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Bordetella spp. utilize the type 3
secretion system to manipulate
the VIP/VPAC2 signaling and
promote colonization and
persistence of the three classical
Bordetella in the lower
respiratory tract

Nicholas J. First1, Jose Pedreira-Lopez1,
Manuel R. F. San-Silvestre1, Katelyn M. Parrish1,
Xiao-Hong Lu2 and Monica C. Gestal1*

1Department of Microbiology and Immunology, Louisiana State University (LSU) Health Sciences Center
at Shreveport, Shreveport, LA, United States, 2Department of Pharmacology, Toxicology, and
Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport,
LA, United States
Introduction: Bordetella are respiratory pathogens comprised of three classical

Bordetella species: B. pertussis, B. parapertussis, and B. bronchiseptica. With recent

surges in Bordetella spp. cases and antibiotics becoming less effective to combat

infectious diseases, there is an imperative need for novel antimicrobial therapies.

Our goal is to investigate the possible targets of host immunomodulatory

mechanisms that can be exploited to promote clearance of Bordetella spp.

infections. Vasoactive intestinal peptide (VIP) is a neuropeptide that promotes

Th2 anti-inflammatory responses through VPAC1 and VPAC2 receptor binding and

activation of downstream signaling cascades.

Methods:We used classical growth in vitro assays to evaluate the effects of VIP on

Bordetella spp. growth and survival. Using the three classical Bordetella spp. in

combination with different mouse strains we were able to evaluate the role of VIP/

VPAC2 signaling in the infectious dose 50 and infection dynamics. Finally using the

B. bronchisepticamurine model we determine the suitability of VPAC2 antagonists

as possible therapy for Bordetella spp. infections.

Results: Under the hypothesis that inhibition of VIP/VPAC2 signaling would

promote clearance, we found that VPAC2-/- mice, lacking a functional VIP/

VPAC2 axis, hinder the ability of the bacteria to colonize the lungs, resulting in

decreased bacterial burden by all three classical Bordetella species. Moreover,

treatment with VPAC2 antagonists decrease lung pathology, suggesting its

potential use to prevent lung damage and dysfunction caused by infection. Our
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results indicate that the ability of Bordetella spp. to manipulate VIP/VPAC signaling

pathway appears to be mediated by the type 3 secretion system (T3SS), suggesting

that this might serve as a therapeutical target for other gram-negative bacteria.

Conclusion: Taken together, our findings uncover a novel mechanism of bacteria-host

crosstalk that could provide a target for the future treatment for whooping cough as well as

other infectious diseases caused primarily by persistent mucosal infections.
KEYWORDS

Bordetella bronchiseptica, Bordetella pertussis, Bordetella parapertussis, Bordetella, VIP
(vasoactive intestinal peptide), type 3 secretion system, VPAC2 receptor, immunotherapy
Introduction

“Whooping cough” or pertussis disease is a re-emerging illness

responsible for over 160,000 childhood deaths in 2014 (Yeung et al.,

2017), with 30% being in neonates and most being infants under 6

weeks of age (Shi et al., 2021). Despite high vaccine coverage, numbers

of cases are increasing due to the replacement of a whole-cell pertussis

vaccine with an acellular vaccine (Smallridge et al., 2014; Dorji et al.,

2018). The classical Bordetella species consist of three highly similar

species which cause infection in a wide variety of mammals.

Bordetella pertussis (BP) has the most stringent host range

restricted only to humans (Mattoo and Cherry, 2005; van Beek

et al., 2018; Decker and Edwards, 2021); Bordetella parapertussis

(BPP), which is a pathogen of humans and sheep; and Bordetella

bronchiseptica (BB), that has a broader host range including humans

and other mammals (Kilgore et al., 2016). Interestingly, BB is a

natural pathogen of mice, which causes a disease that mimics the

human persistent illness, providing a natural model of disease to

study in-depth host-pathogen interactions (Rougier et al., 2006; Zhao

et al., 2011; Mills and Gerdts, 2014; Linz et al., 2016; Gestal et al.,

2019). Importantly, BB is the evolutionary ancestor of BPP and BP,

which resulted in the nascent classical strains containing a restricted

genome paired with a greater host specificity (Parkhill et al., 2003;

Park et al., 2012). However, many Bordetella spp. virulence factors,

such as the type 3 secretion system (Linz et al., 2016), still remain

conserved among them. Additionally, BB causes disease by robustly

and persistently colonizing in the murine respiratory tract with an

inoculum as low as 5 CFU (Weyrich et al., 2014). With this, murine

models allow us to explore how Bordetella spp. suppress host immune

responses at the molecular level. Like other pathogens, Bordetella spp.

