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Background: Lingguizhugan decoction is a traditional Chinese medicine

prescription that has been used to improve non-alcoholic fatty liver disease and

its progressive form, non-alcoholic steatohepatitis (NASH). However, the anti-

NASH effects and underlying mechanisms of Lingguizhugan decoction remain

unclear.

Methods:Male Sprague-Dawley rats were fed amethionine- and choline-deficient

(MCD) diet to induce NASH, and then given Lingguizhugan decoction orally for

four weeks. NASH indexes were evaluated by histopathological analysis and

biochemical parameters including serum alanine aminotransferase (ALT),

aspartate aminotransferase (AST), liver triglycerides (TG), etc. Fecal samples of

rats were subjected to profile the changes of gut microbiota and metabolites using

16S rRNA sequencing and ultra-performance liquid chromatography coupled to

tandem mass spectrometry (UPLC-MS). Bioinformatics was used to identify

Lingguizhugan decoction reversed candidates, and Spearman’s correlation

analysis was performed to uncover the relationship among gut microbiota, fecal

metabolites, and NASH indexes.

Results: Four-week Lingguizhugan decoction treatment ameliorated MCD diet-

induced NASH features, as evidenced by improved hepatic steatosis and

inflammation, as well as decreased serum AST and ALT levels. Besides,

Lingguizhugan decoction partially restored the changes in gut microbial

community composition in NASH rats. Meanwhile, the relative abundance of 26

genera was significantly changed in NASH rats, and 11 genera (such as odoribacter,

Ruminococcus_1, Ruminococcaceae_UCG-004, etc.) were identified as

significantly reversed by Lingguizhugan decoction. Additionally, a total of 99

metabolites were significantly altered in NASH rats, and 57 metabolites (such as

TDCA, Glutamic acid, Isocaproic acid, etc.) enriched in different pathways were

reversed by Lingguizhugan decoction. Furthermore, Spearman’s correlation

analyses revealed that most of the 57 metabolites were significantly correlated

with 11 genera and NASH indexes.
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Conclusion: Lingguizhugan decoction may exert protective effects on NASH

partially by modulating gut microbiota and correlated metabolites.
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Introduction

Non-alcoholic steatohepatitis (NASH) is a severe form of non-

alcoholic fatty liver disease (NAFLD), characterized by the presence

of liver inflammation and hepatocyte injury (ballooning) due to fat

accumulation (Fraile et al., 2021). NASH may progress into cirrhosis

and hepatocellular cancer (HCC) and is presently a leading cause of

liver transplantation, which has become a major health concern

worldwide (Margini and Dufour, 2016; Raza et al., 2021). However,

there are currently no approved effective medicines for NASH, so

appropriate therapeutic approaches are urgently warranted.

Traditional Chinese Medicines (TCMs) have been proven to

effectively treat hepatic diseases for centuries, attracting increasing

attention for the treatment of NAFLD/NASH (Dai et al., 2021). In the

past decades, TCMs have been reported to improve NAFLD/NASH

through multiple mechanisms, including regulating lipid and glucose

metabolism, improving liver inflammation, and protecting liver

functions. For example, Radix Polygoni Multiflori and its main

component emodin can attenuate NAFLD and hepatic steatosis (Wang

et al., 2017;Yuet al., 2020).Berberine, analkaloid component isolated from

the traditional Chinese herbalCoptidis Rhizoma, is also considered to have

therapeuticpotential forNAFLD/NASHinbothclinical investigationsand

animal studies (Zhou et al., 2017;WahKheong et al., 2017; Harrison et al.,

2021).Gegenqinliandecoction abatedNASHthroughanti-oxidative stress

and anti-inflammatory response by inhibition of the toll-like receptor 4

(TLR4) signaling pathway (Zhang et al., 2020). Recently, growing evidence

suggested that gut microbiota and related metabolites might play an

important role in the therapeutic effects of TCMs on NAFLD/NASH. In

particular, several TCMs could ameliorateNAFLDby regulating intestinal

microbiota and its derivedmetabolites, such as short-chain fatty acids (Yu

etal., 2020),branched-chainaminoacids (Zhangetal., 2018), andbile acids

(Li et al., 2021). Consequently, gut microbiota and correlated metabolites

have emerged as novel targets for potential TCMs intervention inNAFLD.

Lingguizhugan decoction (LGZG) is an ancient Chinese herbal

formula, which is composed of Poriacocos (Schw.) Wolf (Fuling in

Chinese), Cinnamomum cassia Presl (Guizhi in Chinese),

Atractylodes macrocephala Koidz. (Baizhu in Chinese), and

Glycyrrhiza uralensis Fisch. (Gancao in Chinese). In our recent

randomized, double-blinded, placebo-controlled trial, low-dose

LGZG effectively improved insulin resistance in overweight/obese

NAFLD patients (Xu et al., 2020; Dai et al., 2022), which might be

related to the regulation of DNA N6-methyladenine modification of

protein phosphatase 1 regulatory subunit 3A (PPP1R3A) and

autophagy-related 3 (ATG3) (Dai et al., 2022). Our previous study

demonstrated that LGZG treatment significantly attenuated HFD-

induced NAFLD probably through increasing serum thyroid
02
hormone levels, improving fatty acid b-oxidation (via modulation

of thyroid hormone receptor b1 and carnitine palmitoyltransferase-

1A expression), and inhibiting the metabolism and transport

(through modulation of sterol regulatory element-binding protein

1c, long-chain acyl-CoA synthetase, and Apolipoprotein B100

expressions) of fatty acids (Liu et al., 2013). Besides, LGZG has also

been reported to improve oxidative stress, which is an independent

risk factor that drives the progression of NAFLD to NASH called the

“Two Hit Theory” (Zhang et al., 2015). However, the effect of LGZG

on NASH and the underlying mechanism from the perspective of gut

microbiota and related metabolites remained unclear.

In the present study, we used a rat model of methionine- and

choline-deficient (MCD) diet-induced NASH to evaluate the effect of

LGZG on NASH. Moreover, 16S rRNA sequencing and UPLC-MS

technologies were used to profile the changes in gut microbiota and

metabolites in fecal samples. The results might broaden our

knowledge of the efficacy and underlying mechanisms of LGZG in

treating NASH, and provide candidate microbiota and metabolites to

improve NASH.
Material and methods

Preparation of Lingguizhugan decoction

Lingguizhugan decoction (powder batch number: Z201101) was

provided by Professor Tong Zhang, School of Pharmacy, Shanghai

University of Traditional Chinese Medicine. Poriacocos (Schw.) Wolf

(batch number: Y2003002), Cinnamomum cassia Presl (batch

number: 200608), Atractylodes macrocephala Koidz. (batch number:

YP200601), and Glycyrrhiza uralensis Fisch. (batch number:

YP200601) in a 2:1.5:1:1 ratio, added 12 times the amount of water,

decoction 2 times, every 1.5 hours, collected the first water decoction,

and set aside. Decoction filtered, combined two filtrates, the filtrate

concentrated to a relative density of 1.07 ~ 1.09 (65 ± 5°C), spray-

dried, and crushed into a fine powder for use (4.56 g crude medicine

extracted 1 g extract powder, which was stored in a dry environment).

