenosis, and bladder cancer (Hirsch and

Randhawa, 2019; Blackard et al., 2020; Furmaga et al., 2021),

the JCPyV (also known as HPyV2) that causes progressive

multifocal leukoencephalopathy and JCPyV-associated

nephropathy (L'Honneur and Rozenberg, 2016; Assetta and

Atwood, 2017; Morris-Love et al., 2019; Harypursat et al.,

2020; Multani and Ho, 2020), and the MCPyV (also known as

HPyV5) involved in Merkel cell carcinoma (MCC) (Becker et al.,

2009; Babakir-Mina et al., 2011; Becker et al., 2017; Becker et al.,

2019; Pietropaolo et al., 2020). The other HPyVs that can cause

infections in human include HPyV4 (WUPyV), HPyV9, HPyV3

(KIPyV) and Trichodysplasia spinulosa PyV (TSPyV) (Babakir-

Mina et al., 2013; Nicol et al., 2013; Rao et al., 2016; van der

Meijden and Feltkamp, 2018).

The infection of kidney tissues by HPyVs is associated with

complications such as PVAN and allograft rejection. BKPyV can

simultaneously induce inflammatory and fibrotic responses,

immunosuppression, and tubular injury in kidney transplants,

thereby causing kidney transplant rejection in 40–70% of

infected grafts (Babel et al., 2011; Ambalathingal et al., 2017;

Raupp et al., 2020; Kotla et al., 2021; Shen et al., 2021). JCPyV-

associated PVAN occurs in <3% of PVAN cases after renal

transplantation (Kantarci et al., 2011; Yang et al., 2017; Höcker

et al., 2018). MCPyV, HPyV9 and TSPyV viremia has been

detected in BKPyV infection and BKPyV-induced PVAN renal

allograft patients, but their impact on the infectious pathogenesis

is not elucidated (van Rijn et al., 2019; Wang et al., 2019b).

Sustained TSPyV viremia indicating its infection of kidney

transplant recipient has been also reported (Zanella et al.,
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2021). JCPyV, TSPyV, MCPyV and HPyV9 have been

detected in allograft kidneys and in urine after transplantation

(van der Meijden et al., 2014; Kamminga et al., 2021). However,

the mechanism of HPyVs in HPyV-induced nephropathy and in

transplant rejection remains unknown. Moreover, the

pathogenesis of PVAN remains to be elucidated. Thus,

clarifying the molecular mechanism of HPyV infections could

benefit, not only the diagnosis and monitoring of patients with

PVAN, but also other infectious diseases related to

human HPyVs.

Studies indicate that viral infection impact profoundly on

the gene expression system in host cells which mobilize

particular gene expression pathways as a defense response to

viral infection (Tripp et al., 2013; Yu et al., 2019; Das et al., 2021;

Tsalik et al., 2021). Up to date, the identification of genes

involved in host response to viral infections is based majorly

on the transcriptomics and proteomics studies (Flentje et al.,

2018; Wang et al., 2019a; Yao et al., 2019; Ahmed, 2020; Xiong

et al., 2020; Maróti et al., 2021). Interestingly, studies indicate

that the co-evolution of the viruses and their hosts can affect

gene expression in the hosts (Nambou and Anakpa, 2020; Das

et al., 2021; Nambou et al., 2022). However, no study has

explored this aspect in HPyVs. Relative synonymous codon

usage (RSCU) is an indicator of codon usage bias (CUB) and

measures the ratio of each synonymous codon for a given amino

acid (Xu et al., 2008). It has been proven that RSCU is correlated

with gene expression (Yu et al., 2015; Liu, 2020), and the

similarity between RSCU of genes of infectious agents and the

genes of their host is a tool to explore the changes in the

expression of genes in the host (Jitobaom et al., 2020; Nambou

and Anakpa, 2020; Maldonado et al., 2021; Nambou et al., 2022).

An adaptive translational correlation between human viruses

and infected organs has been reported and suggested the

involvement of the CUB in the control of host defense

machinery (Alonso and Diambra, 2020; Jitobaom et al., 2020).

