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The implication of gut
microbiota in recovery from
gastrointestinal surgery

Zhipeng Zheng, Yingnan Hu, Jingyi Tang, Wenjun Xu,
Weihan Zhu and Wei Zhang*

Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical
University, Hangzhou, China
Recovery from gastrointestinal (GI) surgery is often interrupted by the

unpredictable occurrence of postoperative complications, including infections,

anastomotic leak, GI dysmotility, malabsorption, cancer development, and

cancer recurrence, in which the implication of gut microbiota is beginning to

emerge. Gut microbiota can be imbalanced before surgery due to the underlying

disease and its treatment. The immediate preparations for GI surgery, including

fasting, mechanical bowel cleaning, and antibiotic intervention, disrupt gut

microbiota. Surgical removal of GI segments also perturbs gut microbiota due

to GI tract reconstruction and epithelial barrier destruction. In return, the altered

gut microbiota contributes to the occurrence of postoperative complications.

Therefore, understanding how to balance the gut microbiota during the

perioperative period is important for surgeons. We aim to overview the current

knowledge to investigate the role of gut microbiota in recovery from GI surgery,

focusing on the crosstalk between gut microbiota and host in the pathogenesis

of postoperative complications. A comprehensive understanding of the

postoperative response of the GI tract to the altered gut microbiota provides

valuable cues for surgeons to preserve the beneficial functions and suppress the

adverse effects of gut microbiota, which will help to enhance recovery from

GI surgery.

KEYWORDS

gut microbiota, colorectal cancer, recovery, gastrointestinal surgery, postoperative
complications
1 Introduction

Gastrointestinal (GI) surgery, including gastrectomy, sleeve gastrectomy, Roux-en-Y

gastric bypass (RYGB) surgery, and colorectal resections, has a well-established role in the

treatment of different diseases, such as inflammatory bowel disease, metabolic syndrome,

obesity, and multiple cancers (Tarazi et al., 2022). With the advances in technique,

technology, and clinical care, the prognosis of GI surgery has been improved greatly.

However, recovery from GI surgery is often disturbed by unpredictable postoperative
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complications. After surgical reconstruction, both the GI tract and

gut microbiota gradually reach a new steady state. If this new state is

not achieved or lacks microbial components essential for GI health,

complications such as infections and anastomotic leak (AL) can

develop, in which gut microbiota is not just a local bystander but

one of the main determinants.

The commensal microbiota coevolves with the host, and the

host immune system learns and develops from exposure to the

commensal microbiota (Littman and Pamer, 2011). Gut microbiota

helps absorption by breaking down ingested carbohydrates, fatty

acids, and proteins into nutrients (Kolodziejczyk et al., 2019).

Commensal bacteria contribute to colonization resistance and

maintain epithelial mucosal barrier function, providing a

functional layer against pathogen infection, and perturbation of

the gut microbiota increases the risk of infectious complications

(Ducarmon et al., 2019). Infectious complication as a tipping point

allows pathogenic bacteria to cause major postoperative

complications, including AL, disseminated infect ion,

or superinfection.

The perioperative events of GI surgery from preoperative

preparation to the recovery phase, exposing gut microbiota to

substantial environmental changes and surgical stress,

cumulatively influence its composition and function. Preoperative

bowel preparations are known to disrupt gut microbiota (Nagata

et al., 2019; Nalluri-Butz et al., 2022). GI segment resection exposes

the lumen of the bowel to oxygen and vessel ligation causes a

transient local blood supply interruption (Hartman et al., 2009).

The bowel lumen exposure changes the oxygen partial pressure

within the anaerobic intestinal environment, leading to the

community shift in obligate anaerobes and facultative anaerobes

(Hartman et al., 2009). Local tissue ischemia and reperfusion induce

a decrease in the relative abundance of Lactobacillus and an increase

in Escherichia coli (E. coli) (Wang et al., 2012; Wang et al., 2013). In
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addition, anatomical alterations affect GI physiology. Adaptations

in GI physiology after GI surgery include changes in gastric

emptying, intestinal transit, bile acid metabolism, GI surface area,

acidity, and secretions, which alters the habitat of gut microbiota

(Steenackers et al., 2021). Gut microbiota can sense changes in the

local microenvironment and modifies its population density

through quorum sensing, which also contributes to the dynamic

shift of microbial phenotype (Coquant et al., 2021). Prolonged

changes in circumstances give rise to potentially lethal pathogens,

such as Pseudomonas aeruginosa (P. aeruginosa) and Enterococcus

faecalis (E. faecalis), or make health-care-associated pathogens

predominate, such as Clostridium difficile (Zaborin et al., 2014).