have evolved mechanisms in order to cause characteristic long-term

disease, which allow for the expression of virulence factors

(Andreasen and Carbonetti, 2008; Paccani et al., 2008; Fedele et al.,

2017; Gestal et al., 2019) to be finely regulated in response to host cues

such as blood, serum, iron, CO2, and hormones such as

catecholamines (Brickman et al., 2007; Armstrong et al., 2012;

Hester et al., 2012; Gestal et al., 2018). Understanding the

mechanisms that Bordetella spp. utilize to suppress host-immune
02
responses might provide novel avenues for therapeutic development

to treat pertussis disease (Gestal et al., 2019).

Whooping cough has three different stages of disease: the

catarrhal stage, which is the most contagious and leads to disease

dissemination, the paroxysmal phase that is characterized by the

violent and continuous coughing, and the pneumonic stage that can

lead to death, especially in infants (Mikelova et al., 2003; Kilgore et al.,

2016). Current research focuses on suppressing the nasal colonization

to block transmission. However, targeting the pneumonic stage is

necessary to prevent deaths or permanent damage to the respiratory

system. Macrolides are the most common antibiotic given to patients

infected with Bordetella spp. However, in Asia, antibiotic resistance is

emerging, posing a risk of worldwide dissemination (Feng et al., 2021;

Wu et al., 2022). Current research focuses on immunotherapies that

prevent pathology associated with disease. One treatment for

Bordetella spp. infection is targeting the sphingosine-1 phosphate

receptor, which reduces pathology-associated morbidity but does not

affect bacterial numbers (Skerry et al., 2015; Skerry et al., 2017). Other

immunotherapies for diseases such as COVID-19 target the

vasoactive intestinal peptide or VIP, which modulates the balance

between pro- and anti-inflammatory responses (El Karim et al., 2008;

Campos-Salinas et al., 2014; Askar et al., 2020) with promising results.

Vasoactive intestinal peptide (VIP) is a 28-amino acid

neuropeptide expressed by neurons and leukocytes (Said, 1986).

This molecule exerts immunosuppressive functions by interacting

with its two G-protein coupled receptors (GPCRs), VPAC1, and

VPAC2. In T cells, VIP/VPAC2 signaling promotes selective

differentiation of Th2 effectors (Pozo and Delgado, 2004), survival

of Th2 T cells (Sharma et al., 2006; Leceta et al., 2021), and alteration

of the Th1 ratios in regulatory T- cells (Jimeno et al., 2012),

consequently skewing equilibrium towards an anti-inflammatory

Th2 response. VIP is one of the most abundant neuropeptides in

the lungs (Baraniuk et al., 1990; Pozo and Delgado, 2004), suggesting

a critical function for this peptide during lung immune responses.

Given the influence this peptide has on the regulatory T-cell response

and its abundance in the lungs, we hypothesized that VIP/VPAC2

axis can be utilized as immunotherapy during Bordetella spp. disease

to decrease infection factors such as bacterial burden and pathology.
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Our results demonstrate that the VIP/VPAC2 axis is critical for

the colonization and persistence of all three classical Bordetella spp. in

the lower respiratory tract. They also suggest that Bordetella spp.

utilize the T3SS, a btrS-mediated mechanism, to manipulate VIP/

VPAC2 signaling of the host and promote long-term lung

colonization. Our preliminary data indicate that VPAC2

antagonists can be used to decrease lung pathology caused by

whooping cough, indicating that the use of this axis for the

development of immunotherapies can be applied to attenuate

infection caused by Bordetella spp. and possibly other respiratory

pathogens and pathologies that in infants can trigger pulmonary

hypertension and death (Scanlon et al., 2022).
Materials and methods

Bacterial strains and culture conditions

All Bordetella spp. were cultured on 100 x 15mm Petri dishes

containing Difco Bordet-Gengou (BG) agar (BD, cat. 248200)

supplemented with 10% sheep defibrinated blood and 20 mg/mL

streptomycin, herein referred to as BGS agar (Dewan et al., 2017;

Gestal et al., 2018; Gestal et al., 2019). For liquid cultures, Luria-

Bertani or Stainer-Scholte media were used (Gestal et al., 2018). The

Bordetella strains used include the B. pertussis strain Bp536, B.