Recently, RSCU similarity studies among the coronaviruses,

influenza A viruses, and various other viruses have allowed the

discovery of key genes tendentially driving the pathogenesis of

these infections, and drug prediction based on these genes had

been achieved (Chen et al., 2020; Nambou and Anakpa, 2020;

Maldonado et al., 2021; Nambou et al., 2022). In this context,

disclosing the analogies among the RSCU of viral genes and

human genes may enlighten the pathogenesis of HPyVs.

However, studies on the CUB of HPyVs are very scarce. It was

previously reported that the CpG dinucleotides of HPyVs are

depleted and that translational selection is the main factor

shaping the CUB of these viruses (Upadhyay and

Vivekanandan, 2015). The CUB of the large T antigen (LT-

Ag) of HPyVs has been also reported (Cho et al., 2019).

However, the CUB of other HPyV proteins has not been

singularly reported. In addition, the similarities between the

CUB of HPyV genes and that of the human genes has not been

reported, which needs an in-depth investigation.
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Therefore, in the present study, we aimed at investigating the

similarities between the RSCU of HPyV genes and that of the

human genome in order to uncover the translational

interactome of HPyVs and explore their role in PVAN.

Materials and methods

Data acquisition

The whole human genome was from GENCODE (https://

www.gencodegenes.org/human/). The coding sequences of

human HPyV proteins were retrieved from the NCBI virus

database (https://www.ncbi.nlm.nih.gov/labs/virus/vssi/) and

included the sequences of different types of HPyVs (MCPyV,

JCPyV, BKPyV, HPyV9, and TSPyV). These subtypes of HPyVs

were found relevant for studying PVAN because BKPyV and

JCPyV are associated with nephropathy, and MCPyV has been

detected in urine and kidney; in addition, HPyV9 and TSPyV have

been detected in the kidneys and viremia has been detected in

renal transplant patients (Babel et al., 2011; Kantarci et al., 2011;

van der Meijden et al., 2014; Yang et al., 2017; Caller et al., 2019;

Hirsch and Randhawa, 2019; Zanella et al., 2021).

The gene expression datasets were obtained from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) and included the

data with accession numbers GSE72925 and GSE75693. The

expression data from control samples and HPyV infected

samples were used for the subsequent analyses.
Relative synonymous codon
usage analysis

The RSCU values of different codons of the HPyV CDS

sequences and human CDS sequences was computed by

running the R library “vhcub” (Anwar et al., 2019). RSCU

represents the ratio of the frequency of a codon to be chosen

among the synonymous codons encoding for a given amino acid

to the expected frequency of this codon (Cho et al., 2019; Nambou

and Anakpa, 2020; Nambou et al., 2022). A codon with an RSCU

value higher than 1 indicates a positive CUB of this codon,

whereas RSCU value lower than 1 indicate a negative CUB

(Cho et al., 2019; Nambou and Anakpa, 2020; Nambou et al.,

2022). The codons with no CUB have RSCU value of 1 and the

codons with RSCU lower than 0.6 or greater than 1.6 indicate

codon usage “underrepresentation” or codon usage

“overrepresentation” (Tripp et al., 2013; Upadhyay and

Vivekanandan, 2015; Starrett et al., 2019).
Identification of human genes with CUB
similar to HPyV CUB

The similarity of the RSCU of HPyV sequences and that of the

human CDS sequences was analyzed by computing the Pearson
Frontiers in Cellular and Infection Microbiology 03
correlation between these sequences based on the Hmisc package

in R. The correlation of human genes with HPyV genes was

deemed credible when the correlation coefficient r was > 0.5 at a p-

value threshold of < 0.05.
Differential expression analysis

The expression datasets were used for differential expression

analysis in R using the limma and edgeR packages. Genes with

log2 of foldchange higher than 1.4 or lower that -1.4 with p-value

lower than 0.05 were considered as those differentially expressed

between the control and the HPyV infected proteins. The ggplot2

package was used for generating the volcano plots while the

heatmaps were obtained by running the ComplexHeamap

library in R. The ven diagrams were calculated using the online

tool (https://bioinformatics.psb.ugent.be/webtools/Venn/).
Protein–protein interaction network of
human genes with CUB similar to that
of HPyVs