Therefore, postoperative rebuilding of gut microbiota is

important. Inadequate or inappropriate rebuilding of gut

microbiota can contribute to the development of postoperative

complications. A comprehensive understanding of the interaction

between host and gut microbiota is needed to enhance recovery

from GI surgery. Hence, this review focuses on perioperative gut

microbiota alteration and its implication in recovery from GI

surgery (Figure 1).
2 Baseline gut microbiota

The baseline status of gut microbiota before surgery depends on

daily diet, exercise, and chronic illness. The relationship between

gut microbiota, diet, and host health is complex. Diet has an indirect

effect by affecting gut microbiota composition and its production of

metabolites that, in turn, can maintain health, increase the risk of

disease, and be used as a treatment for certain diseases (Perler et al.,

2022). Preoperative dietary modulation has been a complementary

consideration among surgeons to prevent postoperative

complications. A previous study using an animal model
DA B C

FIGURE 1

The effect of perioperative events on the gut microbiota and recovery from GI surgery. Except for the basic condition of the host, the whole process
of GI surgery, from preoperative preparation to recovery from GI surgery, has a significant and accumulated effect on the gut microbiota. (A) The
baseline gut microbiota is dependent on different daily diets, exercise, and pre-existing diseases, such as obesity, type 2 diabetes mellitus, cardio-
metabolic diseases, non-alcoholic fatty liver disease, inflammatory bowel disease, and GI cancer. (B) Neoadjuvant chemo- or radiotherapy reduces
tumor size and kills metastatic cells to facilitate the subsequent tumor removal, which may disrupt gut microbiota. Preoperative bowel preparation,
including fasting, MBP, and oral antibiotics, eliminates bulky GI content and reduces the luminal bacterial load, leaving behind certain mucosal
bacteria. Besides, prophylactic intravenous antibiotics have a further effect on the composition of gut microbiota. (C) Surgical procedures, including
laparotomy or laparoscopy, GI segment resection, and subsequent GI reconstruction, change GI physiology, exert further stress on the gut
microbiota, and shift bacterial phenotypes. (D) The healthy recovery from GI surgery is challenged by postoperative complications, such as infection,
anastomotic leak, GI dysmotility, malabsorption, and cancer recurrence, which are substantially influenced by perioperative alteration of gut
microbiota. Appropriate rebuilding of commensal bacteria may prevent postoperative complications and enhance postoperative recovery. MBP,
mechanical bowel preparation; GI, gastrointestinal.
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demonstrates that a short course of dietary prehabilitation with a

low-fat and high-fiber diet can reverse the adverse effect of a high-

fat Western-type diet (WD) on anastomotic healing via its effects on

the gut microbiota, improving overall diversity and decreasing

postoperative collagenolytic Enterococus (Hyoju et al., 2020).

Dietary prehabilitation also improves the outcome of surgically

operated mice exposed to WD diet, antibiotics, and short-term

starvation (Keskey et al., 2022). Moreover, butyrate, a major

product of anaerobic bacteria that has known beneficial effects on

the immune system, is identified as a potential candidate biomarker

to assess microbiota readiness for surgery in the context of dietary

prehabilitation (Keskey et al., 2022), which helps to determine

whether gut microbiota are recovered enough to support a host

during stress period of preoperative treatment and surgery. Exercise

as an environmental factor also has effects on gut microbiota

composition, which could provide benefits to health and disease

prevention. Recent studies suggest that exercise can improve the

development of commensal bacteria, enrich microflora diversity,

and enhance the number of beneficial microbial species (Monda

et al., 2017). Meanwhile, pre-existing diseases substantially alter the

composition of preoperative gut microbiota and its postoperative

response to GI surgery. Increasing evidence has shown that gut

microbiota is changed at the site of malignant tumors and the

imbalance of gut microbiota can trigger carcinogenesis (Wong and

Yu, 2019). Numerous metabolic diseases (malnutrition, obesity,

type 2 diabetes mellitus, cardio-metabolic diseases, and non-

alcoholic fatty liver disease), autoimmune diseases (rheumatoid

arthritis, spondyloarthritis, and systemic lupus erythematosus),

and living environmental and behavioral factors (alcohol and

smoking) are linked to the alteration of gut microbiota and

affected by it, which has been reviewed in detail elsewhere

(Capurso and Lahner, 2017; Jiao et al., 2020; Fan and

Pedersen, 2021).
3 Gut microbiota and preparation for
gastrointestinal surgery

Changes in gut microbiota during preoperative treatment

include both long-term chemo- or radiotherapy, not for all

patients on GI surgery, and short-term just prior to surgery, such

as fasting, bowel preparation, and antibiotic prophylaxis.

Neoadjuvant chemoradiotherapies for cancer can lead to

compositional changes in gut microbiota. Chemotherapy drives a

severe gut microbiota dysbiosis with significant decreases in the

relative abundances of Firmicutes and Actinobacteria and increases

in the relative abundance of Proteobacteria in patients with non-

Hodgkin’s lymphoma (Montassier et al., 2015). In animal studies, 5-

fluorouracil (5-Fu) reduces gut microbial community richness and

diversity, leading to a decreased relative abundance of Firmicutes,

Proteobacteria, Tenericutes, Cyanobacteria, and Candidate division

TM7, and an increased relative abundance of Verrucomicrobia and

Actinobacteria (Li et al., 2017), which is ameliorated by a probiotic

mixture (Tang et al., 2017). In addition, radiotherapy reduces gut

microbial diversity in patients with rising radiation enteropathy, which
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is significantly associated with an increased relative abundance of

Clostridium IV, Roseburia, and Phascolarctobacterium (Reis Ferreira

et al., 2019). In a mouse model, the relative abundances of phylum

Proteobacteria, genera Escherichia, Shigella and Eubacterium

xylanophilum_group, and species Lactobacillus murinus are

correlated with radiation dose, and after 7 days of radiation, the

diversity of gut microbiota is significantly decreased, in which the

relative abundance of Proteobacteria and Bacteroides is increased,

while that of Tenericutes and Roseburia is decreased, which also can

be mitigated by administration of compound probiotics (Zhao et al.,

2021). Moreover, not only can chemotherapy and radiotherapy alter

gut microbiota, but gut microbiota can directly or indirectly modulate

cancer response to chemotherapy, radiotherapy, and immunotherapy

(Iida et al., 2013; York, 2018; Tonneau et al., 2021).

In addition, bowel preparations for major surgery instantly

disrupt gut microbiota and might lead to prolonged detrimental

consequences (Perez-Cobas et al., 2013; Zarrinpar et al., 2014;

Jalanka et al., 2015). Physiological stress induced by surgical

processes, involving skin incision, tissue dissection, organ

resection, and anastomosis, can increase susceptibility to

infection. Therefore, the current clinical practice of bowel

preparation is used to eliminate potential pathogens as much as

possible before major surgery to minimize intraoperative

contamination. Daily feeding/fasting rhythms lead to daily

cyclical compositional fluctuations in the gut microbiota, which

contribute to gut microbial diversity and affect host metabolism

(Zarrinpar et al., 2014). Unlike these daily gut microbiota

fluctuations, altered jejunal microbiota with decreased abundance

of Betaproteobacteria and Bacteroidales is observed in dogs

subjected to a prolonged period of fasting (Kasiraj et al., 2016).