parapertussis strain Bpp12822, and B. bronchiseptica strain BbRB50

(Gestal et al., 2018). The RB50DbtrS knockout (Gestal et al., 2019) and

the T3SS knockout (RB50DbscN) mutants were generated in a previous

study (Yuk et al., 1998). See Table 1 for the bacterial strains used for the

following experiments and their associated references.
Bacterial growth in physiologically relevant
media supplemented with VIP

To evaluate the antimicrobial activity of VIP (Sigma Aldrich, cat

number V6130-250UG) the experiments were performed in a 96-well

plate (Corning, Coastar, Cat number 3591). Inoculums of 0.1 OD600

of the 3 classical Bordetella spp. were inoculated in phenol red-free

DMEM (Gibco, Cat #3105-028) containing 10% FBS (Gibco, Cat #10-

082-147) supplemented with different concentrations of VIP or in

artificial sputum matrix media (BioChemazone, Cat #BZ274), to

mimic the host environment. The initial concentration was 25nM,

considering that this will be a physiologically relevant concentration

of VIP (Henning and Sawmiller, 2001). Concentration was doubled
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up to 200nM, which has been reported to be maximum concentration

possible in the brain. To further investigate the ability of VIP to kill

bacteria, we then tested up to 1000 nM of VIP in DMEN. Additionally

we also evaluated the effects on VIP on synthetic sputum media. The

OD600 measurements were performed overnight (≥12 hours) using

the Biotek Synergy H1® 96-well plate reader. To calculate the

replication time, we followed previously published protocols (Pope

et al., 2010) combined with the built-in analytic calculations available

in GraphPad Prism v9.5.0.
Animal experiments

Wildtype C57BL/6J mice were purchased from Jackson

Laboratories, Bar Harbor, ME. VPAC2-/- mice were gifted to us

from Dr. Xiao-Hong in the department of Pharmacology,

Toxicology, and Neuroscience at LSU Health Shreveport, who

originally purchased the mice from Jackson Laboratories

(B6.129P2-Vipr2tm1Ajh/J). Breeding colonies were maintained under

the care of the employees and the veterinarians at the animal facility at

Louisiana State University health science center at Shreveport, LA. All

animal experiments were carried out in accordance with all

institutional guidelines (AUP:20-038; AUP:22-031) and performed

in at least two or more independent experiments, with the total

number of mice used for each experiment indicated in the figure

legends. Mice were euthanized using 5% CO2 followed by cervical

dislocation. Following euthanasia, the nasal cavity, trachea, and lungs

were collected in 1 mL of cold PBS in 2 mL tissue homogenization

tubes containing a mixture of 0.5 mm and 1.4 mm ceramic beads.
Effect of pre-incubation with VIP
on mouse colonization

To evaluate the effects of preincubation with VIP on virulence,

bacteria were cultured for 24h in phenol-free DMEM (Gibco)

containing 10% FBS (Gibco) supplemented with a 200nM

concentration of VIP. These overnight cultures were used to

prepare the inoculums as previously described (Gestal et al., 2018).

We euthanized mice at day 3 post-infection (Sukumar et al., 2009;

Boehm et al., 2019; Wolf et al., 2021) to accurately analyze the effects

of VIP on early events of Bordetella spp: colonization, as measuring

bacterial burden at later timepoints such as day 7 or day 14 post-

infection would be more representative of the infection peak or the

initiation of infection clearance, respectively.
TABLE 1 Bacterial strains included in this study.

Bacterial strain Name Reference

Bordetella pertussis Bp536 (Gestal et al., 2018; Gestal et al., 2022)

Bordetella parapertussis Bpp12822 (Gestal et al., 2018; Gestal et al., 2022)

Bordetella bronchiseptica BbRB50 (Gestal et al., 2018; Gestal et al., 2019; Gestal et al., 2022)

Bordetella bronchiseptica BbRB50DbtrS (Gestal et al., 2018; Gestal et al., 2019; Gestal et al., 2022)

Bordetella bronchiseptica BbRB50DbscN (Yuk et al., 1998)
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Median infectious dose

To evaluate the effects of the VIP/VPAC2 function on Bordetella

spp. colonization in the lower respiratory tract, serial dilutions of the

bacterial strains indicated in Table 1 (102 - 106 CFU/mL) were

prepared then plated to confirm proper dilution factors were used.

