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Introduction: Polymyxin-resistant Enterobacterales poses a significant threat to

public health globally, but its prevalence and genomic diversity within a sole

hospital is less well known. In this study, the prevalence of polymyxin-resistant

Enterobacterales in a Chinese teaching hospital was investigated with

deciphering of their genetic determinants of drug resistance.

Methods: Polymyxin-resistant Enterobacterales isolates identified by matrix-

assisted laser desorption were collected in Ruijin Hospital from May to

December in 2021. Both the VITEK 2 Compact and broth dilution methods

were used to determine polymyxin B (PMB) susceptibility. Polymyxin-resistant

isolates were further characterized by molecular typing using PCR, multi-locus

sequence typing, and sequencing of the whole genome.

Results: Of the 1,216 isolates collected, 32 (2.6%) across 12 wards were

polymyxin-resistant (minimum inhibitory concentration (MIC) range, PMB 4–

256 mg/ml, and colistin 4 ≥ 16 mg/ ml). A total of 28 (87.5%) of the polymyxin-

resistant isolates had reduced susceptibility to imipenem andmeropenem (MIC ≥

16 mg/ml). Of the 32 patients, 15 patients received PMB treatment and 20

survived before discharge. The phylogenetic tree of these isolates showed they

belonged to different clones and had multiple origins. The polymyxin-resistant

Klebsiella pneumoniae isolates belonged to ST-11 (85.72%), ST-15 (10.71%), and

ST-65 (3.57%), and the polymyxin-resistant Escherichia coli belonged to four

different sequence types, namely, ST-69 (25.00%), ST-38 (25.00%), ST-648

(25.00%), and ST-1193 (25.00%). In addition, six mgrB specific mutations

(snp_ALT c.323T>C and amino acid change p.Val8Ala) were identified in 15.6%

(5/32) of the isolates. mcr-1, a plasmid-mediated polymyxin-resistant gene, was

found in three isolates, and non-synonymous mutations including T157P, A246T,

G53V, and I44L were also observed.
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Discussion: In our study, a low prevalence of polymyxin-resistant

Enterobacterales was observed, but these isolates were also identified as

multidrug resistant. Therefore, efficient infection control measures should be

implemented to prevent the further spread of resistance to last-line

polymyxin therapy.
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Introduction

The emergence of carbapenem-resistant Enterobacterales

represents a major public health threat worldwide (Nordmann

et al., 2012). Currently, periodic outbreaks or endemics of

Enterobacterales that are not susceptible to carbapenems have

now been documented in hospital settings and the wider

community (Mizrahi et al., 2020), and also Enterobacterales have

been designated by WHO as high-priority pathogens (Kopotsa

et al., 2019), which limits the effectiveness of treatment of

Enterobacterales infections. In 2021, it was estimated that 9.4%–

12.5% of Enterobacterales isolates were carbapenem-resistant in

China (http://www.chinets.com/). It is more serious that

Enterobacterales has been included among a group of multiple

drug resistance (MDR) pathogens that “ESKAPE” the actions of

commonly used antibiotics (Rice, 2008).

Colistin and polymyxin B (PMB), first- generation polymyxins,

were first introduced into clinical practice in the late 1950s but

subsequently abandoned due to concerns about nephrotoxicity

(Nang et al., 2021). Given their ever-increasing resistance to all

other antibiotics, such as carbapenems and aminoglycosides,

polymyxins were reintroduced into treatment regimens in the

early 2000s for problematic Gram-negative “superbugs” (Velkov

et al., 2019). They remain an important last-line treatment as they

have excellent activity against many of these problematic pathogens

(Jeannot et al., 2017). Worryingly, resistance to polymyxins of

numerous bacteria, including Enterobacterales, has been reported

in both humans and animals at an alarming rate (Gales et al., 2011;

Lekunberri et al., 2017; Sherry and Howden, 2018). For example, in

2021, the China Antimicrobial Surveillance Network (http://

www.chinets.com/) estimated that only 4.6% of isolates in China

were resistant to colistin and PMB. In many countries, polymyxins

are the only accessible or affordable therapeutic option for

carbapenem-resistant organisms (Satlin et al., 2020). The

emergence of bacteria resistant to polymyxins, notably

Enterobacterales such as Klebsiella pneumoniae (K. pneumoniae)

and Escherichia coli (E. coli), has been attributed to their widespread

usage to treat infections (Stefaniuk and Tyski, 2019). Bacterial

isolates resistant to polymyxin are of great concern worldwide

because they can cause life-threatening infections, particularly

those that incorporate antimicrobial resistance genes (ARGs),

such as extended-spectrum b-lactamases (ESBLs) and metallo-b-
02
lactamases (MBLs), harboring mainly blaKPC, blaNDM, and blaoxA-

48 like genes which have become a major challenge to public health

because of limited antibiotic choice and high case-fatality rates

(Capone et al., 2013; Gao et al., 2019).