MBP is generally used to eliminate bulky contents and reduce the

bacterial load in the GI tract, which leaves behind certain strains of

mucosa-associated bacteria and induces shifts in gut microbiota.

The lavage leads to an instant and substantial change in the bacterial

levels and composition of gut microbiota, specifically decreased

Bifidobacterium and Lactobacillus and increased E. coli and

Staphylococcus, which can be restored within 14 days, and the

recovery rate is dose-dependent (Wu et al., 2012; Jalanka et al.,

2015). MBP has a profound effect on the gut metabolome, but it also

recovers to baseline within 14 days (Nagata et al., 2019). In contrast,

MBP with oral antibiotics shapes gut microbiota composition

acutely and longitudinally, which requires at least 30 days to

return to a level similar to baseline (Nalluri-Butz et al., 2022).

Oral or intravenous antibiotics and the local application of topical

antimicrobial solutions are variably used as routine practices to

disinfect the intestine and skin (Guenaga et al., 2011; Nelson et al.,

2014). Oral antibiotics are often used for bowel preparation and

most patients receive intravenous antibiotics at the time of GI

surgery, both of which facilitate the clearance of potential

pathogens, exert selective pressure on bacterial composition and

function, and further perturb commensal microbial communities

(Antonopoulos et al., 2009; Ubeda and Pamer, 2012; Ferrer et al.,

2014). The effects of these preparations for surgery on gut

microbiota preservation and bacterial phenotype shifts remain

unknown and need further study.
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4 Gut microbiota and
surgical procedures

The surgery itself is the major factor affecting gut microbiota

composition and function. After surgical resection of diseased,

obstructed, or ischemic intestinal segments, intestinal reconstructions

are generally required to reestablish intestinal continuity. These surgical

reconstructions of the GI tract affect the intraluminal environment,

intestinal permeability, transit time, food digestion, and nutrient

absorption, but the GI tract can adapt to the new anatomical

structure, which is a natural compensatory process and nearly allows

patients to recover to normalcy (Carswell et al., 2014; Tappenden, 2014;

Ladebo et al., 2021). It is now believed that much of food digestion and

nutrient absorption depends on the action of the gut microbiota, and

gut microbes use ingested nutrients for their fundamental biological

processes, metabolic outputs of which have significant impacts on host

physiology (Gentile andWeir, 2018). Besides, each part of the intestine

has a specialized ecosystem that facilitates the breakdown, processing,

and absorption of nutrients, and the surgical reconstructions of the GI

tract can change downstream gut microbiota, affecting the metabolism

and immune functions (Sinclair et al., 2018; Li et al., 2021). The effects

of these changes on the clinical outcomes of GI surgery need

further investigation.

Sleeve gastrectomy (SG) and Roux−en−Y gastric bypass (RYGB)

are the most common surgical approaches to treat morbid obesity. The

beneficial effects of bariatric surgery are not only contributed by

stomach pouch restriction and malabsorptive configuration induced

by the surgical operation itself, but changes in gut microbiota may also

be part of the mechanism. Although these surgeries are not for treating

specific gastrointestinal diseases in this setting, their effects on gut

microbiota are now being studied. Gut microbiota is altered by surgery

and the profound alterations persist in the first year of follow-up with

an increase in Bacteroides and Proteobacteria and a decrease in

Firmicutes in most studies (Luijten et al., 2019). The shift of gut

microbiota after a bariatric surgery significantly differs between

different surgical procedures. RYGB has a deeper impact on the

composition and function of gut microbiota than SG (Farin et al.,

2020; Salazar et al., 2022). Laparoscopic RYGB leads to a higher relative

abundance of aero-tolerant bacteria (E. coli and Streptococcus), whereas

anaerobes (Clostridium) are more abundant after SG (Farin et al.,

2020). In addition, enrichment ofAkkermansiamuciniphila is observed

6 months after both surgeries (Farin et al., 2020). In another short-term

study, the relative abundance of Akkermansia, Eubacterium,

Haemophilus, and Blautia is higher 3 months after SG, while the

relative abundance of Veillonella, Slackia, Granucatiella, and

Acidaminococcus is higher after RYGB (Sanchez-Alcoholado et al.,

2019). Changes in gut microbiota are an adaptive response to the

altered gut environment, and specific gut microbiota signatures

mediate the successful rate of bariatric surgery through their

interaction with the bile acids milieu (Gutierrez-Repiso et al., 2019).

Moreover, these alterations to the gut microbiota after RYGB are

conserved among humans, rats, and mice, with a rapid and sustained

increase in Bacteroidetes, Proteobacteria (Escherichia), and

Verrucomicrobia (Akkermansia) (Liou et al., 2013). Besides, fecal

microbiota transplant (FMT) from RYGB-treated mice to germ-free
Frontiers in Cellular and Infection Microbiology 04
mice not receiving intestinal reconstruction leads to weight loss and

decreased fat mass in the recipient mice compared to those that receive

FMT from sham surgery mice (Liou et al., 2013), suggesting that gut

microbiota after RYGB contributes to the effects of RYGB on the body

weight and metabolism. These studies indicate that intestinal surgery-

induced altered gut microbiota-host interactions, in turn, affect the

prognosis of surgery.

Alterations of gut microbiota after gastrectomy are observed in

patients with gastric cancer, showing greater species diversity and

richness, higher abundance of oral microbes, aerobes (Streptococcus

and Enterococcus), and facultative anaerobes (Escherichia,

Enterobacter, and Streptococcus) than control participants

(Erawijantari et al., 2020). In addition, gut microbiota plays an

important role in the occurrence and development of colorectal

cancer (CRC) (Lin et al., 2019). It is worth noting that several CRC-

related bacteria (Fusobacterium nucleatum and Atopobium

parvulum) and secondary bile acids such as genotoxic deoxycholic

acid are significantly enriched in patients undergoing total

gastrectomy compared with the control group (Erawijantari et al.,

2020). In contrast, surgery greatly reduces the diversity of the gut

microbiota in CRC patients (Cong et al., 2018; Deng et al., 2018).