C57BL/6J and VPAC2-/- mice were then inoculated with the

increasing bacterial concentrations, and bacterial colonies from

nasal cavity, trachea, and lungs of the mice (n = 4-8 mice per

condition) were enumerated at 7 days post-infection. Measuring

bacterial burden at day 7 post-infection is defined as the peak of

Bordetella spp. infection, and it also supported by previously

published methods used to assess the minimal required dose of

bacteria for successful infection (Belhart et al., 2019). Thus, from

these values, 50% of the bacterial inoculum required to efficiently

infect the mice used for these experiments (also referred to as ID50)

was calculated.
Time-course of infection

C57BL/6J and VPAC2-/- mice were intranasally challenged with

30-50mL of PBS containing 1x105 CFU/mL of B. pertussis, B.

parapertussis, and B. bronchiseptica (bacterial strains listed in

Table 1). Bacterial colonies were enumerated from the nasal cavity,

trachea, and lungs by plating serial dilutions in BG agar with 20 mg/ml

of Streptomycin once every 7 days, starting from day 7 and ending on

day 28 post-infection.
VIP antagonist

For the evaluation of the effects of the administration of an

antagonist of the VPAC2 receptor, the compound PG 99-465 was

purchased from Bachem Americas, Inc. (cat number H-

7292.1000BA). C57BL/6J mice were intranasally challenged with the

RB50 strain of B. bronchiseptica. The administration of the treatment

consisted of daily 50mL doses of an 8.5mM dilution of PG 99-465. This

was to ensure proper administration of a 0.1mg/1kg dose in a volume

high enough to flood the murine lungs and generate a localized effect.

The preparation of the 8.5 mM dilution of PG 99-465 started from the

0.5mg of compound in the commercial format and adding 1x PBS

until reaching the desired concentration. The mice were treated until

day 14 post-infection, then the bacterial burden was enumerated.

Another group of mice were sacrificed at day 7 post-infection for

hematoxylin and eosin (H&E) staining to assess inflammation in

the lungs.
Statistical analysis

All results were graphed in GraphPrism v9.5.0 and statistical

significance was calculated using the Sidaks two-way ANOVA

multiple comparison test for all animal experiments. All experiments

were performed in at least two or more independent biological

replicates. The exact number of mice and technical replicates is
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indicated in each figure legend. A p-value <0.05 was considered

statistically significant. In the figures the asterisks correspond with

*p ≤ 0.05, ** p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. Statistical

significance is shown only in the relevant figures.
Results

VIP does not affect Bordetella spp
growth rate

Previous literature has shown that the Vasoactive Intestinal

Peptide (VIP) has an antimicrobial effect on some bacterial species

such as Escherichia coli, Pseudomonas aeruginosa and Streptococcus

mutans (El Karim et al., 2008; Carion et al., 2015). Therefore, we first

evaluated the antimicrobial activity of VIP against all three classical

Bordetella species.

To assess the bactericidal or bacteriostatic effect of VIP we

performed our studies using a physiologically relevant media,

DMEM with 10% FBS or artificial sputum media, supplemented

with increasing concentrations of VIP. Our lowest concentration

corresponds with the reported concentration of VIP in serum, 25

nM (Ghaferi et al., 2008), and our highest is greater than the reported

concentration of VIP in brain, 100nM (Goadsby and Edvinsson,

1994) or previously tested for antimicrobial activity of VIP (Carion

et al., 2015). The results show no significant differences between the

duplication times of B. pertussis, B. parapertussis or B. bronchiseptica,

for any of the concentrations evaluated in our studies (Figure 1). We

were not able to identify defect in growth or bacterial killing in

DMEM or sputum. Thus, we concluded that VIP does not possess

bactericidal nor bacteriostatic activity against the three classical

Bordetella spp. at physiologically relevant conditions.
Previous incubation with VIP has no effect
in lung colonization for the three
classical Bordetella

We wanted to investigate if prior incubation with VIP would

prime Bordetella spp. to better respond to host cues and enhance the

bacteria’s ability to colonize the respiratory tract, similar to what has

been shown with other host components. To test this hypothesis,

overnight cultures of the three classical Bordetella spp. in DMEM

supplemented with 10% FBS with or without 200 nM of VIP (as

indicated in the figure legend), were used to intranasally inoculate

mice. At day 3 post-infection, mice were euthanized to enumerate

colonies in the respiratory tract to assess for the ability of the bacteria

to colonize the lungs.

The results show no significant differences in bacterial ability to

colonize the respiratory tract. It is worth noting that there are

limitations to infecting mice with B. pertussis and B. parapertussis.