All herbs were purchased from Jiangsu Sanhexing Chinese Medicine

Research Co., Ltd. (Jiangsu, China). The fingerprint was used to

control the quality of the LGZG (Supplementary Figure 1).
Experimental animals

Male Sprague-Dawley rats (8-week-old, 300-350 g), were

purchased from Shanghai Jihui Experimental Animal Technology
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Co., Ltd. (Shanghai, China), and maintained in the Laboratory

Animal Center of Shanghai University of Traditional Chinese

Medicine, which were kept in a constant temperature and humidity

with a 12 h light/dark cycle. After one week of adaptive feeding, the

rats were randomly divided into two groups. The Control group (n =

6) was fed a chow diet, and the model group was fed an MCD diet

(Lot No.: 21011101, purchased from Changzhou SYSE Bio-Tech. Co.,

Ltd. (Changzhou, China). After two weeks, the model group rats were

randomly divided into two groups: the NASH group and the

Lingguizhugan decoction-intervened (LGZG) group (n = 6 for each

group). The NASH group was fed the MCD diet, and the LGZG group

was fed the MCD diet supplemented with LGZG, which was

administered at 0.1 mL/10g body weight (clinical equivalent

dose:16.56 g crude drug/kg) by oral gavage every day for four

weeks. The Control group and NASH group rats were given an

equal volume of pure sterilized water. Body weight and food intake

were recorded every two days to observe the state of the rats. At the

end of the experiment, the rats were fasted for 12 h, weighed, and

injected with 10% chloral hydrate for anesthesia. Blood was then

taken from the abdominal aorta and the serum was separated for

biochemical analyses, while the liver was removed, weighed, and

repacked. In addition, the ileum, colon, and feces of the ileocecal

region were collected. All animal experiment procedures were

approved by Shanghai University of Traditional Chinese Medicine

Animal Experiment Ethics Committee (No. PZSHUTCM201218010).
Biochemical index detection

Serum alanine aminotransferase (ALT, batch number:

01ALT210107), and aspartate aminotransferase (AST, batch

number: 01AST201111) levels were analyzed and detected by an

automatic biochemical analyzer (TBA-40FR, Toshiba, Tokyo, Japan).

The supernatant of liver homogenate was prepared by freezing liver

tissue. Then the levels of liver triglyceride (TG, batch number:

02TG201209), and liver total cholesterol (TC, batch number:

01CHOL201030) were measured using an automatic biochemical

analyzer. All kits were purchased from Shanghai Huachen

Biological Reagent Co., Ltd. (Shanghai, China).
Histopathological analysis of liver

The left upper half of the liver tissues of rats were fixed in 10%

neutral formalin for one week, then dehydrated, paraffin-embedded,

and sectioned into 4 mm slices. Pathological changes of the liver

tissues were evaluated by hematoxylin and eosin (H&E, BaSO, China)

staining and the total NAFLD Activity Score (NAS score), as

previously reported (Kleiner et al., 2005). The scoring system was

mainly comprised of three histological features, which were evaluated

semi-quantitatively: steatosis (0-3), lobular inflammation (0-3), and

hepatocellular ballooning (0-2). Liver tissues used for Oil Red O

(ORO) staining were frozen and embedded in optimal cutting

temperature compound (OCT, SAKURA Tissue-Te, America),

which were sectioned into 10 µm slices, stained with ORO and

counter-stained with hematoxylin. The areas of liver ORO staining
Frontiers in Cellular and Infection Microbiology 03
were morphologically analyzed using a StrataFAXS II image analysis

system (Strata FAXS II, Vienna, Austria).
ELISA assay

Hepatic levels of proinflammatory cytokines such as tumor

necrosis factor a (TNF-a, batch number: ml002859-2), interleukin

6 (IL-6, batch number: ml102828-2), and interleukin 1b (IL-1b, batch
number: ml003057-2) were measured using enzyme-linked

immunosorbent assay (ELISA) kit (Shanghai Enzyme-linked

Biotechnology Co., Ltd, Shanghai, China), according to the

manufacturer’s protocol.
The 16S rRNA sequencing study

The 16S rRNA of fecal samples was sequenced by Metabo-Profile

Biotechnology (Shanghai) Co., Ltd. (Shanghai, China), following the

manufacturer’s procedures. Briefly, total genomic DNA was extracted

using the OMEGA Soil DNA Kit (M5635-02) (Omega Bio-Tek,

Norcross, GA, USA). The quantity and quality of extracted DNAs

were measured using a NanoDrop NC2000 spectrophotometer

(Thermo Fisher Scientific, Waltham, MA, USA) and agarose gel

electrophoresis, respectively. PCR amplification of the V3–V4

regions of bacterial 16S rRNA genes was then conducted. PCR

amplicons were purified with Vazyme VAHTSTM DNA Clean

Beads (Vazyme, Nanjing, China) and quantified using the Quant-iT

PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA, USA). After

the individual quantification step, amplicons were pooled in equal

amounts, and paired-end 2×250 bp sequencing was performed using

the Illumina NovaSeq platform with the NovaSeq 6000 SP Reagent

Kit (500 cycles; Illumina, San Diego, CA, USA).

The sequence data were processed using QIIME2 according to

previously described methods (Gupta et al., 2022). Briefly, raw

sequence data were demultiplexed, quality filtered, denoised,

merged, and chimera removed. Non-singleton amplicon sequence

variants (ASVs) were aligned to construct a phylogeny. Taxonomy

was assigned to ASVs using the classify-sklearn naiïve Bayes

taxonomy classifier against the SILVA Release 138 Database (Gupta

et al., 2022). Alpha diversity indices, including the Chao1 richness

estimator, Shannon diversity index, and Simpson index were

calculated and visualized as box plots. Un-weighed principal

coordinate analysis (PCoA) and the unweighted pair-group method

with arithmetic means (UPGMA) system clustering tree for beta

diversity were performed to investigate the structural variation and

similarity of microbial communities across samples. The relative

abundance of taxonomy at the genus level was visualized as a bar

chart using R software (R Foundation for Statistical Computing,

Vienna, Austria). Metastats analysis with p values less than 0.05

was used to identify significantly changed microbiota between groups.

A Venn diagram was performed to obtain overlapped microbiota

between pairwise compared groups (NASH vs. Control and LGZG vs.

