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Oral microbiome correlates with
selected clinical biomarkers in
individuals with no significant
systemic disease
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The oral microbiome is an important component of the microbiome in the

human body. Although the association of the oral microbiome with various

diseases, including periodontitis and cancer, has been reported, information on

how the oral microbiome is related to health-related indicators in healthy

populations is still insufficient. In this study, we examined the associations of

the oral microbiome with 15 metabolic and 19 complete blood count (CBC)-

based markers in 692 healthy Korean individuals. The richness of the oral

microbiome was associated with four CBC markers and one metabolic marker.

Compositional variation in the oral microbiome was significantly explained by

four markers: fasting glucose, fasting insulin, white blood cell count, and total

leukocyte count. Furthermore, we found that these biomarkers were associated

with the relative abundances of numerous microbial genera, such as Treponema,

TG5, and Tannerella. By identifying the relationship between the oral

microbiome and clinical biomarkers in a healthy population, our study presents

a direction for future studies on oral microbiome-based diagnosis

and interventions.

KEYWORDS
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1 Introduction

The human oral cavity harbors the second most diverse microbial community, after the

intestine. The oral microbiome consists of more than 700 different species of bacteria, along

with viruses, fungi, and archaea (Lamont et al., 2018). This microbial community plays

various roles in maintaining not only oral health but also systemic health. Dysbiosis of the
Abbreviations: ANC, Absolute neutrophil count; ASV, Amplicon sequence variant; CBC, Complete blood

count; IDA, Iron-deficiency anemia; RDW, Red blood cell distribution width; TLC, Total leukocyte count;

WBC, White blood cell count.
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oral microbiome is associated with dental caries, periodontitis,

gingivitis, and oral cancer (Huang et al., 2011; Liu et al., 2012;

Jiang et al., 2018; Yang et al., 2018). Additionally, oral microbial

dysbiosis is linked to inflammatory bowel disease, diabetes,

rheumatoid arthritis, and atherosclerosis (Said et al., 2014; Fak

et al., 2015; Long et al., 2017; Chen et al., 2018).

The oral microbiome is associated with these various diseases;

therefore, the composition of the oral microbiome has the potential to

yield non-invasive biomarkers for diseases. To identify oral

microbiome biomarkers that are differentially abundant between

healthy and disease states, it is necessary to first collect oral

microbiome samples from healthy individuals and to characterize

their compositions. Several studies have indeed examined healthy

oral microbiomes (Zaura et al., 2009; Human Microbiome Project,

2012; Nearing et al., 2020) and reported relationships between the oral

microbiome and specific factors that possibly influence oral

microbiome composition, such as smoking (Wu et al., 2016), alcohol

consumption (Fan et al., 2018), vegan diet (Hansen et al., 2018), and

ethnicity (Mason et al., 2013). Recently, Nearing et al. found that

variations in the oral microbiome of 1,049 healthy Atlantic Canadians

was associated with age, sex, and waist-hip ratio; however, none of 41

different variables, including dietary factors, lifestyle, and

anthropometric factors explained > 2% of the variation in the oral

microbiome, suggesting that there is no strong confounding factor to

be concerned with regarding biomarker detection (Nearing et al.,

2020). Nonetheless, whether the oral microbiome is associated with a

wide range of hematological parameters used to assess overall health

conditions, even in healthy individuals, has not been examined. If there

are microbial changes along with specific test measures in healthy

individuals, the oral microbiome profile can be used as a biomarker for

early diagnosis.

In this study, we investigated the characteristics of oral

microbiome composition in a healthy Korean adult population.