The gut microbiota of postoperative patients and CRC patients

differ significantly. The relative abundance of Proteobacteria is

increased in postoperative CRC patients compared with that in

preoperative CRC patients and healthy individuals, and the

Klebsiella has a higher proportion in postoperative CRC patients

than that in preoperative CRC patients, which is also significantly

associated with infectious diseases and lymphatic invasion (Cong

et al., 2018). Subdividing postoperative CRC patients according to

the presence or absence of newly developed adenoma, the gut

microbiota of patients with newly developed adenoma is different

from that of clean intestine patients and is similar to the gut

microbiota of carcinoma patients (Jin et al., 2019). The difference

in the gut microbiota between the two groups can be used as

biomarkers to distinguish postoperative patients with or without

newly developed adenoma with an AUC value of 0.72 (Jin et al.,

2019), suggesting that gut microbiota may be used as non-invasive

biomarkers to predict newly developed adenomas and prevent

cancer recurrence in postoperative patients. These changes in the

gut microbiota are long-lasting and correlate with the clinical

course. Especially in CRC patients with postoperative

complications, the gut microbiota shows significant changes in

postoperative CRC patients, which do not resolve, even 24

months after surgery (Schmitt et al., 2021). The association

between long-term gut microbiota alteration and postoperative

complications indicates that gut microbiota modulation may help

to optimize the outcome of CRC patients after surgery.
5 Gut microbiota-associated
complications after
gastrointestinal surgery

Numerous postoperative complications, such as infections, AL,

GI dysmotility, malabsorption, and cancer recurrence, continue to
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hinder recovery from GI surgery with complex reconstructive

procedures. A better molecular understanding of the perioperative

interaction between the GI tract and gut microbiota will make

surgery safer and further prevent complications.
5.1 Infection

Postoperative infection, surgical site infections (SSIs) in

particular, is the most common reason for readmission, which

contributes to the increased cost of health care (Merkow et al.,

2015). In general, GI surgery is subjected to a greater risk of

postoperative infection compared with other surgical procedures

because the GI tract is inhabited by a wide cluster of

microorganisms. Traditionally, postoperative infection is often

caused by inadequate preoperative topical or intestinal

disinfection, which can be prevented by antibiotics as prophylaxis

the day before surgery, even without mechanical bowel preparation

(Espin Basany et al., 2020). However, complete depletion of gut and

skin microbiota is not possible and has potential negative effects.

Many postoperative infections arise from the patient’s gut

microbiota, usually after unintended inhibition of beneficial

bacteria and translocation of antibiotic-resistant pathogenic

bacteria (Deitch, 2012; Yu et al., 2014). Conversely, a diverse and

protective gut microbiota provides an important biological layer

against infectious complications, because commensal bacteria

contribute to colonization resistance against both endogenous and

exogenous pathogens through competitive inhibition, production of

antimicrobial peptides, and activation of the host immune system

(Ducarmon et al., 2019; Isles et al., 2022).

Lifestyle factors, underlying diseases, medications, antibiotics,

and surgical procedures can perturb gut microbiota leading to loss

of colonization resistance and increased susceptibility to the invasion

of pathogenic bacteria. Besides, many in−hospital infections originate

from the patient’s gut microbiota when the beneficial bacterial

population is suppressed (Wang et al., 2019). Preoperative dysbiosis

of gut microbiota is associated with higher rates of postoperative

infectious complications, including abdominal/pelvic infections and

pulmonary infections, in CRC patients (Liu et al., 2021). The

increased relative abundance of Klebsiella in postoperative CRC

patients is significantly and positively associated with infectious

diseases, such as bacterial invasion of epithelial cells and

Staphylococcus aureus infection, revealed by the correlation analysis

between differentiated metabolic pathways and genera (Cong et al.,

2018). The causative bacteria of surgical site infections are identified

to be P. aeruginosa, Staphylococcus aureus, and Enterococcus spp.,

which are also enriched in the fecal microbiota of postoperative CRC

patients (Ohigashi et al., 2013). A gut microbiota-based model base

on six genera (Hungatella, Epulopiscium, Fusobacterium,

Ruminococcaceae_ucg_009, Actinomyces, and Ralstonia) is used to

predict surgical site infections after ileocolonic resection for Crohn’s

disease (CD) patients with an AUC of 0.78 (Julien et al., 2022).

The effect of perioperative modulation of gut microbiota by

probiotic or synbiotic on postoperative infectious complications has

been evaluated in clinical trials (Table 1). A meta-analysis shows

that perioperative probiotic or prebiotic supplements may reduce
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the overall incidence of infectious complications, including wound

infections, respiratory infections, and urinary tract infections, in

patients undergoing GI surgery, and the most used strains are

Lactobacillus and Bifidobacterium (Yang et al., 2017). Their role in

postoperative infections may be due to the perioperative

stabilization of gut microbiota and alleviation of the systemic

inflammatory response (Kotzampassi et al., 2015; Polakowski

et al., 2019). Using probiotics or prebiotics as a potential

alternative to maintaining the beneficial structure of gut

microbiota throughout the whole process of hospitalization may

be a promising strategy to reduce the risk of postoperative infections

and can be included in enhanced recovery after surgery. However,

the results of existing clinical studies are inconsistent, which may be

due to disparities in type, dosage, and administration strategies

(timing and duration) of probiotics/prebiotics, thus large-scale

randomized clinical trials are needed to confirm the efficacy and

safety of probiotics/prebiotics in surgical patients.
5.2 Anastomotic leak

Anastomotic leak (AL) is one of the most potentially

devastating complications that can develop after major surgical

bowl reconstruction and has plagued surgeons for decades.