NASH), and a hierarchical cluster was used to reveal changing

patterns of microbiota among groups and to identify LGZG

reversed microbiota.
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Metabolomics study

Metabolomics analyses of fecal samples were performed by

Metabo-Profile Biotechnology (Shanghai) Co., Ltd. (Shanghai,

China), following the manufacturer’s instructions. Feces samples

were thawed on an ice bath, about 5mg of each lyophilized sample

was weighed and transferred to a new 1.5 mL tube. Then, 25 mL of

water was added, and the sample was homogenized with zirconium

oxide beads for 3 minutes, then 120 mL of methanol containing an

internal standard was added to extract the metabolites. The sample

was homogenized for another 3 minutes and then centrifuged at

18000 g for 20 minutes. A total of 20 mL of supernatant was

transferred to a 96-well plate. The following procedures were

performed using an Eppendorf epMotion Workstation (Eppendorf

Inc., Hamburg, Germany). A total of 20 mL of freshly prepared

derivative reagents was then added to each well. The plate was

sealed and derivatization was conducted at 30°C for 60 min. After

derivatization, 330 mL of an ice-cold 50% methanol solution was

added to dilute the sample. Then the plate was stored at -20°C for 20

minutes, followed by 4000g centrifugation at 4°C for 30 minutes. A

total of 135 mL of supernatant was then transferred to a new 96-well

plate with 10 mL internal standards in each well. Serial dilutions of

derivatized stock standard were added to the left wells.

Ultra-performance liquid chromatography coupled to tandem

mass spectrometry (UPLC-MS/MS) system (ACQUITY UPLC-

Xevo TQ-S, Waters Corp., Milford, MA, USA) was used to quantify

all targeted metabolites. The following were the instrument settings.

Column: ACQUITY UPLC BEH C18 1.7 µM Van Guard pre-column

(2.1×5 mm) and ACQUITY UPLC BEH C18 1.7 µM analytical

column (2.1×100 mm); column temperature is 40°C. The mobile

phase consisted of distilled water containing 0.1% formic acid (A) and

70% acetonitrile-30% isopropanol (B). The following gradient

conditions were used: 0-1.0 min, 5% B; 1.0-11.0 min, 5% B - 78%

B; 11.0-13.5 min, 78% B - 95% B; 13.5-14.0 min, 95% B - 100% B;

14.0-16.0 min, 100% B; 16.0-16.1 min, 100% B - 5% B; 16.1-18.0 min,

5% B; flow rate (mL/min):0.40; and injection volume (µL):5.

Additionally, the analytical quality control experiments were

performed according to previously described methods (Xie et al.,

2021). The pooled QC samples were prepared by mixing aliquots of

the study samples such that the pooled samples broadly represented

the biological average of the whole sample set. The QC samples for

this project were prepared with the test samples and injected at

regular intervals (after every 10-14 test samples for LC-MS)

throughout the analytical run to ensure a consistently high quality

of analytical results. All the QC samples, calibrators, and blank

samples were analyzed across the entire sample set to diminish

analytical bias.

The raw data files generated by UPLC-MS were processed using

the MassLynx software (v4.1, Waters, Milford, MA, USA) to perform

peak integration, calibration, and quantitation for each metabolite.

Multivariate statistical analyses, including principal component

analysis (PCA) and orthogonal partial least square discriminant

analysis (OPLS-DA), were performed using SIMCA software

(version 14.1). Besides, a 200-times permutation was conducted to

validate the OPLS-DA model against over-fitting, and variable

influence on projection (VIP) values of each metabolite in the

OPLS-DA model was calculated. For univariate statistical analyses,
Frontiers in Cellular and Infection Microbiology 04
a t-test or Wilcoxon test was performed to calculate p values. Finally,

VIP>1 and p<0.05 were used to identify significantly changed

metabolites between groups. A Venn diagram was performed to

obtain overlapped metabolites between pairwise compared

groups (NASH vs. Control and LGZG vs. NASH), and hierarchical

clustering was used to identify the changing patterns of metabolites

among groups and to identify LGZG reversed metabolites.

Enrichment analyses of reversed metabolites were performed using

MetaboAnalyst online tools.
Statistical analysis

The measurement data were shown as the mean ± standard

deviation (SD), and all data were statistically analyzed by one-way

analysis of variance (ANOVA) followed by independent-sample-t-

test using GraphPad Prism 8.4.2 (GraphPad, San Diego, CA, USA).

Spearman rank correlation was performed among LGZG reversed gut

microbiota, fecal metabolites, and NASH indexes. A value of p <0.05

was considered statistically significant.
Results

LGZG improved serum AST, ALT, and liver
TG in NASH

To evaluate the effect of LGZG on NASH, we constructed the

MCD diet-induced NASH model. MCD diet-fed rats were then

treated with either LGZG or vehicle for four weeks. Compared to

the Control group, the NASH group showed a significant decrease in

body weight and an increase in liver index (the ratio of liver weight to

body weight), serum ALT and AST levels. In addition, MCD feeding

significantly elevated liver TG content while decreasing liver TC

content in rats. After four weeks of LGZG intervention, serum AST,

ALT, and liver TG levels were significantly decreased in MCD diet-fed

rats. However, body weight and liver index were not significantly

changed after the decoction intervention (Figure 1).
LGZG improved lipid droplets, steatosis, and
inflammation in NASH

To observe the effects of LGZG on liver histological changes in

NASH, a histopathological examination was performed. As shown in

Figure 2, H&E and ORO staining revealed that steatosis,

inflammation, and lipid droplets were increased in the MCD diet-

induced NASH rats compared with the Control group, which were

partially restored by LGZG. Moreover, the inflammation score and

NAS score were significantly higher in the NASH than in the Control

group, which were significantly lowered by LGZG intervention. The

ORO staining areas of the LGZG group were reduced by nearly 1/3

compared with the NASH group (average 64.8% to 43.1%).

Meanwhile, the level of liver proinflammatory cytokine IL-1b was

significantly increased in NASH rats, while IL-1b, IL-6, and TNF-a
levels were significantly decreased by the LGZG.
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LGZG partially restored the perturbation of
gut microbiota in NASH

The 16S rRNA sequencing was used to investigate the effect of

LGZG on gut microbiota in MCD diet-induced NASH rats. The a-
diversity indexes including Chao1, Shannon, and Simpson were used
Frontiers in Cellular and Infection Microbiology 05
to determine the ecological diversity within the microbial community.