To determine the effect of health conditions on the cohort’s oral

microbiome, we assessed whether 30 hematological parameters (11

metabolic markers and 19 complete blood count [CBC]-based

markers) and 4 additional metabolic biomarkers (body mass

index, waist circumference, systolic blood pressure, and diastolic

blood pressure) were associated with the oral microbiome profiles.
2 Materials and methods

2.1 Study population

As part of an ongoing Korean microbiome project (Lim et al., 2021)

designed to determine the composition of the gut and oral microbiomes

in 10,000 Koreans who were healthy or had metabolic diseases and to

identify associations of the microbiome with health and disease, we

collected saliva samples from 692 apparently healthy individuals living in

the Seoul metropolitan area in 2021. The exclusion criteria for the

selection of apparently healthy volunteers were as follows: use of

antibiotics in the last 3 months; history of major gastrointestinal

surgery; any active uncontrolled gastrointestinal disorders or diseases;

previous cancer diagnosis; chronic clinically significant cardiovascular,

pulmonary, renal, or hepatic disease; pregnant or breastfeeding women.
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This study was approved by the Institutional Review Board of the

Chung-Ang University Hospital (2070-005-429). All the participants

provided written informed consent.
2.2 Clinical assessment

Participant data on 15 metabolic and 19 CBC-based markers

were collected (Supplementary Table 1). The body weight and height

of the participants were measured in light clothing without shoes

using a BSM 330 (Biospace Co. Seoul, Korea). Body mass index

(BMI) was calculated as weight divided by the square of height (kg/

m2). Waist circumference was measured at the midpoint between the

lowest rib and the iliac crest, while the subject was standing. Each

subject was stabilized for more than 10 min, after which their blood

pressure was measured using an automatic blood pressure system

(FT-500R, Selvas Healthcare, Seoul, Korea) in the sitting position.

Blood samples were collected after overnight fasting. Metabolic-based

markers, including aspartate transaminase (AST), alanine

transaminase (ALT), gamma-glutamyltransferase (GGT), creatinine,

total cholesterol (TotalC), high-density lipoprotein cholesterol

(HDLC), triglycerides (TG), low-density lipoprotein cholesterol

(LDLC), fasting glucose, and fasting insulin, were measured using

the ADVIA 1650 chemistry analyzer (Siemens, Tarrytown, NY,

USA). The estimated glomerular filtration rate (eGFR) was

calculated with the 2009 CKD-EPI creatinine equation. CBC-based

markers were determined using the ADVIA 120 automated

hematology analyzer (Siemens, Tarrytown, NY, USA). Outliers that

were outside the lower and upper limits of 1.5 times the interquartile

range were replaced with the 5th and 95th percentile values,

respectively, to reduce the effect of outliers on the statistical

analysis, especially in regression analysis.
2.3 Saliva sample collection, DNA
extraction, 16S rRNA gene sequencing,
and sequencing data analysis

Saliva samples from the participants were collected on the day

of the clinical assessment. Participants were asked not to eat, drink,

or brush their teeth for 1 h before saliva sampling. Participants

rinsed their mouth with water and then spit 2–5 mL of unstimulated

whole saliva directly into a 25-mL conical tube (Eppendorf,

Hamburg, Germany). After collection, saliva samples were

immediately frozen and stored at −80°C until DNA extraction.

Microbial DNA from saliva samples was isolated using the

QIAamp DNA Microbiome Kit (Qiagen, Hilden, Germany),

according to the manufacturer’s instructions (Qiagen, 2014).

Briefly, frozen saliva samples were thawed on ice and vortexed

vigorously. Next, 1 mL sample was transferred to a 2-mL tube and

incubated with 500 mL buffer AHL (provided with the kit) for

30 min. After centrifugation at 10,000 g for 10 min, the supernatant

was removed. Thereafter, samples were transferred to the QIAcube,

and the subsequent steps were performed on a QIAcube (Qiagen).

The total DNA was eluted in 50 mL AVE buffer and stored at −20 °C

until use.
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Library preparation of the V3–V4 region of the 16S rRNA gene

was performed following the 16S Metagenomic Sequencing Library

Preparation Illumina protocol (Part # 15044223 Rev. B, Illumina,

San Diego, CA, USA). Libraries for each sample were sequenced

using the Illumina MiSeq platform (Illumina). The amplicon reads

with five or more mismatches to the primer sequence were

discarded, and the primer parts were removed from the

remaining reads. Using the DADA2 pipeline (Callahan et al.,

2016) of QIIME2 (Bolyen et al., 2019), sequence quality control

and feature table construction were performed via the “qiime dada2

denoise-paired” command with default setting except for “–p-

trunc-len-f 270” and “–p-trunc-len-r 220”. Taxonomy was

assigned using a naive Bayesian classifier (Bokulich et al., 2018)