Because the bacteria were inoculated intranasally, it is possible that

the inoculums were not fully inhaled due to bubbles or leaks from the

nose, leading to inconsistent lung colonization. In addition, colony

growth can be unpredictable since both bacteria are not natural
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A B C

FIGURE 2

Pre-incubation with VIP does not promote bacterial colonization. Overnight cultures of B. pertussis BP536 (A), B. parapertussis 12822 (B), and B.
bronchiseptica RB50 (C), were done in DMEM supplemented with 10% FBS. The overnight cultures were treated with or without 200nM of VIP, as
indicated in the legends of each figure. After 24 hours, these cultures were used to intranasally inoculate mice with 30ml of PBS containing 5x105 CFUs of
bacteria. At day 3 post-challenge, CFUs were enumerated by counting colonies in BGS agar from the nasal cavity (NC), trachea (Tr), and lungs (L). Two-
way ANOVA analysis was performed to evaluate statistical differences. Data was comprised of two independent experiments. The bars represent the
mean ± SD, with each data point representing one mouse (n = 4-7 mice per condition).
A B C

FIGURE 1

VIP does not kill nor affect the growth of classical Bordetella spp. In vitro cultures of B. pertussis strain 536 in grey (A), B. parapertussis strain 12822 in
purple (B), and B. bronchiseptica strain RB50 in blue (C) were inoculated on a 96-well plate using DMEM supplemented with 10% FBS, or synthetic
sputum media, containing a series of increasing VIP concentrations (between 0 to 1000nM). The plate was incubated in a Biotek Synergy H1® for 12
hours to monitor bacterial growth by optical density (OD600). Each symbol shows the mean of a single biological replicate containing 3 technical
replicates. Duplication time was calculated for each case during the exponential phase. Two-way ANOVA analysis was performed to evaluate statistical
differences. N = 3-10, with 3 technical replicates for each assay.
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pathogens of mice. The number of B. pertussis (Figure 2A),

B. parapertussis (Figure 2B), and B. bronchiseptica (Figure 2C) that

was isolated from the lungs of mice at day 3 post-infection was not

affected by previous incubation with VIP. Similar results were

previously observed with pre-incubation with blood and serum

where despite increased in vitro cytotoxicity was observed after

incubation with serum, no differences in the bacterial ability to

colonize mice were detected (Gestal et al., 2018). Thus, we

concluded that VIP does not possess any kind of activity that

enhances the colonization properties of any of the three classical

Bordetella species.
Functional VIP/VPAC2 axis promotes
Bordetella spp. colonization

Previous literature has shown that VPAC2 and VPAC1 vary levels

of expression during infection with different pathogens (Ipp et al.,

2014; Askar et al., 2020; Yu et al., 2021). Moreover, pathogens such as

Salmonella spp. utilize VIP/VPAC axis to promote intracellular

survival in macrophages (Askar et al., 2020), suggesting that VIP/

VPAC axis might influence infection dynamics and persistence.

C57BL/6J and VPAC2-/- mice were intranasally inoculated

with increasing bacterial concentrations of B. pertussis, B.

parapertussis, and B. bronchiseptica, and euthanized at day 7 post-

infection to enumerate colonies from the respiratory tract (Belhart

et al., 2019).

Our results show that the ability of B. pertussis to colonize in the

lungs of the VPAC2-/- mice was substantially depleted (Figure 3A), as

a 10-fold increase of bacterial inoculum was required to establish an

efficient lung infection. Similarly, B. parapertussis colonized C57BL/6J

(Weyrich et al., 2012) at a lower infectious dose than the VPAC2-/-

mice (Figure 3B). Finally, very low doses of B. bronchiseptica RB50

were required to colonize the C57BL/6J lungs efficiently (Weyrich

et al., 2012; Belhart et al., 2019; Gestal et al., 2019) (Figure 3C).

However, at least 1 x 104 CFUs of RB50 were required to colonize the

lungs of VPAC2-/- mice. Overall, this reduced colonization can be the

product of a stronger pro-inflammatory response of VPAC2-/- mice,
Frontiers in Cellular and Infection Microbiology 06
or it can be due to the role of VIP in mucus secretion, which can affect

colonization as previously reported (Goetzl et al., 2001; Kim et al.,

2006; Samarasinghe et al., 2010; Wu et al., 2011). Nevertheless, our

results altogether suggest that the absence of a functional VIP/VPAC2

signaling impairs classical Bordetella spp. colonization.
Disruption of the VIP/VPAC2 axis mediates
clearance of classical Bordetella spp. from
the lower respiratory tract

One critical aspect of Bordetella spp. infection is the pneumonic

phase that in patients lead to serius illness or even death (Rath et al.,

2008; Barger-Kamate et al., 2016; Jiang et al., 2021). Identifying

immunotherapies that prevent long term lung damage is of great

importance. As VIP is commonly found in lungs, and we saw a defect

in VPAC2-/- mice colonization, we wanted to investigate if VIP/

VPAC2 signaling plays a role during Bordetella clearance from the

lungs. To test this hypothesis, VPAC2-/- or C57BL/6J mice were

challenged with B. pertussis, B. parapertussis, or B. bronchiseptica then

sacrificed at different time points to evaluate the bacterial burden in

the respiratory tract.