The protein–protein interaction (PPI) network sets of genes

were built using the Search Tool for the Retrieval of Interacting

Genes (STRING) (https://string-db.org/). The high confidence

was set to 0.7 while other parameters were kept as default. The

built PPI networks were downloaded and further visualized and

analyzed using the Cytoscape 3.4.0 software (Cytoscape

Consortium, SanDiego, CA, USA). The keys were retrieved by

performing the MCODE analysis at a max depth = 100, node

score cut-off ≥ 0.2, degree cut-off ≥ 2, and K-core ≥ 2.
Functional enrichment analysis

The TCGAbiolinks package in R was used for analyzing and

visualizing the functions of the genes based on the

TCGAanalyze_EAcomplete and TCGAvisualize_EAbarplot

functions. The significantly enriched terms were obtained when

the adjusted p-values where < 0.05.
Results

A- and U-ending codons are
preferentially used in the coding
sequences of human HPyVs

To explore the CUB of the coding sequences of HPyVs, the

RSCU values of codons in each CDS sequences of HPyVs was

computed. The heatmap in Figure 1 indicates the RSCU profile of

the analyzed sequences. The A-/T-ending codons were the most
frontiersin.org
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preferentially used compared to the G-/C-ending codons in CDS

sequences of HPyVs (Figure 1). The most preferentially used G-/

C-ending codons were the AGG and TTG codons while the most

preferentially used A-/T-ending codons were AGA, CCT, GCT,

AGT, ATT, TCT, ACT, ATT, TTT, AAA, CTT, ACA, CCA, and

GCA codons. The most underrepresented codons (RSCU values

lower than 0.6) were the CGG, TCG, ACG, CCG, and GCG

codons (Figure 1). The RSCU values of the codons of the CDS

sequences of HPyVs varied between 0 and 6 (Figure 1). For some

viral genes, differences were recorded among viruses while for

other genes, strong similarities were recorded (Figure 1).
Detection of human genes with CUB
similar to the CUB of human HPyVs
and functional enrichment analysis

To discover human genes sharing similarities with CUB of

genes of the HPyVs, the RSCU values of the codons of human

genes were calculated and merged with those of genes of the

HPyVs. Based on the screening criteria of p < 0.05 and r > 0.5

(Supplementary File S1), we identified a total of 5400 genes as

those presenting highly significant similarities with the genes of

HPyVs based on the RSCU values. The correlation heatmap of

these similar genes was as depicted in Figure 2. To uncover the

functions of the human genes with CUB similar to that of the

HPyV genes, we performed GO (Gene Ontology) and KEGG

(Kyoto Encyclopedia of Genes and Genomes) enrichment test.

The results exhibited that the most prevalently enriched biological

processes were transcription (403 genes) and regulation of

transcription (494 genes), sensory perception of chemical

stimulus (2 genes), G-protein coupled receptor protein signaling
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pathway (42 genes), sensory perception of smell (2 genes), sensory

perception of smell (n=2)

sensory perception of chemical stimulus (n=2), DNA-

dependent regulation of transcription (361 genes), and

regulation of RNA metabolic process (364 genes) (Figure 3).

For the category of molecular function, zinc ion binding (476

genes), transition metal ion binding (484 genes), cation binding

(498 genes), metal ion binding (498 genes), ion binding (498

genes), and DNA binding (483 genes) were the most enriched

terms whereas for cellular component, nuclear lumen (263

genes) and membrane-enclosed lumen (319 genes) were the

most enriched terms (Figure 3). The most enriched pathways

were protein ubiquitination pathway (119 genes), glucocorticoid

receptor signaling (98 genes), and aldosterone signaling in

epithelial cells (63 genes) (Figure 3).
Protein–protein interaction network
prediction and identification of hub
clusters of the human genes with CUB
similar to that of HPyVs and their
functional roles