As shown in Figure 3A, there were decreased trends of Chao1,

Shannon, and Simpson in the NASH group compared with the

Control group; however, there was no significant difference among

the Control, NASH, and LGZG groups. To investigate structural

variations of microbial communities across samples, PCoA of b-
B C

D E F

A

FIGURE 1

LGZG improved serum AST, ALT and liver TG in NASH. (A) Body weight (g), (B) Liver index, the ratio of liver weight to body weight (%). Livers were
isolated and washed with normal saline at the end of the experiment. Livers were weighed and the liver index was calculated. (C) Serum AST (U/L), (D)
Serum ALT level (U/L), (E). Liver TG level (mmol/g), and (F). Liver TC level (mmol/g). Serum ALT, AST and liver TG, TC levels were measured using an
automatic biochemical analyzer. The green bar represents the Control group, the blue bar represents the NASH group, and the yellow bar represents the
LGZG group (n = 6 per group). Data are expressed as the mean ± SD (*p < 0.05; **p < 0.01).
B C

D

E

A

FIGURE 2

LGZG improved lipid droplets, steatosis and inflammation in NASH. (A) Hemoxylin & Eosin staining in liver section in the Control, NASH, and LGZG
groups, respectively. The red arrow indicates macro-vesicular steatosis, and the blue arrow indicates interlobular inflammation (magnification, ×200). (B)
Oil Red O staining in the Control, NASH, and LGZG groups, respectively (magnification, ×200). (C) NAFLD activity score (NAS Score) including steatosis,
inflammation, and ballooning scores. (D) The Oil Red O staining area; data are expressed as the means ± SD (*p <0.05). (E) The expressions of pro-
inflammatory cytokines IL-1b, TNFa, and IL-6 by ELISA (pg/mL). Data are presented as the mean ± SD (*p < 0.05; ** p<0.01; ***p < 0.001).
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diversity was performed. The results revealed that there were distinct

separations, which indicated that there might be different

compositions of gut microbiota among the control, NASH, and

LGZG groups (Figure 3B). Furthermore, UPGMA analysis revealed

that the composition of gut microbiota was similar within the same

group and different among groups (Figure 3C). To reveal the different

compositions, the relative abundances of gut microbiota at the genus

level were compared across samples in the three groups. As shown in

Figure 3D, the relative abundances of many microbiotas at the genus

level were different among the Control, NASH, and LGZG groups.

For example, the relative abundance of Lactobacillus accounted for

more than 40% of gut microbiota in the Control group, which

decreased to about 5% in the NASH group and was restored to

about 10% in the LGZG group.

To identify the significantly changed microbiota at the genus level

among groups, Metastats analyses with values of p < 0.05 were

performed. The results revealed 26 significantly changed genera

(such as Ruminococcus_1, Peptococcus, Lactococcus, etc.) between

the NASH and Control groups, and 51 significantly changed genera

(such as Eisenbergiella, Intestinimonas, Allobaculum, etc.) between the

LGZG and NASH groups. The 10 representatives significantly

changed genera were shown in Figures 4A, B, and the detailed

information of all significantly changed genera was listed in

Tables 1, 2, and Supplemental Table 1. Besides, a Venn diagram

was used to identify overlapped genera between the pairwise groups

(NASH vs. Control and LGZG vs. NASH), with a total of 13 genera

being identified (Figure 4C). Furthermore, hierarchical clustering was

then used to identify the microbial changed patterns among groups

and to identify LGZG reversed genera. As shown in Figure 4D, 11
Frontiers in Cellular and Infection Microbiology 06
genera exhibited an opposite pattern between NASH vs. Control and

LGZG vs. NASH, including Ruminococcus_1, A2, Odoribacter,

Harryfl in t ia , Peptococcus , Ruminococcaceae_UCG-004 ,

Butyricimonas, Prevotellaceae_Ga6A1_ group, Prevotellaceae_UCG-

001 , Rikene l l a c eae_RC9_gu t_g roup , and uncu l tu r ed_

bacterium_o_Rhodospirillales. For example, the relative abundances

of Ruminococcus _1, Odoribacter, and Butyricimonas were increased

in NASH, which was decreased after LGZG treatment. Together, the

results indicated that LGZG might partially reverse the change of 11

genera in NASH.
LGZG partially restored the alteration of
fecal metabolites in NASH

UPLC-MS was used to profile fecal metabolites across the

Control, NASH, and LGZG -intervened groups. Multivariate and

univariate statistical analyses were performed to identify significantly

changed metabolites among groups. As shown in Figures 5A, B, both

PCA and OPLS-DA models revealed that there were distinct

separations among the Control, NASH, and LGZG groups, which

indicated that profiles of metabolites exhibited different patterns

among the three groups. In addition, PCA and OPLS-DA models

for two pairwise groups (NASH vs. Control and LGZG vs. NASH)

also revealed good separations (Figures 5C–F). To validate the OPLS-

DA model against overfitting, two hundred times permutation tests

were performed. As shown in Figure 6A, the results suggested good

reliability of the OPLS-DA model for the Control and NASH groups

with R2= (0.0,0.75), and Q2= (0.0, -0.174). Moreover, the results
B
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FIGURE 3

Effect of the LGZG on diversity and composition of gut microbiota. (A) Alpha-diversity analysis with Chao 1, Simpson, and Shannon indexes; the p values
were calculated using the Kruskal-Wallis test for three group comparisons, (B) Principal coordinate analysis (PCoA) among the Control, NASH, LGZG
groups, n=6 individuals/group, (C) UPGMA tree of three groups. A1, A2, A10, A39, A64, and A69 represent samples in the Control group, A4, A28, A35,
A49, A58, and A71 represent samples in the NASH group, and A6, A8, A13, A17, A21, and A57 represent samples in the LGZG group. The bars in different
colors represent different taxa at genus levels, (D) The relative abundances of gut microbiota at genus levels in the Control, NASH, and LGZG groups; the
X-axis represents different groups and the Y-axis represents the relative abundance (%), while bars in different colors represent different taxa at genus
levels.
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(Figure 6B) also suggested the good quality of the OPLS-DA model

for the LGZG and NASH groups with R2= (0.0,0.746), and Q2= (0.0,

-0.364). Furthermore, VIP values of each metabolite were obtained in

OPLS-DA models (Figures 6C, D).