The acquisition of polymyxin resistance has been attributed to

mutations of phoP/phoQ and pmrA/pmrB, which are two-

component regulatory systems (TCS) (Capone et al., 2013; Jayol

et al., 2015; Stefaniuk and Tyski, 2019). Constitutive upregulation of

the pmrHFIJKLM-ugd operon is known to be triggered by highly

specific mutations, which lead to the covalent attachment of 4-

amino-4-deoxy-L-arabinose to the lipid A component of

lipopolysaccharide that is located in the outer membrane of

bacteria (Moffatt et al., 2010; Jones-Dias et al., 2016; Abdul

Momin et al., 2017). The mcr (1–10) are polymyxin-resistant

genes that have been identified in Enterobacterales isolates, and

horizontal transfer of these genes through plasmid can alter

bacterial resistance to polymyxin (Antoniadou et al., 2007; Jayol

et al., 2015; Baraniak et al., 2016; Bardet et al., 2017; Borowiak et al.,

2017; AbuOun et al., 2018; Carroll et al., 2019; Xu et al., 2022; Zhou

et al., 2022). The aims of the present study were to determine the

prevalence, molecular characteristics, and antibiotic susceptibility of

polymyxin-resistant Enterobacterales isolated from Chinese

patients in a tertiary teaching hospital.
Methods and materials

Bacterial isolates and antibiotic
susceptibility testing

The study was based on retrospective samples collected from the

Department of Clinical Microbiology of Ruijin Hospital, a 3,624-bed

tertiary care teaching hospital located in east China, with

approximately 130,000 hospital admissions per year. Ruijin Hospital

has five intensive care unit (ICU) wards, and each ward has two

sections. All Enterobacterales isolates were collected from May to

December during 2021. The isolates were analyzed for species

identification using the MALDI-TOF MS system (bioMérieux,

Missouri, France) and then susceptibility tests using the AST-N335

VITEK 2 Compact system (bio Mérieux, France). The antimicrobial

agents investigated were amikacin (aminoglycosides), aztreonam

(monobactam), cefepime, cefoperazone/sulbactam, ceftazidime,
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ciprofloxacin, and levofloxacin (quinolones), colistin, doxycycline, and

minocycline (tetracyclines), meropenem and imipenem

(carbapenems), piperacillin/tazobactam, tigecycline (glycylcycline),

ticarcillin/clavulanic acid, tobramycin, and trimethoprim/

sulfamethoxazole. Minimum inhibitory concentrations (MICs) of

PMB and colistin were determined using broth microdilution with E.

coli ATCC 25922 used as the quality control strain. All results (except

for polymyxins) were interpreted according to the Clinical and

Laboratory Standards Institute (CLSI) guidelines. For patients with

multi polymyxin-resistant isolates, only the first one was used for

genome sequencing in the present study. A total of 28 K. pneumoniae

and four E. coli isolates were identified to be polymyxin-resistant, and

we performed whole- genome sequencing on all of them. The public

genomes used in this study are summarized in Table S1.
Genome sequencing, assembly,
and annotation

Genomic DNA of each polymyxin-resistant isolate was

extracted using the method of cetyltrimethylammonium bromide

(Clarke, 2009). The quantity and quality of DNA were determined

using a Qubit Fluorometer (Invitrogen, USA), and the integrity was

checked using the NanoDrop spectrophotometer (Thermo

Scientific, Wilmington, DE, USA). The sequencing libraries were

constructed using a TruSeq DNA Sample Preparation Kit (Illumina,

San Diego, USA) and a Template Prep Kit (Pacific Biosciences,

Menlo Park, California, USA). Genome sequencing was carried out

by Shanghai Personal Biotechnology (Shanghai, China) using an

Illumina NovaSeq platform with a PE150 model. De novo genome

assembly was conducted using A5-Miseq (v20160825) and SPAdes

(v3.12.0), followed by base correction using Pilon (v1.23). The gene

models were predicted by Glimmer 3.02 (http://ccb.jhu.edu/

software/glimmer/index.shtml). Function annotation was

completed by searching databases including NR (Non-Redundant

Protein Database), KEGG (Kyoto Encyclopedia of Gene and

Genomes), and COG (Cluster of Orthologous Groups of proteins)