The PPI of human genes with CUB similar to that of the genes

of HPyVs was constructed using the top-2000 genes based on the

correlation rank (Supplementary Figure S1). The network

showing nodes with degree greater or equal to 50 was as

depicted in Figure 4. The network diameter of the HPyV PPI

network was 8 while its radius was 5; the number of connected

components was 2, with 1938 nodes, 17796 edges, and the average

number of neighbors of 18.383 (Figure 4). The nodes with degree

higher or equal to 100 were BRCA1, CDK1, ATM, HSPA4, BPTF,
FIGURE 1

Heatmap showing the relative synonymous codons of human genes and genes of HPyVs.
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SKIV2L2, CHEK1, and KRAS. Using the MCODE plugin, we

identified 34 clusters. Cluster 1 with the highest score (26.038) was

composed of 53 proteins as key hub genes, with BRCA1, ATM,

SKIV2L2, CHEK1, MSH2, ATR, NOP58 and DDX5 as the most

important genes (Figure 4). The functional analysis indicated

that these key hub genes were participating in the biological

processes of response to DNA damage stimulus (10 genes),

cellular response to stress (12 genes), and RNA processing

(10 genes) (Supplementary Figure S2). In the category of

cellular component, membrane−enclosed lumen (16 genes),

organelle lumen (16 genes), intracellular organelle lumen

(16 genes), nuclear lumen (17 genes), and nucleolus (15 genes)

were the most enriched while the most predominant

molecular function terms were helicase activity (seven

genes) and ATP−dependent helicase activity (six genes)

(Supplementary Figure S2). The pathways associated with the

key hub genes were role of BRCA1 in DNA damage response

(eight genes), role of CHK proteins in cell cycle checkpoint control

(six genes), hereditary breast cancer signaling (seven genes), and

p53 signaling (six genes) (Supplementary Figure S2). The second

cluster (Cluster 2, score of 13.633) contained 50 proteins, with

CDK1, HSPA4, MDM2, KIF11, AURKA, EIF4E, KIF23, RANBP2

and RAD21 as the most important hub proteins. The genes in

cluster 2 were involved in the biological processes of mRNA

transport (10 genes), RNA localization (10 genes), and nucleic

acid transport (10 genes) (Supplementary Figure S3). The cellular
Frontiers in Cellular and Infection Microbiology 05
component terms associated with these genes were pore complex

(nine genes), nuclear pore (nine genes), nuclear envelope (nine

genes), and non−membrane−bounded organelle (16 genes) while

the most prevalent molecular functions were nucleocytoplasmic

transporter activity (three genes), RNA cap binding (two genes),

microtubule motor activity (three genes) and damaged DNA

binding (two genes) (Supplementary Figure S3). The pathways

associated with these genes were those involved in mitotic roles of

Polo−Like kinase (six genes), protein ubiquitination pathway (five

genes), cleavage and polyadenylation of pre−mRNA (two genes),

cell cycle: G2/M DNA damage checkpoint regulation (two genes),

aldosterone signaling in epithelial cells (three genes), and ATM

signaling (two genes) (Supplementary Figure S3). The third cluster

(Cluster 3) contained 23 proteins among which 12 had node

degrees higher than 50; TOP2A, ATRX and POLA1 were the

nodes with the highest degrees. The biological processes related to

the 23 proteins in cluster 3 were cellular response to stress (12

genes), DNA repair (nine genes), response to DNA damage

stimulus (nine genes), DNA metabolic process (nine genes), and

DNA replication (four genes); terms such as positive regulation

of viral genome replication (one gene) and immune system

development (two genes) were also recorded (Supplementary

Figure S4). Replication fork (three genes) was the most enriched

cellular component while nucleotidyltransferase activity

(three genes) was the most enriched molecular function

(Supplementary Figure S4). The most enriched pathways
FIGURE 2

Correlation heatmap of genes of HPyVs and human genes with CUB similar to that of HPyVs.
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wereDNA double−strand break repair by homologous

recombination (four genes), DNA double−strand break repair

by non−homologous end joining (four genes), hereditary breast

cancer signaling (six genes), role of BRCA1 in DNA damage
Frontiers in Cellular and Infection Microbiology 06
response (five genes), DNA double−strand break repair by

homologous recombination (three genes), and role of CHK

proteins in cell cycle checkpoint control (three genes)

(Supplementary Figure S4).
FIGURE 4

Protein-protein interaction network of human genes with CUB similar to that of HPyVs.
FIGURE 3

Functional enrichment analysis of human genes with CUB similar to that of HPyVs.
frontiersin.org

https://doi.org/10.3389/fcimb.2022.992201
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Fan et al. 10.3389/fcimb.2022.992201
Involvement of human genes with CUB
similar to that of HPyV genes in PVAN