With VIP>1 and p <0.05, we obtained a total of 99 significantly

changed metabolites (such as tyrosine, pyruvic acid, TDCA, etc.)

between the NASH and Control groups, and 109 significantly

changed metabolites (such as valeric acid, TCA, valine, etc.)

between the LGZG and NASH groups. The detailed information

was listed in Supplemental Tables 2 and 3, respectively. Using a Venn

diagram (Figure 7A), 58 overlapped metabolites (such as DCA,

TDCA, isocaproic acid, etc.) were obtained between pairwise groups

(NASH vs. Control and LGZG vs. NASH), with the detailed

information listed in Table 3. Moreover, hierarchical clustering

revealed that 57 metabolites exhibited opposite patterns between

pairwise groups (Figure 7B). For example, DCA and TDCA levels

in NASH rats were higher than in the control group but were lowered

by LGZG- intervention. Isocaproic acid was lower in the NASH group

compared with the Control group, but it was increased by LGZG

decoction intervention. The results indicated that LGZG decoction

might reverse the alteration of metabolites in MCD diet-induced

NASH. Furthermore, the 57 reversed metabolites were classified and

subjected to enrichment analysis. The results revealed that most of the

metabolites were amino acids, bile acids, and organic acids

(Figure 7C, Supplemental Table 5), which were enriched in many
Frontiers in Cellular and Infection Microbiology 07
Kyoto Encyclopedia and Genes and Genomes (KEGG) pathways such

as glutathione metabolism, glucose-alanine cycle, glycine and serine

metabolism, etc. (Figure 7D).
Gut microbiota and metabolites restored by
LGZG were correlated with NASH indexes

To examine the relationships among LGZG-restored gut

microbiota, fecal metabolites, and NASH indexes, Spearman’s

correlation analyses were performed. The results revealed that most

of the LGZG restored gut microbiota and its metabolites were

significantly correlated with NASH indexes (Figures 8A, B). For

example, the fecal metabolites oleylcarnitine and isoDCA were

positively correlated with liver TG, NAS score, serum AST and

ALT, and TDCA was positively correlated with liver TG, NAS

score, and serum ALT; whereas, valine and alanine were negatively

correlated with liver TG, NAS score, serum AST and ALT. In

addition, the gut microbiota Prevotellaceae_ Ga6A1_group, A2,

and Butyricimonas were positively correlated with the NAS score,

serum AST and ALT. Interestingly, we also observed that most of the

LGZG-restored gut microbiota were significantly correlated with

LGZG -restored fecal metabolites (Figure 8C). For example,

Ruminococcus_1, Odoribacter, and Peptococcus were positively

correlated with some bile acids such as DCA, TDCA, TCA, etc., but
B

C D

A

FIGURE 4

Significantly altered gut microbiota on the genus level among groups. (A). The 10 representatives significantly changed genera between the Control and
NASH groups; the X-axis represents relative abundance and Y-axis represents the genus name, (B). The 10 representatives significantly changed genera
between the NASH and LGZG groups; the X-axis represents relative abundance and the Y-axis represents the genus name, (C). Venn diagram between
pairwise groups (NASH vs. Control and LGZG vs. NASH), (D). Hierarchical cluster of overlapped microbiotas between pairwise groups (NASH vs. Control
and LGZG vs. NASH); the red color indicates up-regulated microbiota and the green color indicates down-regulated microbiota.
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negatively correlated with other fecal metabolites such as alanine,

asparagine, glutamic acid, etc. The results indicated that LGZG might

improve NASH partially by modulating gut microbiota and

correlated metabolites.
Frontiers in Cellular and Infection Microbiology 08
Discussion

The effect of LGZG on NASH and its underlying mechanisms

remained unclear. In the present study, MCD diet-induced NASH and
TABLE 1 Significantly changed gut microbiota between NASH and control groups.

genus name Log2(fold change) p value

Harryflintia 4.056 0.000

Ruminococcus_1 3.711 0.000

Odoribacter 2.612 0.001

A2 2.731 0.001

Ruminococcaceae_UCG-007 -3.188 0.001

Prevotellaceae_Ga6A1_group 7.335 0.002

Faecalibaculum 6.388 0.003

uncultured_bacterium_f_Family_XIII -1.934 0.004

Butyricimonas 1.448 0.004

Family_XIII_UCG-001 -3.431 0.007

Clostridium_sensu_stricto_1 2.284 0.007

Rikenellaceae_RC9_gut_group 5.794 0.009

Ruminococcaceae_UCG-004 1.490 0.010

Lactobacillus -2.543 0.017

uncultured_bacterium_o_Rhodospirillales 3.414 0.018

Ruminococcus_2 -6.754 0.019

Bacteroides 1.217 0.025

Ruminococcaceae_UCG-014 -2.291 0.027

Pygmaiobacter -2.964 0.031

[Eubacterium]_xylanophilum_group -4.109 0.031

Lactococcus -7.412 0.033

Alloprevotella 4.866 0.038

Prevotellaceae_UCG-001 -3.389 0.039

Ruminiclostridium_6 -7.258 0.040

uncultured_bacterium_o_Mollicutes_RF39 -8.589 0.050

Peptococcus 1.444 0.050
fron
TABLE 2 Significantly changed gut microbiota between LGZG and NASH groups.

genus name Log2(fold change) p value

Ruminococcaceae_UCG-009 -2.594 0.000

Ruminococcaceae_UCG-010 -2.380 0.000

Ruminococcus_1 -5.777 0.000

A2 -5.032 0.000

Tyzzerella -3.987 0.000

Odoribacter -3.213 0.001

uncultured_bacterium_o_Clostridiales -3.763 0.001

(Continued)
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TABLE 2 Continued

genus name Log2(fold change) p value

Ruminiclostridium -5.492 0.001

Harryflintia -2.362 0.001

Ruminococcaceae_UCG-004 -4.285 0.001

Anaerovorax -3.953 0.001

uncultured_bacterium_f_Lachnospiraceae -1.988 0.001

Allobaculum 3.786 0.001

uncultured_bacterium_f_Ruminococcaceae -2.160 0.001

Ruminiclostridium_9 -2.413 0.002

Blautia 5.195 0.002

GCA-900066225 -1.843 0.003

uncultured_bacterium_f_Christensenellaceae 2.342 0.003

Faecalibaculum 2.687 0.004

Microcystis_PCC-7914 -2.161 0.004

Prevotellaceae_Ga6A1_group -3.362 0.005

Oscillibacter -2.186 0.006

uncultured_bacterium_f_Erysipelotrichaceae 1.354 0.006

Lachnospiraceae_FCS020_group -1.626 0.006

Christensenellaceae_R-7_group -1.459 0.006

GCA-900066575 -2.465 0.007

Eubacterium 8.232 0.007

Peptococcus -2.313 0.008

Intestinimonas -3.635 0.008

Aerococcus 4.182 0.008

Butyricimonas -1.209 0.010

Lachnospiraceae_NK4A136_group -4.472 0.011

[Eubacterium]_xylanophilum_group -6.192 0.012

[Ruminococcus]_torques_group 7.897 0.012

Lachnospiraceae_UCG-006 -2.046 0.012

Prevotellaceae_UCG-001 4.190 0.014

Rikenellaceae_RC9_gut_group -4.185 0.015

Adlercreutzia 1.263 0.018

Klebsiella -1.304 0.021

Coriobacteriaceae_UCG-002 4.985 0.021

Dubosiella 2.617 0.022

Alistipes -1.490 0.023

uncultured_bacterium_o_Rhodospirillales -2.683 0.033

Defluviitaleaceae_UCG-011 1.126 0.035

Ruminiclostridium_5 -1.818 0.035

Ruminococcaceae_UCG-005 -2.025 0.036

UBA1819 1.956 0.036

(Continued)
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LGZG-intervenedmodelswereconstructed toevaluate theeffectsofLGZG

on NASH. Gut microbiota and metabolites in fecal samples were profiled

to uncover the mechanisms from the perspective of gut microbiota. Our

results suggested that LGZG might improve NASH partially by

modulating gut microbiota and correlated metabolites Figure 9.