Following infection with the B. pertussis strain Bp536, we first

analyzed the colonization in the nasal cavity (Figure 4C). Differences

were not detectable up to day 28 post-infection. Similarly, the trachea

did not reveal any major differences in bacterial load (Figure 4B). In

the lungs, however, bacterial enumeration in the VPAC2-/- lungs

dropped slightly at day 14 post-infection, with differences in the

bacterial burden between VPAC2-/- and C57BL/6J becoming more

distinct as early as day 20 (Figure 4A). Thus, our results suggest that

disruption of VIP/VPAC2 signaling axis promotes clearance the

infection from the lungs.

During Bpp infection, no differences were detected in the

colonization of the nasal cavity (Figure 4F). However, in the trachea

and lungs (Figures 4D–F, respectively) we were able to detect a more

rapid decrease in bacterial burden at day 28 post-infection, suggesting

that, just like B. pertussis, B. parapertussis infection is more rapidly

cleared from the lower respiratory tract of VPAC2-/- mice.
A B C

FIGURE 3

Functional VIP/VPAC2 axis promotes lung colonization by Bordetella spp. C57BL/6J and VPAC2-/- mice were intranasally challenged with increasing
bacterial inoculums (x-axis) of B. pertussis BP536 (A), B. parapertussis 12822 (B), and B. bronchiseptica RB50 (C), each mouse strain indicated in the
figure legends. At day 7 post-infection, we enumerated colonies from the lungs to evaluate colonization. Inoculations were done in parallel in the two
different mice strains, and critical dosages were repeated in at least two independent experiments. Two-way ANOVA analysis was performed to evaluate
statistical differences. The bars represent the mean ± SD, with each data point representing one mouse (n = 4-8 mice per condition). *p ≤ 0.05,
**p ≤ 0.01, ****p < 0.0001.
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Our results demonstrate that the absence of a functional VIP/

VPAC2 axis promotes rapid clearance of B. pertussis and B.

parapertussis from the lower respiratory tract. However, these two

bacteria are not natural pathogens of mice and cause only an acute

disease that is efficiently cleared by the immune system rather than

the characteristic long-term and persistent infection of the human

pertussis disease (Soumana et al., 2021). To investigate the effects of

disrupting VIP/VPAC2 signaling in bacterial clearance in a natural

setting of long-term chronic disease, we used the well-established B.

bronchiseptica murine model (Gestal et al., 2019) following the same

experimental setting as previously indicated.

Our results did not reveal significant differences in the bacterial

burden detected in the nasal cavity (Figure 4I) and trachea

(Figure 4H) between the C57BL/6J and VPAC2-/- mice. In the

lungs, we observed a clear decrease in the bacterial burden by day

14 post-infection (Figure 4G). Overall, these results indicate that the

VIP/VPAC2 signaling pathway significantly impacts the clearance of

B. pertussis, B. parapertussis, and B. bronchiseptica from the lungs.

Because of these observed similarities, the B. bronchiseptica mouse

model can be used for a better understanding of host-pathogen

interactions at the molecular level, as the differences found became

clearer when using a natural pathogen of mice.
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VIP/VPAC2 axis mediated clearance of
Bordetella bronchiseptica is modulated by
the type 3 secretion system

Our previous results revealed that using B. bronchiseptica in this

study could provide a more mechanistic understanding of the role of

VIP/VPAC2 signaling in the infection dynamics. We previously

investigated the mechanisms by which Bordetella spp. suppress host

immune responses, and we described a Bordetella sigma factor, btrS, a

regulator of immunosuppressive pathways in all three of the classical

Bordetella species (Gestal et al., 2019). Absence of btrS results in rapid

clearance and robust immune responses, with the generation of long-

lasting protective immunity (Gestal et al., 2022). We wanted to

investigate if the bacterial btrS-signaling pathway is involved in the

modulation of VIP/VPAC2 signaling. To determine the effects of btrS

on the manipulation of VIP/VPAC2 signaling, we evaluated the

differences between murine bacterial infection by using the

calculated ID50 values following inoculation with the wildtype

BbRB50 strain, a mutant RB50 strain lacking the sigma factor btrS

(RB50DbtrS). The ID50 values were assessed in these experiments

because we predicted that if VIP/VPAC2 axis is modulated by btrS,

there would be no observable difference in the ID50 of RB50DbtrS in
frontiersin.org
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FIGURE 4