In order to explore the involvement of human genes with

CUB similar to that of HPyV genes in PVAN, the GSE72925 and

GSE75693 datasets were retrieved and the differential expression

analysis was performed between the uninfected normal samples

and PVAN kidney tissue. From the GSE72925 dataset, as

indicated in Figure 5A and Supplementary File S2, we detected

3109 differentially expressed genes (DEGs) with 1465 of them

being upregulated while the other 1644 genes were

downregulated. From the GSE75693 dataset, as indicated in

Figure 5B and Supplementary File S3, we detected 8073 DEGs

with 4328 of them being upregulated while the other 3745 genes

were downregulated. Further, we intersected the list of

upregulated and downregulated DEGs from both GSE72925 and

GSE75693 datasets with the list of human genes with CUB similar

to that of HPyV genes. As shown in Figure 5C, 95 DEGs were

found as the intersection between downregulated DEGs from both

GSE72925 and GSE75693 and human genes with CUB similar to

that of HPyV genes. Moreover, as shown in Figure 5D, 134 DEGs

were found as the intersection between upregulated DEGs from

both GSE72925 and GSE75693 and human genes with CUB

similar to that of HPyV genes. Thus, a total of 229 DEGs were

identified as key genes which can be considered as credible human

genes whose translation can be affected by the coadaptation of

human with HPyVs. The heatmaps showing the expression of

these genes in GSE72925 and GSE75693 were depicted in

Figure 5E. These 229 intersection key DEGs were involved in

the biological processes of transcription (28 genes), regulation of

RNA metabolic process (26 genes) DNA−dependent regulation

of transcription (25 genes), regulation of transcription (30 genes),

glycerophospholipid metabolic process (five genes), and

glycerolipid metabolic process (five genes); the biological

processes related to virus (regulation of defense response to

virus by virus (two genes), and regulation of defense response

to virus (two genes)) were also enriched (Supplementary Figure

S5). Nuclear chromosome (five genes) was the most enriched

cellular component while zinc ion binding (36 genes)

and transition metal ion binding (36 genes) were the

most enriched molecular functions (Supplementary Figure S5).

The most enriched pathways were Cholesterol Biosynthesis I (two

genes), Cholesterol Biosynthesis II (via 24,25−dihydrolanosterol)

(two genes), and Cholesterol Biosynthesis III (via Desmosterol)

(two genes) (Supplementary Figure S5).

The PPI network of the 229 proteins was constructed

and indicated strong interactions among these proteins

(Supplementary Figure S6). This PPI network contained 219

nodes and 1091 edges; the average number of neighbors was

9.963 while the network diameter and radius were 7 and 4,

respectively (Supplementary Figure S6). The MCODE plugin

allowed the retrieval of 8 hub proteins (PAICS, DDX24,
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HNRNPK, HEATR1, ARP1B, RPS6, CCT8, DOCK4, and

PSMA5) from cluster 1, 6 hub proteins from cluster 2

(CNOT1, SYNCRIP, LARP4, EIF3A, and ZCCHC7) and 34

hub proteins from cluster 3 (Figure 5F). Functional

enrichment analysis indicated that these 49 hub proteins

were involved in the biological processes of protein

deubiquitination (two genes), protein modification by small

protein removal (two genes), Ras protein signal transduction

(two genes), ubiquitin−dependent protein catabolic process

(three genes), RNA processing (four genes), and positive

regulation of viral genome replication (one genes) (Figure 5G).

The most enriched cellular components were microtubule

organizing center part (two genes), nuclear lumen (six genes)

and alpha−subunit complex of proteasome core complex

(one gene) while the most enriched molecular functions were

ubiquitin−specific protease activity (two genes), small

conjugating protein−specific protease activity (two genes), and

nucleoside−triphosphatase regulator activity (four genes)

(Figure 5G). The pathways associated with the hub genes

were predominantly cholesterol biosynthesis (two genes),

cholesterol biosynthesis II (via 24,25−dihydrolanosterol) (two

genes), cholesterol biosynthesis III (via Desmosterol) (two

genes), mTOR Signaling (four genes), superpathway of

cholesterol biosynthesis (two genes), p70S6K signaling (three

genes), protein ubiquitination pathway (four genes), regulation

of eIF4 and p70S6K signaling (three genes) (Figure 5G).
Discussion

In the present study, we aimed to identify human genes with

CUB similar to that of HPyV genes and explore their potential

involvement in the pathogenesis of PVAN. The RSCU analysis

indicated that the A- and T-ending codons are more preferentially

used in HPyV genes. In addition, significant positive correlations

in CUB among HPyV genes and human genes were recorded. In

total, 5400 human genes were correlated to the HPyV genes. Gene

expression analysis indicated that 229 of these genes were

consistently and differentially expressed between normal kidney

tissues and kidney tissues from patients with nephropathy. The

PPI network indicated strong interactions between these proteins.