Accumulating evidence has demonstrated that gut microbiota

perturbation plays an important role in the progression of NAFLD/

NASH, so the restoration of the gut microbiota may be of therapeutic

benefit for some of the diseases (Chen and Vitetta, 2020). TCMs have

multi-targets, multi-channels, and multi-component synergistic

actions, which have been widely used for the treatment of NAFLD/

NASH for a long time (Liu et al., 2017). Emerging evidence has

reported that gut microbiota might be therapeutic targets of TCMs in

treating NAFLD/NASH (Han et al., 2021; Hu et al., 2021). In the

present study, we identified 11 gut genera that might be therapeutic
Frontiers in Cellular and Infection Microbiology 10
targets of LGZG in treating NASH, including Ruminococcus_1, A2,

Odoribacter, Harryflintia, Peptococcus, Ruminococcaceae _UCG-004,

Butyricimonas, Prevotellaceae_Ga6A1_group, Prevotellaceae_UCG-

001 , Rikene l l a c eae_RC9_gu t_g roup , and uncu l tu r ed_

bacterium_o_Rhodospirillales. It is noted that several identified

genera have been implicated in NAFLD/NASH. Odoribacter has

been reported to be correlated with fibrosis in choline-deficient,

high-fat-diet-induced NASH mice (Yamamoto et al., 2021), and

showed a significantly higher abundance in high-fat-diet-induced

NAFLD mice (Hu et al., 2022). In the present study, we observed

that the relative abundance of Odoribacter was increased in MCD

diet-induced NASH, which was decreased by LGZG intervention. In

addition, accumulating evidence suggested that Ruminococcaceae

might play a key role in the progression of NAFLD/NASH. Lee

et al. reported that Ruminococcaceae and Veillonellaceae might be the
B

C D

A

E F

FIGURE 5

PCA and OPLS-DA plots across groups. (A) PCA plots among the Control, NASH and LGZG groups, (B) OPLS-DA plots among the Control, NASH and
LGZG groups, (C) PCA plots between the Control and NASH groups, (D) OPLS-DA plots between the Control and NASH groups, (E) PCA plots between
the LGZG and NASH groups, (F) OPLS-DA plots between the LGZG and NASH groups; red dots indicated samples in the Control group, blue dots
indicated samples in the NASH group and green dots indicated samples in the LGZG group.
TABLE 2 Continued

genus name Log2(fold change) p value

Parvibacter 2.434 0.038

Muribaculum 2.846 0.039

Parasutterella 2.789 0.044

Eisenbergiella 3.945 0.046
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FIGURE 6

Validation model of OPLS-DA and VIP values. (A) The validation model of OPLS-DA for the NASH and Control groups, green dots represented R2 and
blue squares represented Q2, (B) The validation model of OPLS-DA for LGZG and NASH groups, green dots represented R2 and blue squares
represented Q2, (C) VIP values of OPLS-DA for the NASH and Control groups, X-axis represented names of metabolites and Y-axis represented VIP
values, (D) VIP values of OPLS-DA for the NASH and Control groups, X-axis represented names of metabolites and Y-axis represented VIP values.
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FIGURE 7

Significantly changed metabolites among groups and enrichment analysis. (A) Venn diagram between the two pairwise groups (NASH vs. Control and
LGZG vs. NASH) overlapped 58 significant changed metabolites, (B) The heatmap showed the cluster analysis of 58 overlapping metabolites; the red
color indicated up-regulated metabolites and the green color indicated down-regulated metabolites, (C) 57 LGZG-restored metabolites were grouped
into 13 classes, the X-axis represented the number of changed metabolites in the same class and the Y-axis represented different classes, (D) Enrichment
analysis of KEGG pathway for 57 LGZG-restored metabolites, the X-axis represented p value, and the Y-axis represented the name of pathway, the size
of the dots represented different enrichment ratios and the color represented the different p values.
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TABLE 3 58 overlapped significantly changed metabolites between pairwise groups (NASH vs. Control and LGZG vs. NASH).

Metabolite NASH vs. Control log2(fold change) p value LGZG vs. NASH log2(fold change) p value

12-Hydroxystearic acid -1.519 0.015 -1.082 0.041

2,2-Dimethylsuccinic acid -3.996 0.029 4.104 0.073

2-Hydroxy-2-methylbutyric acid -3.917 0.005 3.044 0.005

2-Hydroxy-3-methylbutyric acid -4.393 0.002 6.487 0.002

2-Hydroxybutyric acid -4.700 0.004 5.563 0.002

2-Methy-4-pentenoic acid -1.979 0.000 1.751 0.002

3,4-Dihydroxyhydrocinnamic acid -2.367 0.001 4.309 0.065

3-Hydroxyphenylacetic acid -4.606 0.002 1.516 0.002

3-Methyl-2-oxopentanoic acid -3.308 0.002 2.423 0.009

5-Aminolevulinic acid -2.351 0.002 2.537 0.002

Acetylglycine -2.246 0.002 2.280 0.002

Alanine -2.142 0.002 2.087 0.000

alpha-Ketoisovaleric acid -3.498 0.002 2.951 0.004

Aminocaproic acid -2.941 0.002 1.229 0.015

Asparagine -5.895 0.017 10.477 0.004

Citrulline -2.351 0.002 0.769 0.065

Coumaric acid/4-Hydroxycinnamic acid -3.891 0.002 5.455 0.002

DCA 1.625 0.004 -1.984 0.003

Dimethylglycine -3.647 0.002 2.679 0.009

Gallic acid -1.208 0.005 1.414 0.026

gamma-Glutamylalanine -8.268 0.004 8.356 0.004

GCDCA 6.696 0.013 -4.716 0.026

GDCA 5.115 0.005 -7.027 0.013

GHDCA 2.438 0.002 -3.320 0.009

Glutaconic acid -2.575 0.002 3.025 0.004

Glutamic acid -1.940 0.002 1.579 0.009

Glutaric acid -4.877 0.002 3.276 0.002

Homocitrulline -1.585 0.002 1.332 0.002

Homovanillic acid -4.701 0.005 6.089 0.019

Imidazolepropionic acid -3.935 0.004 4.875 0.002

Indole-3-carboxylic acid -2.009 0.041 1.845 0.015

Isocaproic acid -1.436 0.002 0.823 0.010

isoDCA 1.932 0.009 -1.281 0.026

Ketoleucine -3.001 0.002 2.527 0.015

Methylsuccinic acid -3.758 0.002 2.282 0.002

N-Acetyalanine -1.236 0.004 2.163 0.004

N-Acetyaspartic acid -2.641 0.009 3.978 0.002

N-Acetylneuraminic acid -2.221 0.004 2.152 0.002

N-Acetylserine -4.742 0.002 4.083 0.002

NorDCA 3.286 0.002 -3.310 0.002

(Continued)
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main microbiota associated with fibrosis severity in non-obese

