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Fungal infections have become an increasing threat as a result of growing numbers

of susceptible hosts and diminishing effectiveness of antifungal drugs due tomulti-

drug resistance. This reality underscores the need to develop novel drugs with

unique mechanisms of action. We recently identified 5-(N,N-hexamethylene)

amiloride (HMA), an inhibitor of human Na+/H+ exchanger isoform 1, as a

promising scaffold for antifungal drug development. In this work, we carried out

susceptibility testing of 45 6-substituted HMA and amiloride analogs against a

panel of pathogenic fungi. A series of 6-(2-benzofuran)amiloride and HMA analogs

that showed up to a 16-fold increase in activity against Cryptococcus neoformans

were identified. Hits from these series showed broad-spectrum activity against

both basidiomycete and ascomycete fungal pathogens, including multidrug-

resistant clinical isolates.

KEYWORDS

amiloride, HMA, analogs, antifungal activity, Cryptococcus neoformans, MIC, MFC,
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Introduction

Global estimates suggest that diseases caused by fungal pathogens affect over 1 billion

people and kill approximately 1.7 million annually (Bongomin et al., 2017; Kainz et al., 2020).

The severity of fungal diseases varies from asymptomatic in healthy hosts to disseminated,

life-threatening infections in individuals that are immunosuppressed (Bongomin et al., 2017;

Colombo et al., 2017). Over 90% of all reported fungal-related deaths are caused by

Cryptococcus, Candida, Aspergillus, Histoplasma and Pneumocystis (Pfaller and Diekema,

2010). For the fungal species that are prevalent in the environment, such as Cryptococcus,

Histoplasma, and Coccidioides, spores/desiccated yeast cells are inhaled and settle in the lungs

where the infection can be asymptomatic to mild, but in susceptible hosts dissemination to
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other organs can result in death (Ellis and Pfeiffer, 1990; Woods, 2002;

Eisenman et al., 2007; Brown et al., 2013).

The Cryptococcus spp. complex includes at least seven distinct

species that can cause life-threatening disease and in countries where

HIV infection is prevalent, cryptococcal meningitis is the most

common form of adult meningitis (Zuger et al., 1986; Limper et al.,

2017; Rajasingham et al., 2017). Rhodotorula mucilagenosa, a

common environmental basidiomycete, is considered an emerging

pathogen (Pfaller and Diekema, 2004; Wirth and Goldani, 2012).

Most cases of R. mucilagenosa infections are bloodstream infections

linked to central venous catheter use in susceptible hosts (Tuon et al.,

2007; De Almeida et al., 2008; Wirth and Goldani, 2012; Falces-

Romero et al., 2018; Kitazawa et al., 2018).

Candida albicans is the primary cause of 9.5% of all bloodstream

infections in hospitals across the United States (Wisplinghoff et al.,

2004). Candida auris was relatively unknown a decade ago but is

today regarded as an emerging fungal pathogen that causes significant

healthcare-associated outbreaks of bloodstream infections with high

rates of mortality (Lockhart and Guarner, 2019). Although Candida

albicans tends to be the most prevalent cause of candidiasis in

humans, the last two decades has seen increases in infections

caused by non-C. albicans Candida (NCAC) species. C. glabrata, C.

parapsilosis, C. tropicalis and C. krusei are among the NCAC species

that have emerged as important opportunistic fungal pathogens that

are evolving to be more virulent and drug-resistant (Pfaller and

Diekema, 2004; Wisplinghoff et al., 2004; Silva et al., 2012).

Fluconazole-resistance among these Candida spp. is worrisome as

fluconazole is the most commonly used antifungal agent for

prophylaxis and treatment of Candida infections in resource-poor

nations (Africa and Abrantes, 2016). Of particular concern is the high

proportion of C. auris isolates that are resistant to three commonly

used classes of antifungals: azoles, echinocandins and polyenes (Du

et al., 2020; Frias-De-Leon et al., 2020). This multi-drug resistance

creates significant challenges in clinical practice requiring the close

monitoring of patients for treatment failure (Lockhart and Guarner,

2019; Hata et al., 2020).