Although surgical technique and postoperative care have been

improved over the past several decades, AL continues to occur

and can lead to peritonitis, sepsis, and even death (Caulfield and

Hyman, 2013; Shogan et al., 2013). After anastomosis is performed,

the repairing process of the GI tract is immediately initiated and

divided into three phases, including the lag phase, the fibroplasia

phase, and the maturation phase (Sajid et al., 2012). Ultimately, the

healing process results in the repair of the intestinal epithelial

barrier with the involvement of complex molecular and cellular

interactions of host cells, luminal proliferative components, and gut

microbiota (Kurashima and Kiyono, 2017). Among these factors

contributing to anastomotic healing, gut microbiota remains largely

overlooked and should be focused on. Indeed, germ-free mice have

a reduced regenerative response of the epithelia and a hampered

healing process of the intestinal barrier compared with

conventional mice (Hooper et al. , 2001). In addition,

conventionalized germ-free rats show a significantly better wound

healing of intestinal anastomoses than germ-free animals and rats

that are colonized by either Lactobacillus acidophilus or E. coli

(Okada et al., 1999), suggesting that the effect of gut microbiota on

the healing of intestinal anastomoses depends on differences in the

types of bacteria. Therefore, gut microbiota can either assist or

hinder intestinal wound healing through cooperation or

competition between different microbial species (Koliarakis et al.,

2020). Further studies focusing on gut microbiota could be one such

avenue for uncovering the elusive pathogenesis of AL.

The gut microbiota participates in the physiological process of

intestinal wound healing and epithelial repair through a variety of

molecular mechanisms. Members of the gut microbiota can interact

with different intestinal epithelial lineages through innate immune

receptors, such as toll-like receptor (TLR) 4 and 2, by recognizing gut

microbial components, such as lipopolysaccharide and flagellin, thus
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1110787
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zheng et al. 10.3389/fcimb.2023.1110787
TABLE 1 Effect of synbiotics or probiotics on infectious complications, anastomotic leak, and gastrointestinal motility after gastrointestinal surgery.

Formulation Timing
(Duration)

Effect on infectious
complications

Effect on
anastomotic

leak

Effect on
gastrointestinal

motility

Synbiotics (oligofructose, Lactobacillus
acidophilus La5, Lactobacillus bulgaricus, Bifidobacterium lactis
BB-12 and Streptococcus thermophilus) (Reddy et al., 2007)

Pre (NA) No effect NA NA

Synbiotics (betaglucan, inulin, pectin, resistant starch, Pediacoccus
pentosaceus 5-33:3, Leuconostoc mesenteroides 32–77:1, Lactobacillus
paracasei subsp. paracasei 19 and Lactobacillus plantarum 2362) (Horvat
et al., 2010)

Pre (NA) No effect NA No effect

Probiotics (Lactobacillus plantarum, Lactobacillus acidophilus, and
Bifidobacterium longum) (Liu et al., 2011)

Pre (6 d)
and Post
(10 d)

Decreased central lines
infection, pneumonia
infection, and urinary

infection

NA
Reduced first
defecation time

Probiotics (Lactobacillus plantarum 299v) (Mangell et al., 2012)
Pre (8 d)
and Post
(5 d)

No effect No effect No effect

Probiotics (Bifidobacterium longum, Lactobacillus acidophilus
and Enterococcus faecalis) (Zhang et al., 2012)

Pre (3 d)
Decreased bacteremia and

septicemia
No effect No effect

Probiotics (Lactobacillus plantarum, Lactobacillus acidophilus, and
Bifidobacterium longum) (Liu et al., 2013)

Pre (6 d)
and Post
(10 d)

Decreased septicemia,
central lines infection,

pneumonia infection, and
urinary infection

NA
Reduced first
defecation time

Synbiotics (betaglycan, inulin, pectin, resistant starch, Pediacoccus
pentosaceus 5-33:3, Leuconostoc mesenteroides 32–77:1, Lactobacillus
paracasei subsp. paracasei 19 and Lactobacillus plantarum 2362) (Krebs
et al., 2013)

Pre (3 d) No effect NA No effect

Probiotics (Bifidobacterium bifidum) (Sadahiro et al., 2014)
Pre (7 d)
and Post
(10 d)

No effect No effect NA

Probiotics (Lactobacillus acidophilus, Lactobacillus plantarum,
Bifidobacterium lactis and Saccharomyces boulardii) (Kotzampassi et al.,
2015)

Pre (1 d)
and Post
(15 d)

Decreased surgical site
infection and pneumonia

infection
Reduced

Reduced first flatus
and defecation time

Probiotics (Saccharomyces boulardii) (Consoli et al., 2016) Pre (7 d) No effect NA NA

Synbiotics (galactooligosaccharides, Lactobacillus casei, and
Bifidobacterium breve) (Komatsu et al., 2016)

Pre (7–11 d)
and Post (2–

7 d)
No effect No effect NA

Probiotics (Bifidobacterium longum BB536) (Mizuta et al., 2016)
Pre (7–14 d)
and Post
(14 d)

No effect No effect NA

Probiotics (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus
lactis, Bifidobacterium bifidum,
Bifidobacterium longum, and Bifidobacterium infantis) (Tan et al., 2016)

Pre (7 d) No effect No effect NA

Probiotics (Bifidobacterium longum, Lactobacillus acidophilus, and
Enterococcus faecalis) (Yang et al., 2016)

Pre (5 d)
and Post
(7 d)

No effect No effect
Reduced first flatus
and defecation time

Synbiotics (fructo-oligosaccharide, Lactobacillus acidophilus NCFM,
Lactobacillus rhamnosus HN001, Lactobacillus casei LPC-37, and
Bifidobacterium lactis HN019) (Flesch et al., 2017)

Pre (5 d)
and Post
(14 d)

Decreased surgical site
infection, abdominal

infection, and pneumonia
infection

No effect NA

Probiotics (Bifidobacterium and Lactobacillus) (Zhao et al., 2017) Post (7 d) NA NA
Reduced first flatus

time

Probiotics (NA) (Xie et al., 2018) Post (8 d) No effect No effect
Reduced first flatus

time

(Continued)
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modulating homeostasis in the gut and playing an important role in

the epithelial repair after injury (Burgueno and Abreu, 2020).