Functional enrichment analysis indicated that these genes were

involved in biological processes of transcription, and regulation of

transcription and pathways related to protein ubiquitination

pathway, inflammation and immune system. The identified

genes may serve as diagnostic biomarkers and potential

therapeutic targets for PVAN.

In the present study, we analyzed the RSCU of the viral genes

from five HPyVs. The study indicated that the A- and T-ending

codons were those preferentially used by the HPyVs. This result

indicated that the preferred codons were influenced by

compositional constraints (Mazumder et al., 2018). Moreover,
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these results suggested that the CUB of HPyVs is shaped by the

occurrence of selection constraints, as it was previously reported

(He et al., 2016; Majeed et al., 2020).

The interference of host cells with viruses is pathological or

harmful for the host, inducing cell morphological changes and

dysregulation of gene expression in the host cell (Lyles, 2000). It

has been reported that, following viral infection, host gene

expression is co-transcriptionally or post-transcriptionally

downregulated by the viruses, which is essential for their own
Frontiers in Cellular and Infection Microbiology 08
replication (Herbert and Nag, 2016; McFadden et al., 2021).

Studies indicate that the mechanism underlying this regulatory

effect is the consequence of the interaction of viral proteins with

cellular protein (Maginnis, 2018). The host ribosomes are used

by both the virus and host cells for translation of host or viral

mRNAs (Herbert and Nag, 2016). The protein synthesis in the

host is affected by its response to virus and the translation of viral

mRNAs is influenced by the co-adaptation of the virus with the

host due to the use of the same translational apparatus (Herbert
A B D

E F

G

C

FIGURE 5

Involvement of human genes with CUB similar to that of human HPyVs in PVAN. (A) Volcano plot showing differential expression analysis of genes
in GSE72925. (B) Volcano plot showing differential expression analysis of genes in GSE75693. (C) Venn diagram showing the intersection between
downregulated DEGs from GSE72925, downregulated DEGs from GSE75693 and human genes with CUB similar to that of HPyV genes. (D) Venn
diagram showing the intersection between upregulated DEGs from GSE72925, upregulated DEGs from GSE75693 and human genes with CUB
similar to that of HPyV genes. (E) Heatmaps of the expression profile of the 229 human genes with CUB similar to that of HPyV genes that were
consistently and differentially expressed in GSE72925 and GSE75693. (F) Hub genes of the PPI network of human genes with CUB similar to that of
HPyV genes that were consistently and differentially expressed in GSE72925 and GSE75693 from the first three cluster generated by MCODE. The
green nodes indicate downregulated DEGs while the other nodes were upregulated DEGs. (G) Functional enrichment of hub genes of the PPI
network of human genes with CUB similar to that of HPyV genes that were consistently and differentially expressed in GSE72925 and GSE75693.
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and Nag, 2016). The CUB of hosts and viruses is indicative of the

evolutionary variations, including adaption, evasion from the

host’s immune system and survival (Butt et al., 2016; Kumar

et al., 2018; Maginnis, 2018). However, the effect of CUB on gene

transcription following the infection by HPyVs has not been

reported so far. In the present work, we found that the list of

human genes with codon usage similar to that of HPyVs were

implicated in transcription and regulation of transcription.

Thus, the present findings implied that the HPyVs hijack the

transcriptional regulation in human cells, thus leading to

pathogenetic changes. Studies indicate that transcription plays

a significant role in the initiation of viral infection (Lyles, 2000).