trained against the V3–V4 fragments of the Greengenes 13_8 99%

operational taxonomic unit dataset (Desantis et al., 2006) via “qiime

feature-classifier classify-sklearn” command.
2.4 Statistical analyses

Alpha diversity measures, including observed features (richness) and

Shannon (diversity) index at the genus and amplicon sequence variant

(ASV) levels, were calculated using the microbiome package in R (Lahti

and Shetty, 2017). Associations between alpha diversity measures and

clinical biomarkers were analyzed using linear regression, adjusting for

age and sex. Using the “adonis2” function in the “vegan” R package,

permutationmultivariate analysis of variance (PERMANOVA) based on

genus-level Aitchison distance was performed to estimate the variation

explained by each biomarker, while controlling for age and sex (Oksanen

et al., 2013). The associations between microbial taxon (from phylum to

genus) and each biomarker were calculated using linear regression, with

age and sex included as covariates. The regression analysis was

performed on the log-2 transformed relative abundance of the taxa

present in at least 10% of samples and the standardized levels of the

biomarkers. In this analysis, corrections for multiple testing were

performed for each taxonomic rank. Clustering of the oral

microbiome was performed using Dirichlet multinomial mixtures on

the rarefied genus level count data in the R package

“DirichletMultinomial” (Morgan, 2022). The optimal number of

clusters was selected based on the Bayesian information criterion.

Principal coordinate analysis based on Bray–Curtis distance was

performed to visualize the two clusters. Differentially abundant genera

between clusters were identified using linear discriminant analysis effect

size (LEfSe) analysis (Segata et al., 2011). Biomarkers associated with the

clusters were identified using the Wilcoxon test. All P-values were

adjusted for multiple comparisons using the Benjamini–Hochberg

method. The results were considered significant at a false discovery

rate (FDR) < 0.05, unless otherwise stated.
3 Results

3.1 Composition of the oral microbiome

We characterized the oral microbiome composition in 692 Korean

adults. At the phylum level, Firmicutes, Proteobacteria, Actinobacteria,
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Bacteroidetes, and Fusobacteria were the five most abundant taxa

(41.2%, 23.3%, 14.1%, 12.4%, and 5.3% of the average relative

abundance, respectively) (Figure 1A). At the genus level, the five

most abundant genera across all samples were Streptococcus, Rothia,

Neisseria, Haemophilus, and Veillonella (19.1%, 11.4%, 10.3%, 10.1%,

and 9.4% of the average relative abundance, respectively) (Figure 1B).

We also characterized the core microbiome that appeared in at

least 95% of individuals at the genus and ASV levels, because the

core microbiome may play essential roles in human oral health, and

thus can be a target for bacterial isolation and its functional

research. We identified 28 core genera, including the five most

abundant genera mentioned above (Supplementary Table 2). At the

ASV level, 10 ASVs—one Peptostreptococcus ASV, one

Campylobacter ASV, one Haemophilus ASV, one Oribacterium

ASV, one Gemellaceae family ASV, one Granulicatella

(Carnobacteriaceae family) ASV, four Streptococcus ASVs—were

found in more than 95% of individuals (Supplementary Table 2).
3.2 Associations between microbial
diversity and biomarkers

Next, we calculated the alpha diversity measures, including the observed

features and Shannon index at the genus and ASV levels. In this population,

the richness values measured as observed features were 60.7 ± 10.6 at the

genus level and 236.8 ± 69.2 at the ASV level. The Shannon index values

were 2.6 ± 0.3 at the genus level and 3.86 ± 0.4 at the ASV level.

The metabolic and CBC biomarkers that were significantly

associated with alpha diversity measures were identified using linear

regression analysis, adjusting for age and sex. Onemetabolic biomarker

(fasting glucose) and three CBC biomarkers (white blood cell count

[WBC], total leukocyte count [TLC], and absolute neutrophil count

[ANC]) were positively associated with the number of observed genera

(FDR < 0.05). One CBC biomarker (red blood cell distribution width,

RDW) was negatively associated with the number of observed genera

(FDR < 0.05) (Table 1). Similarly, we observed positive associations of

the number of observed ASVs with WBC, TLC, and fasting glucose, as

well as a negative association with RDW (FDR < 0.05) (Table 1). Unlike

richness, the Shannon diversity index showed no significant association

with metabolic and CBC biomarkers.