Metabolites produced by gut microbiota are also involved in the

intestinal epithelial repair. Butyrate, one of the SCFAs derived from

the bacterial fermentation of dietary fibers, regulates colonocyte

proliferation, strengthens the gut barrier, limits pathogen growth,

and suppresses inflammatory response (Martin-Gallausiaux et al.,

2021). Several animal studies have shown that exogenous butyrate

administration improves the healing of colonic anastomoses and

enhances colonic anastomotic strength in rats (Rolandelli et al., 1997;

Mathew et al., 2010; Bosmans et al., 2017). Besides, perioperative

supplementation of inulin and galactooligosaccharides, which

modulate the gut microbiota to increase the production of butyrate

through enhancement of butyrate-producing bacteria, improve

anastomotic healing and reinforce the gut barrier in mice (Hajjar

et al., 2021). Moreover, SCFAs produced by gut microbiota may be a

mechanism of intestinal resistance to colonization by P. aeruginosa,

which has been identified as an AL-related pathogen (Levison, 1973;

Williamson and Alverdy, 2021). These data indicate the importance

of functional gut microbiota to ensure adequate healing, but the stress

of perioperative events and surgery itself may induce a shift of gut

microbiota to a pathologic phenotype, which leads to an AL.

Previous studies have investigated the causal relationship

between AL and gut microbiota. Anastomotic injury, without

preoperative MBP or antibiotic prophylaxis, contributes to

remarkable compositional and functional changes in the

anastomotic tissue-associated microbiota with a 200-fold and

500-fold increase in the relative abundance of Escherichia-Shigella

and Enterococcus, respectively (Shogan et al., 2014). However, these

alterations were not observed in the stool microbiota (Shogan et al.,

2014), suggesting that certain bacteria having adhesive properties

invade the anastomotic site, which may potentially complicate or

accelerate anastomotic healing.

Clinically relevant animal models of AL are created to

investigate the responsible gut microbiota-related mechanisms

involved in the pathogenesis of AL. A novel model of AL, in
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which rats are exposed to preoperative radiation as in patients

with advanced rectal cancer and undergo a distal colon resection

followed by intestinal inoculation with P. aeruginosa, a common

pathogen in the gut following radiation exposure, is developed

(Olivas et al., 2012). Only those rats that are both exposed to

radiation and colonized by P. aeruginosa occur AL. Sequencing of

retrieved P. aeruginosa strains from the leaking anastomotic tissues

demonstrates that the appearance of a single nucleotide

polymorphism mutation in the mexT gene leads to a stop codon

and subsequent a non-functional truncated protein, which induces

P. aeruginosa in vivo transformation to more destructive phenotype

with enhanced abilities of collagen degradation, invasion, and

cytotoxicity. This study indicates that interactions between

pathogen and host stimulate and contribute to the development

of bacterial virulence and subsequent AL. More molecular detail on

the microbiota-dependent pathogenesis of AL also has been

identified. A commensal bacterium, E. faecalis, contributes to the

pathogenesis of AL by degrading collagen and activating host

matrix metalloproteinase 9 (MMP9) (Shogan et al., 2015). Rat

receiving a low colonic reconstruction and segmental

devascularization develop a 50% incidence of AL. The leaking

anastomotic tissues are colonized by E. faecalis strains with high

collagenase activity. In contrast, the healed anastomotic tissues

harbor low collagenase E. faecalis strains. Both eliminations of E.

faecalis strains by direct topical antibiotics and pharmacological

suppression of intestinal MMP9 activation prevent AL.

Mechanically, high collagenase-producing strains directly cleave

collagen I and indirectly break down collagen IV by converting

tissue MMP9 to its active form, which is dependent on the

collagenase-encoding genes gelE and sprE. Fusobacterium

nucleatum (F. nucleatum) also can induce colon AL by activating

epithelial cells to express MMP9 (Shi et al., 2022). Recent studies

using FMT demonstrate a causal role of the preoperative and

postoperative gut microbiota in AL. FMT using postoperative

stool samples from AL patients leads to poor anastomotic healing

in rats (Jin et al., 2022). Mice receiving preoperative stool samples
TABLE 1 Continued

Formulation Timing
(Duration)

Effect on infectious
complications

Effect on
anastomotic

leak

Effect on
gastrointestinal

motility

Synbiotics (fructo-oligosaccharide, Lactobacillus acidophilus NCFM,
Lactobacillus rhamnosus HN001, Lactobacillus casei LPC-37, and
Bifidobacterium lactis HN019) (Polakowski et al., 2019)

Pre (7 d)
Decreased overall infectious

complications
NA NA

Probiotics (Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus
plantarum, Lactobacillus rhamnosus, Bifidobacterium lactis,
Bifidobacterium bifidum, Bifidobacterium breve, Streptococcu
sthermophilus) (Bajramagic et al., 2019)

Post (1 year) No effect No effect
Reduced

postoperative ileus

Probiotics (Bifidobacterium longum, Lactobacillus bulgaricus, and
Streptococcus thermophilus) (Xu et al., 2019)

Pre (7 d) No effect NA
Reduced first flatus

time

Probiotics (Bifidobacterium animalis subsp. lactis HY8002, Lactobacillus
casei HY2782, and Lactobacillus plantarum HY7712) (Park et al., 2020)

Pre (7 d)
and Post
(21 d)

No effect NA No effect

Probiotics (Lactobacillus rahmnosus GG) (Folwarski et al., 2021) Post (30 d) No effect No effect
Reduced first flatus
and defecation time
Pre, preoperatively; Post, postoperatively; d, days; NA, not available.
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from AL patients with CRC also display poor surgical healing,

which is correlated with two bacterial strains, Alistipes onderdonki

(A. onderdonkii) and Parabacteroides goldsteinii (P. goldsteinii), and

A. onderdonkii supplementation leads to a higher rate of leaks in

mice (Hajjar et al., 2022). Overall, some individual pathogens,

including E. faecalis, P. aeruginosa, F. nucleatum, and A.

onderdonkii, have been implicated in the pathogenesis of AL by

promoting the breakdown of collagen (Figure 2). A short course of

dietary prehabilitation decreases postoperative collagenolytic

Enterococcus and reduces AL in mice (Hyoju et al., 2020).