using BLAST. Subsequently, the VFDB (Virulence Factors of

Pathogenic Bacteria) and CARD (the Comprehensive Antibiotic

Resistance Databases) were interrogated to retrieve pathogenicity

genes and antibiotic-resistant genes, respectively.
Multilocus sequence typing

The PubMLST database (https://pubmlst.org/organisms/) for

multilocus sequence typing (MLST) was utilized. Seven

housekeeping genes, namely, gapA, infB, mdh, pgi, phoE, rpoB,

and tonB, were used for K. pneumoniae typing, whereas adk, fumC,

gyrB, icd, mdh, purA, and recA were adopted for E. coli typing.
Variant calling and phylogenetic analyses

Taking the genome of K. pneumoniae (GCA_008728695.1) and

E. coli (GCA_003018455.1) as references, Snippy (https://
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github.com/tseemann/snippy) was employed to identify SNPs

across 378 complete genomes of K. pneumoniae and 404

complete genomes of E. coli from the GenBank database

(Supplementary Table S1). Core SNPs were concatenated and

aligned using a snippy-multi script. The SNPs were further

annotated by using SnpEff (https://pcingola.github.io/SnpEff/).

Subsequently, a core-SNP- based maximum likelihood tree was

constructed employing IQ-TREE with a GTR+I+G model and

bootstrap values of 1,000 (Minh et al., 2020), and the tree was

visualized using iTOL (https://itol.embl.de/) (Letunic and

Bork, 2021).
Results

Patient demographics and characteristics
of the polymyxin-resistant
Enterobacterales isolates

The hospitalization information, polymyxin treatment history,

and amount of separated polymyxin-resistant Enterobacterales

isolates for each patient are given in Figure 1. Only 28.6% (8/28)

of the patients had isolates with polymyxin-resistant K. pneumoniae

once, and the other patients had isolates multiple times. In

particular, two patients were isolated with polymyxin-resistant K.

pneumoniae isolates from one location 10 and 16 times during their

hospitalization, demonstrating a persistent- infection procedure.

Two patients had isolates with polymyxin-resistant E. coli only

once; an other two patients had polymyxin-resistant E. coli isolates

three times from one location during their hospitalization.

A total of 458 K. pneumoniae and 758 E. coli isolates were

collected across the study period. Finally (28/458, 6.11%),

polymyxin-resistant K. pneumoniae and (4/758, 0.53%)

polymyxin-resistant E. coli strains were isolated from separate

patients in 12 different wards (Table 1). Isolates with colistin

MICs (29/32, 90.7%) > 4 mg/ml or PMB MICs that ranged from 4

to 256 mg/ml were considered to be resistant (Table 2). Most of the

polymyxin-resistant isolates were collected from sputum (9/32,

28.1%), followed by throat swabs (4/32, 12.5%), wounds (4/32,

12.5%), blood (3/32, 9.4%), midstream urine (3/32, 9.4%),

extravasate fluid (3/32, 9.4%), and bile (2/32, 6.2%). The ages of

the patients ranged from 33 to 96 years (range 60.1 ± 14.3), and the

majority were adults with multiple complicated comorbidities. The

ward with the most frequent occurrence was the emergency

intensive care unit (EICU) (9/32, 28.1%), followed by the burns

ward (8/32, 25.0%), critical care unit (CCU) (4/32, 12.5%),

respiratory intensive care unit (RICU) (4/32, 12.5%),

gastrointestinal surgery ward (1/32, 0.1%), hematology ward (1/

32, 3.1%), and urology surgery ward (1/32, 3.1%). The average

length of a hospital stay was 43 days (CI: 32.25 to 64.75). Five

patients (5/32,15.6%) were given tropical PMB treatment (7–22

days) and 10 patients (10/32, 31.2%) intravenous (i.v.) PMB (25–

150 mg) sulfate (2–30 days). Fifteen patients (15/32, 46.9%) did not

receive any polymyxin- related therapy during their hospitalization.

Three patients (3/32, 9.3%) were given i.v. polymyxin E (15–30 mg/

day) aerosol/sulfate therapy (4–18 days), and 2 patients (2/32, 6.2%)
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received PMB (50–150 mg/day) sulfate aerosol therapy (7–12 days).