Management of fungal diseases has become increasingly

challenging due to the growing number of susceptible hosts and

diminishing effectiveness of antifungal drugs. Indeed, the most

pervasive and drug-resistant infections are now untreatable using

first-line antifungals (Smith et al., 2015; Mpoza et al., 2018). This

reality underscores the need to develop novel antifungal therapeutics

with unique mechanisms of action able to effectively treat emerging

resistant strains. While recent attempts at de novo antifungal drug

discovery have produced only marginal success, drug repurposing (or

re-positioning) provides an alternative approach to identify new

indications for existing drugs (Kim et al., 2020; Wall and Lopez-

Ribot, 2020).

In a recent study we examined whether amiloride, a K+-sparing

diuretic, could be repurposed for the treatment of fungal infections

(Vu et al., 2021). Amiloride, a WHO essential medicine, is a pyrazine

acylguanidine originally developed as an inhibitor of renal epithelial

Na+ channels (ENaCs) (Benos, 1982). We found that while amiloride

has little antifungal activity, the 5-substituted analog, 5-(N,N-

hexamethylene)amiloride, (HMA) shows modest minimum

inhibitory concentrations (MICs) against isolates of Cryptococcus

spp., and moderate synergy with several azole antifungals (Vu et al.,
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2021). Structure activity relationship (SAR) analysis revealed that

hydrophobic substitutions on the 5-amino group of amiloride

produced improvements in antifungal activity (Vu et al., 2021).

HMA possesses nanomolar activity against Na+/H+ exchangers

(NHEs) but minimal inhibitory activity toward ENaC, thus

decreasing the clinical risk of ENaC-mediated hyperkalemia (Li

et al., 1985; Kleyman and Cragoe, 1988). Collectively, our results

suggested that HMA could serve as a starting point for antifungal

drug development, where further optimization could produce new

analogs with higher potency. Here, we investigated a library of 6-

heteroaryl substituted HMA and amiloride analogs to determine

whether further improvement in antifungal activity could be

obtained from this scaffold. Compounds with substitutions at other

positions around the pyrazine core of amiloride and HMA were

also investigated.
Material and methods

Strains and media

KN99 is a common Cryptococcus neoformans serotype A

laboratory strain derived from H99 (Nielsen et al., 2003). The

Candida isolates and the Rhodotorula isolate were provided by Dr.

G.R. Thompson, University of California, Davis. Drug-resistance of

isolates was confirmed by the Fungus Testing Laboratory (San

Antonia, Texas) and provided to us through Dr. G.M. Thompson.

Strains were recovered from -80°C frozen stocks, grown in YPD (1%

yeast extract, 2% bacto-peptone, and 2% dextrose) at 30°C and

maintained on solid media containing 2% bacto-agar.
Amiloride and HMA analogs

Amiloride.HCl was sourced from Sigma-Aldrich. Amiloride and

HMA analogs were synthesized as previously described (Matthews

et al., 2011; Buckley et al., 2018; Buckley et al., 2019).
Antifungal activity testing by CLSI criteria

Susceptibility assays were carried out to determine MICs and

MFCs according to the Clinical and Laboratory Standards Institute

(CLSI). In vitro testing was carried out in RPMI 1640 medium

containing L-glutamine, without sodium bicarbonate and buffered

to pH 7.0 with MOPS in 96-well plates (96-well cell culture cluster,

flat-bottom, Costar). Inoculum of C. neoformans (100 µL) was

prepared in accordance with the CLSI standard (M27-A3), added

to the 96-well plates and incubated for 48 h at 35 °C without

shaking. Readings were taken by visual inspection of the opacity of

wells. The minimum inhibitory concentration (MIC) was defined as

the lowest drug concentration in a well at which 100% reduction in

optical density was observed compared to the no-drug control well.