Although the effect of probiotics or synbiotics on the AL is not

satisfactory in most clinical cases according to limited reports

(Table 1), P. goldsteinii plays an anti-inflammatory effect and

improves wound healing in a murine AL model (Hajjar et al.,

2022), representing a potential probiotic that may enhance

postoperative recovery in patients at risk of developing AL.

Taken together, these animal data suggest that bacterial

phenotypes can be reshaped in vivo by injured tissue, which may

have a profound effect on the recovery from GI surgery. Targeting

the gut microbiota as a modifiable factor may be a novel strategy for

the prevention of AL.
5.3 Gastrointestinal dysmotility

GI dysmotility is common after major GI reconstruction. This

dysmotility can range from malabsorption, which is associated with

increased motility, to postoperative ileus (POI). Gut microbiota

plays a significant role in the regulation of GI physiology,

particularly GI motility (Zheng et al., 2022).

Altered gut microbiota after GI surgery substantially contributes to

changes in GI motility. POI is one of the most frequent complications

after GI surgery. Mice treated with oral antibiotics show a moderate

alleviation in small intestinal POI, whereas POI is improved by

antibiotic treatment in the colon (Pohl et al., 2017). Besides, there is

a big difference in the quantity and composition of the gut microbiota

between the small and large intestines (Mowat and Agace, 2014;

Martinez-Guryn et al., 2019), indicating the essential role of gut
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microbiota in the induction of POI. In the clinical setting, CRC

patients with ileus have a lower a-diversity and a higher Firmicutes

to Bacteroidetes ratio of gut microbiota compared with CRC patients

without ileus (Jin et al., 2020). The relative abundance of Proteobacteria

is high in CRC patients with ileus, whereas the relative abundances of

Bacteroidetes, Firmicutes, and Fusobacterium are high in CRC patients

without ileus. At the genus level, Escherichia-Shigella, Ralstonia, and

Veillonella are significantly greater in the group with ileus than that

without ileus. For POI, CRC patients with a low abundance of

Faecalibacterium have a high risk of POI, and Faecalibacterium as a

biomarker has an AUC value of 0.74 for the prediction of POI and an

AUC value of 0.67 for the prediction of POI that occurs 6 months after

discharge from hospital (Jin et al., 2020). Preoperative probiotic

treatment improves bowel movement in the guinea pig with POI,

probably by restoring the beneficial bacterial species Bifidobacterium

bifidum and Bifidobacterium longum and increasing butyrate

production (Shin et al., 2021). Moreover, a meta-analysis of 21

randomized controlled trials shows that prophylactic supplements of

probiotics or synbiotics can effectively shorten the time of first flatus,

first defecation, and first diet and reduce the incidence of POI in

patients receiving GI cancer surgery (Tang et al., 2022). In contrast,

preoperative stimulation of the efferent loop with probiotics does not

affect the appearance of POI in patients undergoing loop ileostomy

closure, which may be due to the previous existence of POI after

colorectal cancer surgery (Rodriguez-Padilla et al., 2021). Nevertheless,

perioperative gut microbiota modulation by supplementation of

probiotics or synbiotics may be used to improve the recovery of GI

motility after GI surgery (Table 1), but the underlying mechanisms and

what changes in gut microbiota resulting from bowel preparation and

surgery contribute to GI dysmotility remain to be elucidated.
5.4 Malabsorption

Complex anatomical GI reconstructions, such as gastrectomy,

RYGB surgery, and pancreaticoduodenectomy, can lead to fat

malabsorption, dumping syndrome, and vitamin deficiencies.

Patients subjected to RYGB are at an increased risk of
FIGURE 2

Role of bacteria in the pathogenesis of anastomotic leak. Surgical resection and reconstruction induce physiological stress and lead to a release of
inflammatory signals, which contribute to phenotype transformation or selection of gut microbiota. E. Faecalis and P. aeruginosa sense and respond
to the host’s local stress signals resulting in increased adherence capacity and collagenase production. Bacterial collagenase directly breaks down
collagen I and indirectly breaks down collagen IV by converting local tissue MMP9 to its active form. SCFAs-producing microbiota prevents P.
aeruginosa colonization. Besides, F. nucleatum can stimulate epithelial cells’ MMP9 expression contributing to the loss of submucosa collagen I and
III, and A. onderdonkii-induced TNF-a and IL-1b production by monocytes and neutrophils are also involved in MMP9-dependent breakdown of
collagen. This process results in a breakdown of anastomotic tissue and is involved in the pathogenesis of anastomotic leak. MMP9, matrix
metalloproteinase 9; SCFAs, short chain fatty acids; F. nucleatum, Fusobacterium nucleatum.
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malabsorption resulting in trace element deficiency and osteopenia