Most (14/15, 93.3%) polymyxin-resistance isolates originated from

patients that had received polymyxin- related therapy were isolated

after the polymyxin treatment (2–50 days) and only one isolate (1/

15, 6.67%) of polymyxin-resistant K. pneumoniae was isolated

before polymyxin therapy. Death due to any cause occurred in

10/32 patients, giving a mortality rate of 31.25%. Most of the

polymyxin-resistant K. pneumoniae isolates were ST-11 (23/28,

82.14%), and the others were ST-65 (2, 7.14%) and ST-15 (3/28,

10.71%). Polymyxin-resistant E. coli isolates belonged to four

different MLSTs, namely, ST-69, ST-38, ST-648, and ST-1193.
Genetic determinants of antibiotic
resistance in polymyxin-resistant isolates

All the polymyxin-resistant isolates (32/32,100%) possessed

carbapenemase genes (Table 1). No mcr genes were detected in

polymyxin-resistant K. pneumoniae isolates, showing that mcr

genes were not the cause of polymyxin resistance in these strains.

In contrast, three of four polymyxin-resistant E. coli isolates carried

mcr-1 polymyxin-resistant genes (isolates 12, 175, and 189).

Specific mutations in mgrB were identified in 15.6% (5/32) of

the isolates, including one K. pneumonia (isolate 123) and four E.
Frontiers in Cellular and Infection Microbiology 04
coli (isolates 12, 19, 175, and 189). Taking a polymyxin-susceptible

genome RJBS176 (Xu et al., 2021) as the reference, 18 mutations of

pmrA/pmrB and phoP/phoQ were identified in polymyxin-resistant

K. pneumoniae isolates, among which nine were synonymous.

T157P (Bir et al., 2022) and A246T in pmrB and G53V in pmrA

(Nirwan et al., 2021) were considered as variations that potentially

contributed to polymyxin resistance in K. pneumoniae isolates

(Tables 3, S2, S3).

When the polymyxin-resistant E. coli isolates’ genomes were

compared with a polymyxin-susceptible reference genome (E. coli

EC1390) (Thuy et al., 2022), we identified 137 mutations in mgrB,

pmrA/pmrB, and phoP/phoQ including 63 synonymous ones.

Among the genetic variations, I44L (Sánchez et al., 2021; Huang

et al., 2021a) in phoP has been reported as a variation that

potentially contributes to polymyxin-resistant in E. coli isolates.

In addition, a non-synonymous mutation c.323T>C that resulted in

p.Val8Ala was identified in mgrB of isolate 12 (Tables 4, S4, S5).
Antimicrobial susceptibility and MDR of
polymyxin-resistant Enterobacterales

The antibiotic susceptibility test result of the Enterobacterales

isolates is shown in Table 2. According to the CLSI (Satlin et al.,

2020), most of the polymyxin-resistant K. pneumoniae also showed

reduced susceptibility to carbapenems, aminoglycosides, and

fluoroquinolones, with 96.4% (27/28) isolates resistant to

imipenem and (25/28, 89.3%) to meropenem and 75.0% (21/28)

isolates to amikacin and 89.3% (25/28) to ciprofloxacin and

levofloxacin. A much lower frequency (16/28, 57.1%) of

tigecycline and minocycline resistance was observed. Additionally,

polymyxin-resistant E. coli also showed decreased susceptibility to

carbapenems, aminoglycosides, and fluoroquinolones. 75.0% (3/4)

of isolates were resistant to imipenem and meropenem, 75.0% (3/4)

to amikacin, and all of the isolates to ciprofloxacin and levofloxacin.

It is also noteworthy that 50% (2/4) of the isolates were sensitive to

tigecycline and minocycline. Only one polymyxin-resistant K.

pneumoniae (isolate 199) had PMB MICs at 256 mg/ml.
Phylogenetic analysis

Phylogenomic trees of the 28 polymyxin-resistant K.

pneumoniae and four polymyxin-resistant E. coli isolates are

shown in Figure S1, S2. The phylogenetic tree of E. coli isolates

revealed that four polymyxin-resistant isolates did not belong to the

same clone but had multiple origins, demonstrating their parallel

evolutions. The same phenomenon was observed for K. pneumoniae

isolates. The difference was that most of the K. pneumoniae isolates

belonged to ST-11 with a small genetic distance. To further explore

the polymyxin-resistant mechanism(s) of K. pneumoniae, we

compared their phylogenetic relationships with polymyxin-

susceptible isolates from 46 isolates and aligned antibiotic

resistance genes with their phylogenetic tree (Figure 2). The tree

shows a close relationship of isolates within the same ST.
A

B

FIGURE 1

Timeline for the isolation of polymyxin-resistant (K) pneumoniae and
(E) coli. (A). The timeline for polymyxin-resistant (K) pneumoniae
isolation in each patient; (B). the timeline for the polymyxin-resistant
isolation (E) coli in each patient. The numbers on the right of the red
triangles show the number of polymyxin-resistant isolates from each
patient. The black arrows show when polymyxin treatment
commenced.
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TABLE 1 Patient demographics and main characteristics of polymyxin-resistant K. pneumoniae and E. coli.