The MIC was determined using concentrations from 2 µg/mL to 64

µg/mL. The minimum fungicidal concentrations (MFC) were

determined by transferring the contents of the well identified as

the MIC above and plated onto an YPD agar plate. The absence of
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colony forming units (CFUs) confirmed that the MFC was

equivalent to the MIC.
Statistical analysis

The MIC and MFC values reported in Tables 1, 2, S1, S2 are the

result of at least 3 replicates.
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Results and discussion

The antifungal activity of amiloride and HMA analogs carrying

heteroaryl substitutions at the 5 and/or 6 position of the pyrazine ring

were evaluated. Detailed physiochemical properties of HMA and 6-

substituted match pairs have been reported in our recent work

(Buckley et al., 2021a). A total of 64 analogs were examined by

susceptibility assays against a strain of Cryptococcus neoformans
TABLE 1 Antifungal activity of amiloride analogs against Cryptococcus neoformans.

Cryptococcus neoformans Cryptococcus neoformans

R 1 Compound-R2 MIC MFC R ¹ Compound-R2 MIC MFC

1 -NH2 64* 64* 27 -N(CH2)4 >64 >64

2 -N(CH2)6 64 64 28 -N(CH2)6 >64 >64

3 -N(CH2)2O(CH2)3 >64 >64

4 -N(CH2CH2)2O >64 >64

5 -NH2 >64 >64 29 -NH2 64 64

6 -NH2 64 64 30 -N(CH2)6 64 64

7 -N(CH2)4 32 32 31 -N(CH2)6 32 32

8 -N(CH2)5 16 16 32 -NH2 >64 >64

9 -N(CH2)6 16 16 33 -N(CH2)6 64 64

10 -N(CH2)2O(CH2)3 >64 >64 34 -N(CH2)6 32 32

11 -NH(CH2)2Ph 8 8 35 -N(CH2)6 >64 >64

12 -NH2 >64 >64 36 -N(CH2)4 >64 >64

13 -N(CH2)6 16 16 37 -N(CH2)6 >64 >64

14 -NH2 8 8 38 -N(CH2CH2)2O >64 >64

15 -N(CH2)6 >64 >64 39 -N(CH2)2O(CH2)3 >64 >64

16 -NH2 4 4 40 -NH2 >64 >64

17 -N(CH2)6 4 8 41 -N(CH2)4 >64 >64

18 -NH2 >64 >64 42 -NH2 >64 >64

19 -N(CH2)6 16 16 43 -NH2 >64 >64

(Continued)
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TABLE 1 Continued

Cryptococcus neoformans Cryptococcus neoformans

R 1 Compound-R2 MIC MFC R ¹ Compound-R2 MIC MFC

20 -NH2 32 32 44 -N(CH2)6 16 16

21 -N(CH2)6 8 8 45 -NH2 >64 >64

22 -N(CH2)6 16 32 46 -NH2 >64 >64

23 -NH2 8 8 47 -NH2 >64 >64

24 -N(CH2)6 64 64 48 -N(CH2)6 64 64

25 -NH2 >64 >64 49 -NH2 >64 >64

26 -N(CH2)6 16 16 50-N(CH2)6 64 >64
F
rontiers in Cellular and Infection Microbiolog
y 04
MIC100, inhibitory concentration; MFC, minimum fungicidal concentration. All values represent µg/mL; *reported values for amiloride (Vu et al., 2021).
TABLE 2 Antifungal activity of amiloride and HMA analogs against Candida and Rhodotorula isolates.

Rm* Ca* Cg C. auris Ch* Ck Cp Ct

R1 Compound-R2 MIC/MFC MIC/MFC MIC/MFC MIC/MFC MIC/MFC MIC/MFC MIC/MFC MIC/MFC

2 -N(CH2)6 64/>64 >64/>64 64/>64 >64/>64 >64/>64 64/>64 64/64 >64/>64

8 -N(CH2)5 16/32 32/32 16/32 16/32 32/32 16/16 16/16 64/64

9 -N(CH2)6 16/32 32/32 16/32 32/32 16/16 16/16 16/32 64/64

11 -N(CH2)2Ph 8/>64 16/16 >64/>64 8/>64 8/8 8/8 8/8 8/8

13 -N(CH2)6 16/32 16/32 16/32 32/32 16/16 16/16 16/16 32/>64

14 -NH2 16/16 >64/>64 >64/>64 >64/>64 32/32 >64/>64 >64/>64 >64/>64

16 -NH2 4/4 8/8 8/8 8/16 8/8 4/4 4/4 8/8

17 -N(CH2)6 4/4 4/4 4/4 4/4 4/4 4/4 4/4 <2/8

(Continued)
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(KN99) using the microbroth dilution method (Tables 1, S1).