To determine the biomarkers significantly associated with variation of

the oral microbiome at the genus level, we performed PERMANOVA and

quantified the extent of microbiome composition variance explained by

each biomarker, adjusted for age and sex, where FDR<0.1 was considered

significant. Fasting glucose (R2 = 0.0032, FDR=0.068) and fasting insulin

levels (R2 = 0.0026, FDR=0.085) among the metabolic biomarkers and

WBC count (R2 = 0.0028, FDR=0.085) and TLC (R2 = 0.0027, FDR=0.085)

among the CBC biomarkers significantly contributed to variance in the

oral microbiome compositions (Figure 2A).
3.3 Associations between biomarkers and
individual oral microbial abundances

We determined the associations of metabolic and CBC

biomarkers with microbial features at different taxon levels (from
frontiersin.org
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phylum to genus) after correcting for age and sex. We observed 249

significant associations between biomarkers and microbial taxa

(phylum level: 35; class: 40; order: 38; family: 56; genus: 80) (FDR

< 0.05). Focusing on the genus-level associations (Supplementary

Table 3), an unclassified genus in the family Coriobacteriaceae

showed the largest number of associations with biomarkers (four

metabolic and three CBC biomarkers; Figure 2B). The genera TG5,

Treponema, and Paludibacter showed associations with more than

three biomarkers. In addition, unclassified genera in the families

Actinomycetaceae and Acidaminobacteraceae and in the orders

Bacteroidales and Clostridiales were significantly associated with

at least three biomarkers (Figure 2B).

Herein, TLC was associated with the largest number of

genera, including positive associations with 12 genera (e.g.,
Frontiers in Cellular and Infection Microbiology 04
TG5, Parvimonas, Dialister, and Eikenella) and a negative

association with one genus (Haemophilus). Similarly, WBC

count was associated with 10 genera, of which 8 were

positively associated. RDW were associated with 12 genera.

However, unlike the two above-mentioned biomarkers (TLC

and WBC), RDW was negatively associated with 11 genera

(e.g., Treponema, Eikenella, and Tannerella), whereas it was

positively associated with only one genera (Lactobacillus).

Among metabolic biomarkers, fasting glucose showed only

positive associations with eight genera, and the pattern of

associations was similar to that of TLC and WBC count.

Fasting insulin showed a negative association with Neisseria

and positive associations with Moryella, Campylobacter, and

Atopobium (Figure 2B).
A

B

FIGURE 1

Relative abundances of phyla (A) and genera (B) across all participant samples. The left panels indicate the oral microbiome composition of each
individual; the right panels indicate the mean relative abundances.
TABLE 1 Significant associations of the number of observed features (at the genus and ASV levels) with different biomarkers.

Alpha diversity Variable Biomarker type Estimate Standard error Statistic P-value False discovery rate

Observed genera

WBC CBC 0.9856 0.2700 3.6497 0.0003 0.0096

Fasting glucose Metabolic 0.0926 0.0281 3.2892 0.0011 0.0157

RDW CBC -1.8953 0.5902 -3.2111 0.0014 0.0157

TLC CBC 0.0021 0.0007 3.0424 0.0024 0.0192

ANC CBC 0.0011 0.0004 2.9969 0.0028 0.0192

Observed ASVs

WBC CBC 6.1393 1.7748 3.4591 0.0006 0.0101

RDW CBC -13.0538 3.8725 -3.3709 0.0008 0.0101

TLC CBC 0.0151 0.0045 3.3379 0.0009 0.0101

Fasting glucose Metabolic 0.5365 0.1851 2.8982 0.0039 0.0329
ANC, absolute neutrophil count; ASV, amplicon sequence variant; CBC, complete blood count biomarker; Hb, hemoglobin; RDW, red blood cell distribution width; TG, triglycerides; WBC,
white blood cell count; TLC, total leukocyte count.
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3.4 Clusters of oral microbiome and their
association with biomarkers