NAFLD patients, and Ruminococcaceae was gradually depleted with

worsening fibrosis severity (Lee et al., 2020). However, other

researchers found that the abundance of Ruminococcus was

significantly elevated in NASH patients with severe fibrosis

(Boursier et al., 2016). These inconsistent results might be due to

different subjects observed in the studies. An animal study revealed

that the relative abundance of Ruminococcaceae was elevated in high

fat diet-induced NAFLD rats, and a TCM formula called Shugan

Xiaozhi decoction exerted beneficial effects in treating NAFLD with

decreased abundance of Ruminococcaceae and other gut microbiota

(Yang et al., 2022). Interestingly, we also noticed similar results in the

present study. The relative abundances of Ruminococcaceae_UCG-

004 and Ruminococcus_1 were elevated in MCD diet-induced NASH,

which was decreased by LGZG intervention. These results indicated

that the gut microbiota reversed by LGZG might play an important

role in treating NASH. Further investigation of specific genera may

identify novel therapeutic targets for NASH.

Besides the changes in gut microbiota, many metabolites

produced by different gut microbiota have emerged as important

factors in modulating the pathological process of metabolic diseases

(Ji et al., 2019; Duttaroy, 2021; Jia et al., 2021). In the present study, we

identified several fecal metabolites including bile acids (BAs), amino

acids (AAs), short-chain fatty acids (SCFAs), etc. It is known that BAs

may regulate multiple physiological and pathological processes,

implicating a role in the progression of NAFLD/NASH (Arab et al.,

2017; Ji et al., 2019; Fiorucci et al., 2020). In the intestine, primary BAs

are deconjugated and dehydroxylated by gut microbiota to main

secondary BAs, including deoxycholic acid (DCA) and lithocholic
Frontiers in Cellular and Infection Microbiology 13
acid (LCA) (Chow et al., 2017). A previous study reported that

sucralose consumption increased the abundance of Bacteroides and

Clostridium, which produced DCA accumulation in the feces, serum,

and liver, and hepatic DCA led to sucralose-induced NAFLD in mice

(Shi et al., 2021). Jiao, et al. reported that farnesoid X receptor

antagonist DCA was increased, while agonist CDCA was decreased

in NAFLD (Jiao et al., 2018). Another study reported that patients

with NASH and clinically significant fibrosis had higher serum DCA

levels when compared with healthy volunteers (Smirnova et al., 2022).

In addition, taurodeoxycholate (TDCA) and glycodeoxycholate

(GDCA) which belong to conjugated 12a-hydroxylated (12a-OH)

BAs, have been reported to be significantly elevated in NAFLD/NASH

patients. A clinical study reported that GDCA were significantly

positively associated with HOMA-IR individually (Ginos et al.,

2018), and TDCA inhibits various inflammatory responses

suggesting potential clinical application (Choi et al., 2021). TDCA

and GDCA administration promoted liver fibrosis in mice (Xie et al.,

2021). The findings of the previous studies were partly consistent with

our results. Here, we reported that fecal BAs, including DCA, TDCA,

and GDCA, were significantly elevated in MCD diet-induced NASH

rats, which were decreased by LGZG. However, the in-depth

mechanisms of identified metabolites in treating NASH need

further investigation, which may find novel therapeutic approaches

to NASH.

Accumulating studies have demonstrated that amino acids might

play a role in the process of NAFLD/NASH, but the relationship

hasn’t been elucidated. It is reported that dysregulation of amino acids

and choline contributed to lipid accumulation and chronic

inflammation in NAFLD (Chen and Vitetta, 2020). A study
TABLE 3 Continued

Metabolite NASH vs. Control log2(fold change) p value LGZG vs. NASH log2(fold change) p value

Norleucine -1.928 0.002 0.912 0.065

N-Phenylacetylphenylalanine -1.141 0.009 1.408 0.007

Oleylcarnitine 3.209 0.004 -0.990 0.091

Palmitoleic acid 1.037 0.044 -1.731 0.004

Phthalic acid -1.243 0.002 0.605 0.065

Pyroglutamic acid -2.116 0.002 1.731 0.002

Pyruvic acid -3.672 0.002 5.290 0.002

Ribulose -2.650 0.004 2.780 0.004

Salicyluric acid -2.801 0.000 3.317 0.002

Shikimic acid -2.703 0.015 4.066 0.002

Stearylcarnitine 1.483 0.009 -0.892 0.091

TCA 4.139 0.002 -6.419 0.029

TDCA 2.666 0.002 -2.581 0.004

THDCA 2.709 0.009 -3.981 0.041

Threonine -1.526 0.002 1.004 0.002

Tryptophan -1.138 0.009 1.429 0.009

Valine -2.325 0.002 1.059 0.004

Xylulose -2.777 0.002 2.754 0.004
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revealed that dietary essential amino acids ameliorated hepatic

steatosis by inducing polyubiquitination of Plin2 in NAFLD mice

(Zhang et al., 2022). Another study reported that plasma

concentration of several amino acids (including branched-chain

and aromatic amino acids) was altered in NAFLD, and the

alteration of specific amino acids (such as alanine, glutamate and

glycine) might be used for early detection of NAFLD (Trico et al.,

2021). Meanwhile, gut microbiota modulated amino acid metabolism

have been implicated in NAFLD/NASH. Latest study revealed that

targeting keystone species (P. loveana, A. indistinctus, and D.

pneumosintes) helps restore the dysbiosis of butyrate-producing

bacteria, lead to enhance the AAs synthesis and reduce AAs

consumptions in NAFLD (Wu et al., 2022). In the present study,

we noted a batch of amino acids (including glutamic acid, tryptophan,

valine, etc.) and their correlated gut microbiota were altered in NASH

and restored by LGZG intervention. Besides, KEGG pathway analysis

showed that 57 significantly altered metabolites were mainly enriched

in amino acid metabolic pathways, such as glutathione metabolism,

glycine and threonine metabolism, and tryptophan metabolism.