Screening of 45 6-(hetero)aryl substituted amiloride and HMA

analogs reported previously revealed that antifungal activity was

generally restricted to compounds bearing bicyclic heterocycles at

the pyrazine 6-position (Buckley et al., 2018; Buckley et al., 2019;

Buckley et al., 2021b; Hards et al., 2022). Consistent antifungal effects

were seen for a series of 6-(2-benzofuran) analogs, with the HMA

analog 9 and 5-piperidine 8 both showing MIC and MFC values of 16

µg/mL. Removal of the 5-azepane ring as in the matching amiloride

analog 6 decreased activity, as did truncation of the amine at the 5-

position, pyrrolidine 7, or incorporation of a polar O atom as in (1,4-

oxazapane 10).

Substitution at the 5-azepane with a phenylethylamine 11 was

favorable, producing a 2-fold increase in activity (MIC andMFC 8 µg/

mL). Replacement of the ring O with S (2-benzothiophenes 12 and

13) did not improve activity. Introduction of a methyl substituent at

the 5-position of the benzofuran ring increased activity by 8-fold (14

MIC and MFC 8 µg/mL) relative to the unsubstituted 2-benzofuran

parent. Remarkably, this improvement was specific to the amiloride

series, with no activity seen for the matching HMA analog 15 (MIC
Frontiers in Cellular and Infection Microbiology 05
and MFC >64 µg/mL). 5-tBu substitution produced the largest

increase in activity in both series (16 and 17), lowering MIC and

MFC by up to 16-fold (4 µg/mL). A drop in activity was seen for the 5-

fluorinated amiloride analog 18, while no change was seen for the

matching HMA analog 19. Larger halogens slightly increased activity,

with 5-Cl 20 producing 2-fold lower MIC and MFC values for the

amiloride analog (32 µg/mL) and 8-fold higher activity for 5-Br HMA

analog 21 (8 µg/mL). This trend did not extend to 5-CN substitution,

where no improvement in activity was seen with HMA analog 22. An

8-fold improvement was seen for 5-MeO amiloride 23 (MIC and

MFC 8 µg/mL) while an 8-fold drop in activity was observed for the

matching HMA analog 24 (MIC 64 µg/mL and MFC 64 µg/mL).

5,7-Difluorination as in amiloride 25 and HMA 26 did not

improve activity for either series. Similarly, improvements were not

seen for a series of 4-furopyridine 27 and 28 or 5-furopyridine analogs

29 and 30, indicating sensitivity to a polar N atom at these positions.

Altering the connectivity of the benzofuran 31 and 34 or equivalent

2,3-dihydrobenzofurans 32, 33 and 35 did not improve activity.