Functional VIP/VPAC2 axis promotes long-term persistent infection in the lungs. C57BL/6J and VPAC2-/- mice, were intranasally challenged with different
concentrations of B. pertussis BP536 (A-C), B. parapertussis 12822 (D–F), and B. bronchiseptica RB50 (G–I), with mice strains indicated in each figure legend.
At day 7 post-infection, we enumerated colonies from the nasal cavity (A, D, G), trachea (B, E, H), and lungs (C, F, I). Inoculations were done in parallel in the
two different mice strains and critical dosages were repeated at least in three independent experiments. Each point represents mean ± SEM (n = 5-20 mice
per condition). Two-way ANOVA analysis was performed to evaluate statistical differences. *p ≤ 0.05, **p ≤ 0.01, ****p < 0.0001.
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either C57BL6/J or VPAC2-/- mice. However, if btrS is not involved in

the modulation of VIP/VPAC2, then a reduction in the capability of

colonizing VPAC2-/- mice would be observed, as was previously with

the three Bordetella spp. strains. While differences in the ability to

colonize VPAC2-/- were observed when investigating the RB50 strain

(Figure 5A). Our results did not reveal differences in the ID50 of the

RB50DbtrS, suggesting that in the absence of btrS there are no

alterations in the bacterial ability to colonize neither C57BL6/J nor

VPAC2-/- mice (Figure 5B), contrary to the wildtype B. bronchiseptica

strain which fails to colonize in VPAC2-/- mice.

One of the main virulence factors regulated by the btrS-pathway is

the type 3 secretion system (T3SS). Using the same experimental

setting as previously described, we wanted to evaluate the role of the

T3SS in the modulation of VIP/VPAC2 signaling, we again performed

an ID50 study. We expected that if manipulation of VIP/VPAC2

signaling is mediated by the T3SS, we will not be able to observe

differences in the ID50 between C57BL/6J and VPAC2-/- mice
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(Figure 5C). Our results did not show difference between the ID50

in C57BL/6J mice and the VPAC2-/- mice with the T3SS mutant of B.

bronchiseptica, suggesting that, the modulation of the VIP/VPAC2

axis by Bordetella spp. might be mediated by T3SS. Although VIP/

VPAC2 axis is also involved in the modulation between Th1/Th2

responses, the fact that no differences were found in the ID50 of the

RB50DbscN while differences were found with all the wildtype

bacteria, led us to hypothesized that T3SS might mediate Bordetella

spp. manipulation of VIP/VPAC2 axis to promote colonization.
The administration of a VPAC2 receptor
antagonist mediates clearance of Bordetella
bronchispetica in the lungs

Our previous results show that blocking VIP/VPAC2 axis

promotes rapid clearance of the lower respiratory tract, suggesting
A B

FIGURE 6

Treatment with VPAC2 antagonist reduce lung pathology. (A) C57BL/6J mice were intranasally challenged with B. bronchiseptica RB50. At day 1 post-
infection, we started a treatment with the VPAC2 antagonist daily. Colonies were enumerated from the lungs at day 14, with solid blue points
representing untreated mice, with the hollow blue points being the treated animals. Each point represents one mouse, with each bar representing mean
± SD (A has an n=3-4 animals per condition, B has n=4-8 animals per condition). Two-way ANOVA analysis was performed to evaluate statistical
differences. (B) H&E pathology staining was done at day 7 post-infection with a minimum of 4 animals per group. The above images are representative of
each experimental condition.
A B C

FIGURE 5

B. bronchiseptica utilize the T3SS to manipulate the host VIP/VAPC2 axis. C57BL/6J and VPAC2-/- mice, were intranasally challenged in parallel with
different concentrations of B. bronchiseptica wildtype RB50 (A), the btrS-null mutant RB50DbtrS (B), or the T3SS knockout mutant RB50DbscN (C), with
each mouse strain indicated in each figure legend. At day 7 post-infection, we enumerated colonies from the lungs to evaluate colonization levels.
Inoculations were done in parallel with independent experiment performed at least 2 times. Each point represents one mouse, with each bar
representing mean ± SD (n = 4-8 mice per condition). Two-way ANOVA analysis was performed to evaluate statistical differences. ****p ≤ 0.0001.
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that, the use of an antagonist of the VPAC2 receptor should have a

similar effect in clearance to that observed in the VPAC2-/- mutant

mice. To evaluate if antagonists of VPAC2 promote clearance, we

used the substance PG 99-465 as a treatment for C57BL/6J mice

infected with B. bronchiseptica. The mice were treated every 24 hours

following inoculation with a 50mL dose of PG 99-465 (8.5mM). At 7

and 14 days post-infection, the mice were euthanized to evaluate lung

pathology and colonization respectively.