utcome Specimen Collection
date

MLST
type

Carbapenem
resistance
Genes

Survived Blood 2021/8/2 ST-11

blaTEM-1b, blaKPC-2,
blaTEM-215, blaCTX-

M-65, blaToho-2,
blaSHV-2

Dead Blood 2021/7/27 ST-15
blaTEM-1b, blaSHV-

28, blaCTX-M-1,
blaOXA-1

Dead Throat swab 2021/7/16 ST-11
blaKPC-2, blaTEM-1b,

blaSHV-66

Survived Throat swab 2021/7/16 ST-11
blaKPC-2, blaTEM-1b,

blaSHV-66

Survived Sputum 2021/8/23 ST-11
blaKPC-2, blaTEM-1b,

blaSHV-66

Survived
Drainage
fluid

2021/8/16 ST-11

blaTEM-215, blaKPC-
2, blaSHV-66,

blaTEM-1b, blaCTX-
M-65

Survived Sputum 2021/8/16 ST-11

blaTEM-215, blaKPC-
2, blaSHV-66,

blaTEM-1b, blaCTX-
M-65

Survived Bile 2021/8/23 ST-11
blaSHV-11, blaKPC-2,

blaCTX-M-65,
blaTEM-1b

Dead
Midstream-

urine
2021/8/22 ST-11

blaTEM-215, blaKPC-
2, blaSHV-66, blaCTX-

M-65, blaTEM-1b

Dead Sputum 2021/8/11 ST-11

blaTEM-215, blaKPC-
2, blaSHV-66,

blaTEM-1, blaCTX-M-

65

(Continued)
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Isolates Gender Age
(years)

Length
of hospi-
tal stay
(day)

Underlying disease Ward Polymyxin treatment†

K.
pneumoniae
1

Male 60 45

III degree alkaline corrosion
injury, post-traumatic wound
infection, alkaline burn of right

eyeball

Burns ward

Local use of middleical polymyxin B
for 7 d associated with Polymyxin B
Sulfate 100 mg q12h i.v. for 7 d (same

period)

K.
pneumoniae
3

Male 96 146
Sepsis due to biliary tract

infection, Cholangiocarcinoma,
stage IV chronic kidney disease

Respiratory No treatment

K.
pneumoniae
4

Female 84 50
Septic shock due to intra-
abdominal infection, rectal

malignant tumor
EICU

Polymyxin B Sulfate 75 mg q12h i.v.
for 14 d

K.
pneumoniae
8

Male 66 33
Sepsis due to systemic

candidiasis and pulmonary
infection (CRKP)

CCU
Polymyxin B Sulfate aerosol therapy

50 mg q12h i.v. for 8 d

K.
pneumoniae
9

Female 62 36
III degree burn, inhalation

injury, post-traumatic wound
infection

RICU
Local use of middleical polymyxin B

for 7 d

K.
pneumoniae
10

Male 71 61
Hyperosmolar coma in type 2
diabetes, with acute on chronic

renal failure
Burns ward

No treatment; considered as
colonization

K.
pneumoniae
11

Male 37 60
Severe acute pancreatitis,
nosocomial pneumonia

EICU
Polymyxin B Sulfate 25 mg q12h i.v.
for 7 d associated with Polymyxin E
aerosol therapy 30 mg q12h iv for 4 d

K.
pneumoniae
13

Male 42 120
Severe acute pancreatitis,
diabetes mellitus type 2

CCU
Polymyxin B Sulfate 100 mg q12h iv

for 11 d

K.
pneumoniae
14

Male 72 28
Sepsis due to urinary tract

infection, acute kidney injury
EICU

No treatment; considered as
colonization

K.
pneumoniae
15

Male 41 102

Severe acute pancreatitis, sepsis,
complicated abdominal infection,
respiratory failure, hemorrhagic

shock

EICU
Polymyxin B Sulfate 50 mg q12h i.v.