To determine whether the oral microbiome could be stratified

into several groups, such as enterotypes of the gut microbiome, we

clustered the relative abundance data of the genera present in the

oral microbiome. Using the Dirichlet multinomial mixture

modeling method, the oral microbiome samples were divided into

two clusters (1 and 2; Figure 3A). LEfSe analysis revealed that

cluster 1 was enriched with 16 taxa including Porphyromonas,

Leptotrichia, and Neisseria, whereas cluster 2 was enriched with 5

taxa including Streptococcus, Rothia, and Haemophilus (Figure 3B).

The top three most differentially abundant genera in each cluster

are shown in Figure 3C. Subsequently, we searched for the

biomarkers associated with these oral microbiome clusters.

Among the health-related biomarkers and age, only RDW levels

differed between the two clusters (two-sided Wilcoxon test, FDR =

0.015; Figure 3D).
4 Discussion

We examined the characteristics of the oral microbiome in 692

healthy Korean individuals. The variation in each individual’s oral

microbiome composition was prominent (Figure 1), but 28 genera

and 10 ASVs were commonly found in at least 95% of individuals

(Supplementary Table 2). The core genera covered 95% of the mean

relative abundance. Among the core genera, the sum of the mean

relative abundances of Streptococcus , Rothia , Neisseria ,

Haemophilus, and Veillonella accounted for 60.3% of the total,

whereas 12 core genera had < 1% mean relative abundance. This

result indicated that the genera shared among the individuals
Frontiers in Cellular and Infection Microbiology 05
occupied the majority of the oral microbiome composition, but

the mean relative abundance of each core genus was diverse. At the

ASV level, the number of core ASVs was only 10, and the sum of

their mean relative abundances was only 23.2% (Supplementary

Table 2), which indicated high variability of ASV composition

between individuals.

This study focused on the associations between the oral

microbiome and health-related biomarkers to determine whether

the oral microbiome influence a particular health biomarker, even

in healthy individuals. Age and sex were included as covariates in

the analysis to avoid potential biases. Among the CBC biomarkers,

WBC and TLC showed significant associations with alpha and beta

diversities of the oral microbiome (Table 1 and Figure 2A). In

addition, they were associated with a large number of genera

(Figure 2B). WBC count and TLC are important indicators of the

state of the immune system, especially in infections, inflammation,

autoimmune diseases, and immune deficiencies. The oral

microbiome of patients with immune-related diseases differs from

that of healthy individuals. For example, in patients with

inflammatory bowel disease, the diversity of the oral microbiome

was lower than that of healthy controls, and the abundances of the

phyla Fusobacteria and Firmicutes were lower than those in healthy

controls (Docktor et al., 2012). In patients with rheumatoid

arthritis, the prevalence of anaerobes, such as Lactobacillus

salivarius, Atopobium spp., and Cryptobacterium curtum, and the

reduction of aerobes, such as Neisseria spp., was observed in

comparison to that in healthy controls (Zhang et al., 2015). RDW

was another CBC biomarker significantly associated with the oral

microbiome in terms of richness, relative abundance of genera, and

clusters based on microbiome composition (Table 1, Figures 2B and

3). The RDW is a measure of the size variation of red blood cells,

and a high RDW is considered a sign of anemia. In a study
A B

FIGURE 2

Associations of the oral microbiome with different biomarkers. (A) Effect size of biomarkers on the oral microbiome composition based on Aitchison
distance after adjusting for age and sex. Bars are colored by the type of biomarkers. *, false discovery rate (FDR) < 0.1. (B) Heatmap of the association
between the biomarkers and the relative abundances of genera. The color of the heatmap shows the regression coefficient estimates adjusted for
age and sex. *, FDR < 0.05.
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comparing the oral microbiome of patients with iron-deficiency

anemia (IDA) and healthy controls, IDA was found related to

reduced diversity and changes in the relative abundances of several

genera (Xi et al., 2019). These results indicate that the oral

microbiome of healthy individuals may reflect at least some of the

health signatures related to the immune system or anemia.