(Hammer, 2012; Billeter et al., 2015). Gut microbiota seems to be an

important mediator in this process because FMT from RYGB-

treated mice to germ-free mice without RYGB results in weight loss

and decreased fat mass when compared with mice receiving FMT

from sham surgery controls, potentially by regulating the

production of SCFAs (Liou et al., 2013). The energy-reabsorbing

potential of the gut microbiota, indicated by the Bacteroidetes to

Firmicutes ratio, is decreased following laparoscopic sleeve

gastrectomy (Damms-Machado et al., 2015), and gut microbiota

can also play a significant role in the effects of RYGB on energy

homeostasis (Chakravartty et al., 2015). The increased relative

abundance of Gammaproteobacteria is closely associated with

malabsorption after RYGB (Furet et al., 2010). Although

malabsorption can be treated by vitamin supplementation and

dietary modifications to adapt to the changed metabolism in

many cases (Bland et al., 2016), the effect of the gut microbiota in

the digestion and absorption after major surgery with GI

reconstruction needs a further understanding, which will provide

c u e s f o r d e v e l o pmen t o f t h e r a p i e s t o a c c e l e r a t e

postoperative recovery.
5.5 Cancer risk

The risk of colorectal cancer (CRC) may be increased after

gastric bypass over time, whereas the risk of hormone-related

cancers, including breast, endometrium, and prostate cancer, is

associated with bariatric surgery (Derogar et al., 2013; Mackenzie

et al., 2018). Besides, CRC risk is affected by sex and type of surgery.

An increased risk of CRC is observed in males compared to females,

especially 3 years or more after bariatric surgery, whereas CRC risk

is decreased in females after RYGB but not sleeve gastrectomy

(Hussan et al., 2022). Postoperative alteration of gut microbiota

influences cancer risk and recurrence. Both decreases in absorptive

GI mucosa and changes in the gut microbiota after bowel

reconstruction contribute to disruption in the processing of bile

acid (Flynn et al., 2015; Albaugh et al., 2019), which may expose

colonocytes to more secondary bile acid, in particular deoxycholic

acid (DCA), activating multiple signaling pathways including EGFR

and Wnt in enterocytes that can lead to the development of CRC

(Jia et al., 2018). Increased mucosal exposure to bile acid has been

proposed to increase the risk of CRC after RYGB (Kant et al., 2014).
5.6 Cancer recurrence

Gut microbiota also has been associated with CRC recurrence

after surgery. Although patients undergoing surgery are often

optimized with adjuvant or neoadjuvant chemoradiotherapy, up

to one-third of them will get a postoperative CRC recurrence

(Jeffery et al., 2007). In the traditional view, cancer recurrence is

due to the postoperative blossom of shed tumor cells either at the

surgical site or unknowingly present in the distal organs at the time

of surgery. However, an opinion that the gut microbiota influences

postoperative cancer recurrence is emerging (Figure 3).
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Spatial-specific gut microbiota profiles link to CRC recurrence.

The composition of gut microbiota at adjacent-tumor sites of

patients with CRC recurrence is different from that in patients

without CRC recurrence (Huo et al., 2022). At the phylum level, the

relative abundance of Fusobacteria at adjacent tumor sites is much

higher in patients with CRC recurrence than that in patients

without CRC recurrence (Huo et al., 2022). Gut microbiota can

serve as biomarkers to predict the risk of CRC recurrence. Besides,

the postoperative gut microbiota can drive shed cancer cells to a

migratory and aggressive phenotype, assisting them to escape

immune surveillance to promote a postoperative recurrence.

Through matrix metalloproteinases or the urokinase-plasminogen
FIGURE 3

Possible mechanism of bacteria-associated colorectal cancer
recurrence after surgical resection. A specific local context is
created by surgical resection and reconstruction. Shed cancer cells
occur during and after surgery. Context-dependent colonization of
collagenase-producing bacteria, such as Enterococcus faecalis,
cooperating with local macrophages, impairs anastomotic healing
and promotes shed cancer cell proliferation, migration, and invasion,
leading to cancer recurrence. MMP9, matrix metalloproteinase 9.
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system, the collagenase-producing bacteria can bind to and degrade

extracellular matrix, breakdown products of which are well known

to promote proliferation, migration, and invasion of cancer cells

(Shogan et al., 2015; He et al., 2016; Jacobson et al., 2020). E.

faecalis, a high collagenase-producing strain, cooperating with

macrophages reshapes colonic epithelial cells to a mesenchymal

phenotype that is similar to the phenotype seen in mesenchymal

transition, which is a fundamental biological process of tumor

metastasis (Belogortseva et al., 2017). Indeed, colonization of

collagenase-producing E. faecalis or Proteus mirabilis promotes

shed cancer cells to form a tumor in mice on a high-fat diet

undergoing a colon resection and anastomosis, which can be

prevented by administration of a collagenase inhibitor (Gaines

et al., 2020). Thus, gut microbiota-targeted strategies may be used

to reduce the risk of CRC recurrence by eliminating these bacteria

or inhibiting their collagenase activities.
6 Conclusion

Emerging evidence supports the role of gut microbiota in our

understanding of postoperative complications. The causative role of

gut microbiota in recovery from GI surgery needs to be further

defined through in-depth research of the shift of bacterial phenotype,

the interaction between gut microbiota and host, and their effects on

the local microenvironment. Comprehensive knowledge of

perioperative gut microbiota can provide a possibility for designing

novel appropriate strategies for personalized bowel preparation. Fecal

culture is limited to detail molecular information. Both before and

after surgery, next-generation sequencing and phenotype analysis are

necessary to serially track the composition and function of the

bacterial community, which will advance the understanding of the

gut microbiota and guide clinical care over the entire course of

recovery. Resultant therapeutic innovations in the maintenance of gut

microbiota and control of postoperative complications include

methods to selectively kill pathogenic bacteria using narrow-

spectrum antibiotics, antibody-labeled antibiotics, or engineered

bacteriophages, and methods to restore gut microbiota using
Frontiers in Cellular and Infection Microbiology 10
probiotics, prebiotics, bacterial ligands, or FMT. The molecular

mechanistic understanding of the role of gut microbiota in

postoperative complications will finally help to enhance recovery

from GI surgery.
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