for 20 d
O
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TABLE 1 Continued

me Specimen Collection
date

MLST
type

Carbapenem
resistance
Genes

ed
Extravasate

fluid
2021/8/11 ST-11

blaTEM-215, blaKPC-
2, blaSHV-66,

blaTEM-1b, blaCTX-
M-65

d Sputum 2021/8/23 ST-11

blaTEM-215, blaKPC-
2, blaSHV-66,

blaTEM-1b, blaCTX-
M-65

ed
Extravasate

fluid
2021/6/30 ST-11

blaKPC-2, blaSHV-66,
blaTEM-1b, blaCTX-

M-65

ed Wound 2021/6/18 ST-11

blaTEM-215, blaKPC-
2, blaSHV-66,

blaTEM-1b, blaCTX-
M-65

d Wound 2021/6/20 ST-11
blaSHV-1a, blaTEM-

215, blaTEM-1,
blaCTX-M-65

ed Sputum 2021/9/8 ST-11

blaTEM-215, blaKPC-
2, blaSHV-66,

blaTEM-1b, blaCTX-
M-65

ed Sputum 2021/10/14 ST-11

blaSHV-1a, blaTEM-

215, blaKPC-2,
blaTEM-1b, blaCTX-

M-65

ed Wound 2021/6/30 ST-15
blaTEM-215, blaCTX-
M-15, blaTEM-1b,

blaOXA-1, blaSHV-28

ed
Drainage
fluid

2021/6/8 ST-11
blaTEM-1b, blaCTX-
M-15, blaTEM-215,

blaSHV-66

ed Sputum 2021/8/27 ST-65 blaSHV-1a

(Continued)
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Isolates Gender Age
(years)

Length
of hospi-
tal stay
(day)

Underlying disease Ward Polymyxin treatment† Outco

K.
pneumoniae
16

Female 62 36
III degree burn, inhalation

injury, post traumatic wound
infection

EICU
Local use of middleical polymyxin B

for 7 d
Survi

K.
pneumoniae
18

Female 55 60
Severe acute pancreatitis, sepsis,
nosocomial pneumoni, multiple
organ dysfunction syndrome

EICU
No treatment; considered as

colonization
Dea

K.
pneumoniae
20

Male 68 33 III degree burn EICU
No treatment; considered as

colonization
Survi

K.
pneumoniae
21

Male 33 147
III degree burn, hypovolemic
shock, post-traumatic wound

infection
Burns ward

Local use of middleical polymyxin B
for 10 d associated with Polymyxin E

sulfate 30 mg q12h i.v. for 18 d
Survi

K.
pneumoniae
22

Male 43 52 III degree burn, sepsis, psoriasis Burns ward

0.05% Local use of middleical
polymyxin B for 40 d associated with
Polymyxin B Sulfate 50 mg q12h i.v.

for 9 d

Dea

K.
pneumoniae
23

Male 56 107 Severe respiratory failure CCU
Polymyxin B Sulfate 150 mg q12h i.v.

for 30 d
Survi

K.
pneumoniae
24

Male 64 26
Pulmonary thromboembolism,
severe pneumoniae, fungal
urinary tract infection,

RICU
No treatment; considered as

colonization
Survi

K.
pneumoniae
123

Male 61 19
Diabetic foot, peripheral

neuropathy and vascular disease
Burns ward

No treatment; considered as
colonization in wound

Survi

K.
pneumoniae
127

Female 59 28 Pancreatic cancer Burns ward
No treatment; considered as

colonization
Survi

K.
pneumoniae
131

Male 67 9 Stomach cancer
Gastrointestinal

surgery
No treatment; considered as

colonization
Survi
v

v

v

v

v

v

v

v

https://doi.org/10.3389/fcimb.2023.1118122
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