Among the metabolic biomarkers, fasting glucose explained

most of the variation in the microbiome and was found to be related

to the abundance of a large number of genera. Associations between

type 2 diabetes (T2D) and the oral microbiome have been reported

in a number of studies (Long et al., 2017; Chen et al., 2020; Matsha

et al., 2020). However, our results indicate that even in non-diabetic

patients, the oral microbiome changes with fasting glucose levels.

Interestingly, there is a clear two-way relationship between diabetes

mellitus and periodontitis (Lalla and Papapanou, 2011), and thus,

the dysbiosis of oral microbiome can be associated with both

diseases. In this study, increased glucose levels were associated

with higher abundances of Treponema, Aggregatibacter, and

Filifactor. Among them, Treponema is known as a major

periodontal pathogenic bacteria and its abundance was higher in

periodontitis than in periodontally healthy controls (Patini et al.,

2018). In a recent study comparing the oral microbiome of patients

with T2D and periodontitis with that of systemically and

periodontally healthy controls, Treponema was significantly more

abundant in patients with T2D than in controls and exhibited

positive correlations with blood glucose levels (Vieira Lima et al.,
Frontiers in Cellular and Infection Microbiology 06
2022). Therefore, Treponema may play an important role not only

in the development of periodontitis but also in glycemic controls,

although the mechanisms of action need to be further investigated.

Moreover, the oral microbiome of the participants in this study

could be clustered into two groups. The genera that were

differentially abundant in these two clusters were core members

of the oral microbiome. These bacteria may have different

functions, and thus, the oral microbiomes belonging to the two

clusters may differentially influence oral health or systemic health.

By clustering the samples according to the oral microbiome

composition, we can simplify the oral microbiome type. As RDW

was significantly associated with oral microbiome clusters, it would

aid identifying people with a higher risk of anemia based on

cluster information.

A limitation of this study is that we did not assess the oral health

of the participants, although they were apparently healthy and had

no significant systemic diseases. Therefore, the oral health of the

participants may or may not be healthy. The oral microbes found to

be associated with the clinical biomarkers herein may also be

associated with oral health. For example, Dialister and

Lactobacillus were found to be associated with TLC and WBC,

respectively, in this study, but the associations of these microbes

with dental caries has been reported (Wang et al., 2017). The

relationships among these blood biomarkers, oral microbes, and

oral health needs further investigation. Furthermore, we collected

blood samples after at least 8 h of fasting, in order to present the
D

A B

C

FIGURE 3

Clusters of the oral microbiome. (A) Principal coordinate analysis plot of the genus-level data based on the Bray–Curtis distance. Dots are colored
by cluster. (B) Differentially prevalent genera in two clusters based on linear discriminant analysis effect size (LEfSe) analysis. LDA scores (log 10) > 3
are shown. (C) Boxplots of selected genera with differential relative abundance between clusters from LEfSe analysis. P-values on each plot were
calculated using the Wilcoxon rank-sum test. (D) Red blood cell distribution width (RDW) levels associated with oral microbiome clusters. P-value
was calculated using the Wilcoxon rank-sum test. FDR value was estimated to control for multiple testing.
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associations of fasting glucose or fasting insulin with the oral

microbiome; however, these measures only describe a specific

time point. HbA1c indicates an average blood glucose level over

the past 2–3 months, while glucose fluctuations measured over 24 h

by continuous glucose monitoring describe daily variations in blood

glucose levels. These measures would be helpful to assess

individuals’ health condition including glucose metabolism in

more detail. Thus, further studies are needed to measure not only

fasting glucose but also HbA1c and glucose fluctuations over 24 h

and to analyze their associations with the oral microbiome.

This study suggests that the oral microbiome may affect specific

health conditions or be affected by these factors. A long-term

follow-up study will help determine the direction of these

relationships. Furthermore, blood biomarkers would be affected

by several factors that vary among individuals. The individual

variance can be reduced through longitudinal (or time series)

monitoring of an individual’s biomarkers, further clarifying

microbiome-blood biomarker relationship. In addition, the data

generated herein along with future studies investigating clinical

association in various diseases could be helpful to develop non-

invasive diagnostic models based on the oral microbiome.
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