Furthermore, activity was poor or absent for a diverse selection of

analogs bearing 5- and 6-membered (hetero)aryl groups at the
TABLE 2 Continued

Rm* Ca* Cg C. auris Ch* Ck Cp Ct

R1 Compound-R2 MIC/MFC MIC/MFC MIC/MFC MIC/MFC MIC/MFC MIC/MFC MIC/MFC MIC/MFC

19 -N(CH2)6 16/16 16/32 16/16 32/32 16/16 16/16 16/16 32/32

21 -N(CH2)6 8/16 8/16 8/8 8/16 8/8 8/8 8/8 8/16

22 -N(CH2)6 32/32 64/>64 64/64 64/>64 64/64 32/32 64/64 64/>64

23 -NH2 64/64 64/>64 64/>64 >64/>64 64/>64 32/32 16/16 >64/>64

26 -N(CH2)6 8/16 16/16 8/8 16/16 8/8 8/8 8/16 16/16

44 -N(CH2)6 64/64 64/64 64/64 64/64 64/64 32/64 64/64 64/>64
fr
Candida and Rhodotorula isolates. Rm, Rhodotorula mucilaginosa; Ca, Candida albicans; Cg, Candida glabrata; C. auris, Candida auris; Ch, Candida haemulonii; Ck, Candida krusei; Cp, Candida
parapsilosis; Ct, Candida tropicalis. *denotes multidrug resistant clinical isolate. MIC100, minimum inhibitory concentration; MFC, minimum fungicidal concentration. All values represent µg/mL.
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pyrazine 6-position (36-43, 45-50), underscoring the necessity of the

6-(2-benzofuran) motif for antifungal activity.

One exception to this trend was seen for the 4-CF3phenyl HMA

analog 44 (MIC and MFC 16 µg/mL), which showed equivalent

activity to the 2-benzofuran HMA analog 9. In addition, no antifungal

activity was seen for a separate series of amiloride analogs bearing a

variety of secondary alkyl amines at the pyrazine 5-position (Table

S1), in keeping with our earlier observations with 5-glycinyl analogs

of amiloride (Matthews et al., 2011).

Further testing of 13 active analogs against the Cn isolate

confirmed their antifungal and fungicidal activity (Table S2). 5-tBu

analogs 16 and 17 showed the highest activity against Cn (MIC and

MFC 4 µg/mL. Phenylethylamine 11 and 5-Br benzofuran HMA

analog 21 had average MICs of 7 µg/mL against Cn while the

remaining 10 compounds displayed MICs ≥ 8 µg/mL.

Analogs with MICs and MFCs ≤ 16 µg/mL against Cn were

examined against a panel of 7 Candida isolates, including multi-drug

resistant Candida auris and Candida haemulonii strains, along with

the drug-resistant basidiomycete isolate, Rhodotorula mucilaginosa.

Susceptibility assays revealed that the 5-tBu compounds 16 and 17, 5-

Br benzofuran HMA 21 and 5,7-difluoro benzofuran HMA analog 26

were active against all fungal isolates, with MICs ranging from < 2 µg/

mL to 16 µg/mL (Table 2). Phenylethylamine 11 inhibited growth of

all isolates with the exception of C. glabrata (MICs ≤ 16 µg/mL),

suggesting broad antifungal activity against both basidiomycetes and

ascomycetes (Table 2). Broad spectrum activity was not seen for 4-

CF3 phenyl analog 44, demonstrating the superiority of the 2-

benzofuran group at the 6-position.
Conclusion

We previously questioned whether HMA could elicit its

antifungal effects via inhibition of the fungal homolog, the

endosomal Na+/H+ exchanger Nhx1 (Vu et al., 2021). We found

HMA to be similarly potent in S. cerevisiae nhx1D and C. neoformans

nhx1D strains relative to wild type controls, suggesting Nhx1

inhibition is likely not responsible for antifungal activity (Vu et al.,

2021). This conclusion was supported in this work by the absence of

antifungal activity for 6-pyrimidine HMA analog 37, a compound

reported as a nM inhibitor of human NHE1 (Buckley et al., 2021a).

However, we cannot rule out potential inherent differences in activity/

sensitivity of fungal and human Na+/H+ exchangers that could lead to

differential effects of analog #37. The modest antifungal activity of

HMA coupled with its poor stability in vivo preclude its advancement

as a viable candidate for animal studies (Buckley et al., 2021a).

In summary, the 6-(2-benzofuran) class of amiloride and HMA

analogs described here represent progress toward lead compounds

suitable for further investigation. For example, HMA analog 9 showed

2 to 3-fold higher activity against a range of drug-resistant pathogenic

fungi (MIC and MFCs 16-32 µg/mL). This analog does not show K+-

sparing or diuretic activity and features a more favorable

pharmacokinetic profile relative to HMA in mice and rat,

supporting its future evaluation in animal models of fungal

infection (Buckley et al., 2021a). Future studies will investigate

synergy of these compounds with standard-of-care antifungals.
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