TABLE 1 Continued

come Specimen Collection
date

MLST
type

Carbapenem
resistance
Genes

vived Throat swab 2021/8/30 ST-11
blaTEM-1b, blaCTX-
M-15, blaTEM-215,

blaSHV-66

vived Bile 2021/9/1 ST-11 blaTEM-1b, blaSHV-66

vived Wound 2021/9/3 ST-11
blaCTX-M-65,

blaTEM-215, blaSHV-

11, blaTEM-1b,

vived Sputum 2021/9/8 ST-11
blaSHV-1a, blaTEM-

215, blaTEM-1

ead Throat swab 2021/9/9 ST-11
blaCTX-M-65,
blaSHV-1a

ead Sputum 2021/10/12 ST-11
blaSHV-66, blaTEM-

1b, blaCTX-M-65,
blaTEM-215

vived
Midstream-

urine
2021/11/2 ST-15

blaTEM-1b, blaKPC-2,
blaTEM-215, blaCTX-

M-65, blaToho-2,
blaSHV-2

vived Blood 2021/11/2 ST-15

blaTEM-1b, blaSHV-

28, blaCTX-M-1,
blaTEM-215, blaOXA-

1

vived
Midstream

urine
2021/6/8 ST-69

blaCMY-47, blaCTX-
M-18

vived
Drainage
fluid

2021/7/11 ST-38
blaCTX-M-18,
blaCMY-47

vived Sputum 2021/7/30 ST-648
blaTEM-1b, blaOXA-

10, blaCTX-M-55

vived Throat swab 2021/9/29
ST-
1193

blaNDM-5, blaTEM-1b
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Isolates Gender Age
(years)

Length
of hospi-
tal stay
(day)

Underlying disease Ward Polymyxin treatment† Out

K.
pneumoniae
138

Female 57 38 Multiple myeloma Hematology
No treatment; considered as

colonization
Sur

K.
pneumoniae
145

Male 33 86 Severe acute pancreatitis EICU
No treatment; considered as

colonization
Sur

K.
pneumoniae
146

Female 69 34 II degree burn Burns ward
Local use of middleical polymyxin B

for 22 d
Sur

K.
pneumoniae
147

Female 84 50
Septic shock, intra-abdominal

infection, rectal malignant tumor
CCU

Polymyxin B Sulfate 150 mg q12h i.v.
for 14 d

Sur

K.
pneumoniae
199

Male 54 76
pulmonary thromboembolism,

severe pneumonia,
EICU

Polymyxin B Sulfate 50 mg q12h i.v.
for 20 d

D

K.
pneumoniae
200

Female 70 30 Severe acute pancreatitis EICU
Polymyxin B Sulfate 100 mg q12h i.v.

for 2 d
D

K.
pneumoniae
202

Male 59 41
Sepsis due to systemic

candidiasis, myelodysplastic
Syndrome

Infection Ward No treatment Sur

K.
pneumoniae
212

Male 72 50
Severe pneumonia, respiratory
failure, urinary tract infection

RICU
Polymyxin B Sulfate 150 mg q12h i.v.
for 24 d associated with Polymyxin E

sulfate 15 mg q12h i.v. for 12 d
Sur

E. coli 12 Female 71 29 Urinary tract infections Urology
No treatment; considered as

colonization
Sur

E. coli 19 Female 62 36
II-degree burn, inhalation injury,
post traumatic wound infection

Surgery
No treatment; considered as

colonization
Sur

E. coli 175 Male 56 107
Severe acute pancreatitis, intra-
abdominal infection, acute renal

dysfunction
Burns ward

Polymyxin B Sulfate 150 mg q12h i.v.
for 30 d

Sur

E. coli 189 Female 63 16 Multiple myeloma stage III RICU
No treatment; considered as

colonization
Sur
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A high- frequency appearance of pmrA/pmrB, phoP/phoQ, cprR,

and bacA was observed in all isolates. Interestingly, fosA5, satA, and

cmeR were observed in polymyxin-resistant isolates with high

frequencies but were absent in all polymyxin-sensitive isolates. In

reverse, aac(6’)-Iz, aac(6’)-Isa, fosA6, mexA, and smeR had a high

frequency in polymyxin-resistant isolates but a low appearance in

polymyxin-sensitive isolates. These genes may also be related to the

polymyxin-resistant mechanism(s), but further molecular

experiments will need to be performed for unequivocal verification.

82.14% (23/28) of the polymyxin-resistant K. pneumoniae

isolates were detected with mgrB genes (Table 5). All the

polymyxin-resistant E. coli isolates were detected with the mgrB

gene, and 75% (3/4) were identified withmcr-1, which are located in

the plasmids. Isolate 12 harbors a P0111_1 plasmid, isolate 19

harbors a IncI2_1 plasmid, and isolate 189 harbors a IncI2_1_Delta

plasmid. There have been studies showing that mcr-1 harboring

IncI plasmids were prevalent in various Enterobacterales in China,

including animal- originated E. coli isolates (Tang et al., 2022; Wang

et al., 2022), Escherichia fergusonii, and Salmonella (Tang et al.,

2020; Tang et al., 2023), which were also observed in our study.
Discussion

The world is facing the great challenge of bacterial resistance to

carbapenems. This is because tigecycline and ceftazidime/avibactam

have only been registered in a small number of countries and that

polymyxins are often the only effective antibiotic against multidrug-
Frontiers in Cellular and Infection Microbiology 08
resistant organisms. However, due to the widespread use of PMB

and colistin against MDR organisms, such as Acinetobacter

baumannii, Pseudomonas aeruginosa (P. aeruginosa), K.