Glutathione (GSH) is a tripeptide thiol antioxidant composed of the

amino acid glutamic acid, cysteine, and glycine, which can modulate

cell proliferation, apoptosis, immune function, and treat liver diseases

(Mari et al., 2020). A clinical study recently examined the therapeutic
Frontiers in Cellular and Infection Microbiology 14
effects of oral administration of GSH in patients with NAFLD. After 4

months of treatment with GSH, patients showed a significant decrease

in ALT levels, as well as a decrease in triglyceride, non-esterified fatty

acid and ferritin levels, suggesting a potential therapeutic effect of oral

GSH in patients with NAFLD (Honda et al., 2017). Impaired glycine

biosynthesis was observed in NASH patients and mouse models

resulting in increased hyperlipidemia and steatohepatitis, along with

mitochondrial dysfunction and inhibition of fatty acid b-oxidation
(FAO). However, glycine-based compounds improved FAO pathway,

stimulated the new GSH synthesis, improved the gut microbiota

diversity and steatohepatitis via targeting NF-kB and TGFb (Alves

et al., 2019; Rom et al., 2020). Glutamic acid is also involved in the

synthesis of glutathione (GSH), which can combat oxidative stress,

and reduce the release of inflammatory cytokines in diet-induced

NAFLD animals (Lin et al., 2014). Consistently, we observed that

glutamic acid was lowered in NASH and restored by LGZG decoction,

and its negatively correlated gut microbiota (such as Butyricimonas

and Odoribacter) was increased in NASH and decreased by LGZG.

Besides, valine was reported to improve liver diacylglycerols, and

reduce NASH histology with profound hepatoprotective effects on

oxidative stress and inflammatory proteins (Gart et al., 2022).

However, another study reported that high levels of valine could

decrease gut microbiota (such as Fusobacteriota and Deferribacterota)
B
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FIGURE 8

Spearman’s correlation analysis among LGZG reversed gut microbiota, fecal metabolites, and NASH indexes. (A) Correlation between LGZG reversed
fecal metabolites and NASH indexes, the X-axis represented metabolites, and the Y-axis represented NASH indexes, (B) Correlation between LGZG
reversed gut microbiota and NASH indexes, the X-axis represented gut microbiota, and the Y-axis represented NASH indexes, (C) Correlation between
LGZG reversed metabolites and gut microbiota, the X-axis represented metabolites, and the Y-axis represented gut microbiota, the red color showed the
positive correlation, and the green color showed the negative correlation, *p < 0.05, **p < 0.01, ***p < 0.001.
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abundances and revealed the adverse metabolic response to NAFLD,

which suggested reducing dietary valine as a new approach to

preventing NAFLD of laying hens (Jian et al., 2021). Here, we

reported that amino acid valine was lowered in NASH and restored

by LGZG. We also noticed that gut microbiota Prevotellaceae_UCG-

001 which was positively correlated with valine, was decreased in

NASH and increased by LGZG. Additionally, another amino acid

tryptophan was reported to ameliorate fructose-fed NAFLD mice

(Ritze et al., 2014). Tryptophan could be metabolized to indole by

tryptophanase, which is produced by gut microbiota such as

Prevotella , Bacteroides and Escherichia (Jin et al., 2014).

Furthermore, indole and indole derivatives have been shown to

have anti-inflammatory effects (Beaumont et al., 2018). Alterations

of metabolites in the tryptophan pathway have been implicated in

various inflammation related diseases such as cancer, inflammatory

bowel diseases, and cardiovascular diseases (Sofia et al., 2018). A

study reported that indole supplementation ameliorated MCD-

induced NASH in mice (Zhu et al., 2022). These results indicated

that tryptophan and its metabolites might exert a protective role in

NAFLD/NASH. Our results were partly consistent with these

findings. In the present study, we observed that tryptophan was

decreased in NASH rats and restored by LGZG, and several

correlated microbiotas such as Prevotellaceae_UCG-001 were

altered. The role of these metabolites and its correlated gut

microbiota in NASH is worthy of further investigation. In all, our

findings suggested that LGZG treatment affected gut microbiota-

mediated amino acid metabolism might be the potential targets on

NASH, which needed to be further elucidated in future studies.

In addition, SCFAs are the most plentiful bacterial metabolites

derived from intestinal bacteria, which have been implicated in

NAFLD/NASH (Bashiardes et al., 2016). SCFAs-mediated
Frontiers in Cellular and Infection Microbiology 15
activation of GRP43 signaling in adipose tissue promotes energy

expenditure and inhibits fat accumulation in adipose tissue and even

in the liver (Kimura et al., 2013). Most SCFAs are utilized in the gut,

but some amount is transported to the bloodstream via the portal vein

and be channeled into the tricarboxylic acid (TCA) cycle and become

source of energy (Kolodziejczyk et al., 2019). One of the mechanisms

of action of SCFAs to limit NASH is by reducing inflammatory signals

(Maslowski et al., 2009). It is reported that SCFAs reduced MCD-

induced hepatic aggregation of macrophages and proinflammatory

responses in NASH mice (Deng et al., 2020). A human study reported

that NASH patients were characterized by a different gut microbiome

composition with higher fecal SCFA levels and higher abundance of

SCFA-producing bacteria (Rau et al., 2018). Here, we noticed that

isocaproic acid and its positively correlated gut microbiota

Prevotellaceae_UCG-001 was decreased in NASH and restored by

LGZG. Isocaproic acid was reported to be produced by Clostridia and

Peptostreptococcus anaerobius from Leucine metabolism and

participated in the energy metabolism (Britz and Wilkinson, 1982).

Therefore, the correlation between isocaproic acid and NASH will be

worth exploring in the future.

Moreover, we performed Spearman rank correlation analysis to

identify relationships among gut microbiota, fecal metabolites, and

NASH indexes. Notably, we observed that many metabolites reserved

by LGZG were significantly correlated with gut microbiota and NASH

indexes. Besides, gut microbiota restored by LGZG were significantly

correlated with NASH indexes. For example, changes of

Prevotellaceae_Ga6A1_ group and Butyricimonas were positively

correlated with the NAS score, serum AST and ALT. Meanwhile,

we found that GDCA was positively correlated with five genera (such

as Prevotellaceae_Ga6A1_group and Odoribacter), and TDCA was

positively correlated with six genera (such as Ruminococcus_1 and
FIGURE 9

Potential mechanisms of LGZG against NASH.
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Prevotellaceae_Ga6A1_group) and three NASH indexes (including

liver TG, serum ALT, and NAS score). Together, the results indicated

that LGZG might restore the dysbiosis of gut microbiota and

influence related metabolites to treat NASH.

Overall, using gut microbiome and fecal metabolomics, we

identified several gut microbiota and abundant fecal metabolites

reversed by LGZG in treating NASH. Our results suggested that

LGZG might improve NASH by modulating gut microbiota and their

correlated metabolites, which broadened our knowledge of the

mechanisms of LGZG in treating NASH. However, further

investigation needs to be performed, which may identify novel

therapeutic targets of NASH.
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