Although no differences in lung colonization were observed

(Figure 6A), this could be the consequence of the short half-life of

the antagonist, which is a very small and unstable peptide. However,

the pathology results show a clear difference in inflammation of the

bronchia and consolidation of the respiratory parenchyma between

the untreated and treated mice (Figure 6B). The pathology in mice

treated with the antagonist resembled the pathology observed in

VPAC2-/- mice, which successfully recover from infection. Overall,

this suggest that VPAC2 receptor could be targeted for novel immune

therapies against Bordetella spp. infections.
Discussion

Bacteria-host crosstalk is an evolutionary pressure for bacterial

pathogens that rely on their ability to detect and respond to the

stresses of the host environment, and it is one of the driving forces

that dictate disease outcome (El Karim et al., 2008; Gestal et al., 2019).

It has been shown that some host molecules including VIP have

bactericidal effects (El Karim et al., 2008). However, our results did

not reveal any bactericidal effect for VIP against Bordetella spp. when

testing at higher concentrations than surpass the concentrations that

are physiologically relevant (Carion et al., 2015). Our results indicated

that incubation with VIP had no effects in bacterial growth within the

host or bacterial infectivity.

Neuropeptides are known to profoundly impact host biology as

both enhancers of the host immune response and as antimicrobial

agents themselves (Wei et al., 2020). It has been shown that other

pathogens such as Clostridium botulinum, can manipulate GABA

receptors to also promote colonization and persistence (Höltje et al.,

2009). One important function of VIP/VPAC2 signaling is

maintaining homeostasis between Th1 and Th2 responses and

regulate mucus production which can be critical during the

infectious process (Goetzl et al., 2001; Samarasinghe et al., 2010).

Thus, it would make sense that Bordetella spp. and other bacterial

pathogens have evolved means to manipulate this axis to promote

their survival at mucosal sites. In the respiratory tract, VIP triggers

bronchial dilation of lung airways which can provide a target for

bacteria to facilitate colonization (Groneberg et al., 2001; Lindén et al.,

2003). In this work, we wanted to investigate if blocking this signaling

cascade would promote clearance of Bordetella spp. First, we observed

that in the absence of a functional VIP/VPAC2 axis, the classical

Bordetellae fail to colonize the lungs with low infection dosages and

infection is more rapidly clear from the lower respiratory tract.

Moreover, our results revealed that in the absence of a functional

VPAC2-/- receptor classical Bordetella spp. failed to efficiently

colonize the lungs and clear more rapidly the infection from the
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lungs, suggesting that Bordetella harbor mechanisms to manipulate

VIP/VPAC2 signaling. We have not evaluated the role of VIP/VPAC2

in the generation of protective immunity or its impact in the Th1/

Th17 and Th2 responses, though it is clear that it has an impact on the

length of infection, which should be further investigated.

Moreover, we identified one of the possible bacterial mechanisms

involved in the manipulation of this host signaling pathway. The sigma

factor btrS, which regulates an immunosuppressive pathway, is

involved in the manipulation of the host VIP/VPAC2 axis. In fact,

we identify that the T3SS plays a role in the bacterial ability to

manipulate VIP/VAPC2 in order to promote bacterial colonization

in the lungs. It is known that the T3SS is involved in persistence and

immunosuppression in Bordetella spp. as well as in other gram-negative

bacteria. However, these findings provide a novel function for the T3SS,

where bacteria manipulate host VIP/VAPC2 to promote colonization

using the T3SS. Importantly, this also suggest that other gram-negative

bacteria that harbor a functional T3SS might also have the capability to

manipulate the VIP/VPAC2 signaling axis to promote colonization

and persistence.

Overall, our results demonstrate that Bordetella spp., and based

on the literature possibly other mucosal bacterial pathogens (Askar

et al., 2020), may exploit the VIP/VPAC2 axis to promote

colonization and long-term persistence.
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