Since transcription-related processes were those most

significantly enriched, we anticipated that the disturbance of

transcriptional processes is significantly important in HPyV

infections and might be a crucial initiation step in the

pathogenesis. Several studies have shown that the HPyVs are

oncogenic (Prado et al., 2018), however, their molecular

mechanism is unelucidated. In the present study, we found

that human genes with CUB similar to that of HPyVs were

involved in various cancer pathways. This support the

hypothesis that the HPyVs are oncogenic. In addition,

pathways of immune and inflammatory responses were

enriched, showing that HPyVs may activate inflammatory

responses and weaken immune system in human, thus

allowing the occurrence of pathogenetic processes. In addition,

the cell apoptosis related pathways were also enriched. These

functional changes enlightened our knowledge on the molecular

mechanism of HPyVs.

Themolecularmechanism of PVAN is not well elucidated. Up

to date, only few studies have explored the molecular profile

changes in the kidney tissues of patients with PVAN. Single-cell

transcriptomics of the cellular response to BKPyV has been

performed recently (An et al., 2021). Proteomic studies also

indicated that HPyV infection triggers G2 arrest of the cell cycle

and evasion of the virus to innate immune system (Caller et al.,

2019). TaqMan low density array was also used to analyze the

expression profiles of 90 immune-related genes in kidney graft

biopsy; the results disclosed various biological networks-related to

BKPyV infection (Girmanova et al., 2012). HPyV T Antigen has

been also reported to regulate the APOBEC3B (Starrett et al.,

2019). Pathological and bioinformatics analyses indicated that

genes regulated by BKHPyV infection are involved in cytoplasmic

vacuolation implicating endoplasmic reticulum stress with DDIT3

as the key hub gene (Zhao et al., 2022). The analysis of BK PVAN

transcriptome was unable to uncover BK PVAN-specific

molecular signatures, which limits the clinical application of the

corresponding findings (Pan et al., 2018). Though molecular and

transcriptomic studies have helped discovering the gene

expression changes and potential molecular mechanisms, much

is left to be discovered regarding the molecular mechanism of

PVAN. In the present study, we found that the co-adaptation of

HPyVs with human may impact the gene replication and
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expression in human due to the competitive use of codons

present in the cellular environment. This approach has been

used in previous research studies which have been

demonstrated useful in disclosing interesting molecular aspects

involved in infectious diseases such as human infections of

coronaviruses and influenza viruses (Nambou and Anakpa,

2020; Nambou et al., 2022). Here, we found that 5400 human

genes had CUB similar to that of HPyVs. These genes can be

considered as the translational interactome of HPyV genes. The

implication of these genes in PVAN was further confirmed by

differentially expression analysis indicating the differential

expression of 229 human genes with CUB similar to that of

HPyV genes; these genes were consistently downregulated or

upregulated across two datasets. These results indicated that the

evolutionary coadaptation of human and HPyVs instigates

differential gene expression and functional dysregulation in

human, which leads to the pathogenetic occurrence of PVAN.

Our study indicated that the 229 DEGs with CUB similar to that

of HPyVs constituted a strong PPI network and the eight hub

genes of this network were enriched in the biological processes

related to transcription, regulation of RNA metabolic process,

metabolism-related processes, regulation of defense response to

virus and response to biotic stimulus. This suggested that

coadaptation of HPyVs with human is a key component

involved in the pathogenic mechanism of the infection by

HPyVs in PVAN. Our results support the recent works showing

that coadaptation of coronaviruses and influenza viruses induces

abnormal gene expression in human (Nambou and Anakpa, 2020;

Nambou et al., 2022). It was also similar to another work showing

that human genes with CUB similar to coronaviruses could

impact protein expression in human (Maldonado et al., 2021).

Thus, the identified genes have the potential to serve as diagnostic

biomarkers and potential therapeutic targets for PVAN, which

needs additional characterization. In addition, we found that a

large portion of human genes with CUB similar to that of HPyVs

were differentially expressed among the PVAN and the control

uninfected samples, confirming their involvement in PVAN.

Nonetheless, other genes were not identified as differentially

expressed genes, and may constitute new findings revealed in

this study. Further experimental characterization of these genes is

necessary to confirm their role in PVAN.

In conclusion, this study explored the molecular mechanism

of HPyV infections based on the CUB similarities and confirmed

their involvement in PVAN. These genes may serve as diagnostic

biomarkers and therapeutic targets or clues for further mechanism

research, but experimental validation is required.
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