pneumoniae, and E. coli, the current low levels of polymyxin

resistance are changing. Our hospital started using PMB, colistin,

and corresponding susceptibility tests in late 2020 to evaluate the

effectiveness of therapy that was used to treat carbapenem-resistant

Gram-negative bacterial infections. There have been previous

reports of infections caused by polymyxin-resistant K.

pneumoniae (Jayol et al., 2015) and E. coli which carried mcr

genes (He et al., 2017), and other studies have pooled data from

multiple institutions to determine regional susceptibility to

polymyxins (Wi et al., 2017; Baek et al., 2020). In the present

study, we reported an investigation of the prevalence of polymyxin-

resistant Enterobacterales during 2021 in our hospital, analyzed the

isolates’ genomics and phenotypes, and compared the clinical

characteristics of the patients from which they were isolated.

In our study in a single hospital, the prevalence of polymyxin

resistance was 2.6% (32/1216), which is a little higher than reported

(1.9%) by the China Antimicrobial Surveillance Network in 2021.

Most polymyxin-resistant isolates have low MICs to PMB and

colistin, which is not surprising given their structural similarity,

differing only by a single amino acid (Gales et al., 2011). Of concern

is that all the isolates contained OXA and b-lactamases, which

confer resistance to imipenem and meropenem. Using the

definitions for MDR, extensively drug-resistant (XDR), and pan

drug-resistant (PDR) (Magiorakos et al., 2012), half of the

polymyxin-resistant isolates were PDR and resistant to all
TABLE 2 Antimicrobial susceptibilities of polymyxin-resistant K. pneumoniae and E. coli isolates.

Antibiotics Resistant isolates (whole) Resistant K. pneumoniae Resistant E. coli AST range (mg/ml)

Amikacin 24 (75.00%) 21 (75.00%) 3 (75.00%) 8-64

Aztreonam 29 (90.63%) 26 (92.90%) 3 (75.00%) 2-64

Cefepime 28 (89.30%) 25 (89.30%) 3 (75.00%) 2-32

Cefoperazone/sulbactam 28 (89.30%) 25 (89.30%) 3 (75.00%) 8-64

Ceftazidime 26 (81.25%) 22 (78.60%) 4 (100.00%) 2-64

Ciprofloxacin 29 (90.63%) 25 (89.30%) 4 (100.00%) 0.5-4

Colistin 32 (100.00%) 28 (100.00%) 4 (100.00%) ≥ 4-16

Doxycycline 24 (75.00%) 21 (75.00%) 3 (75.00%) 0.5-16

Imipenem 30 (93.75%) 27 (96.40%) 3 (75.00%) 0.25-16

Levofloxacin 29 (90.63%) 25 (89.30%) 4 (100.00%) 1-64

Meropenem 28 (89.30%) 25 (89.30%) 3 (75.00%) 0.25-16

Minocycline 23 (71.88%) 21 (75.00%) 2 (50.00%) 1-16

Piperacillin/tazobactam 27 (85.70%) 24 (85.70%) 3 (75.00%) 4-128

Polymyxin B 32 (100.00%) 28 (100.00%) 4 (100.00%) ≥ 4-256

Ticarcillin/clavulanic acid 25 (78.13%) 22 (78.60%) 3 (75.00%) 8-128

Tigecycline 19 (59.38%) 16 (57.10%) 2 (50.00%) 1-8

Tobramycin 26 (81.25%) 23 (82.10%) 3 (75.00%) 1-16

Trimethoprim/sulfamethoxazole 25 (78.13%) 22 (78.60%) 3 (75.00%) 20-320
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TABLE 3 Genetic variations in pmrA, pmrB, phoQ, and phoP of the polymyxin-resistant K. pneumoniae isolates.

Isolates pmrB pmrA phoQ phoP

1 NA NA NA NA

3

c.294A>T (p.Arg98Arg), c.336T>C (p.Thr112Thr),
c.663G>C (p.Pro221Pro), c.736G>A (p.Ala246Thr),
c.766G>C (p.Gly256Arg), c.846G>A (p.Ala282Ala),

c.1032A>C (p.Pro344Pro)

NA NA NA

4 NA NA c.603_628delCAACCTGCTGCTGGTGATCCCCCTGC
c.363T> C

(p.Gly121Gly)

8 NA NA NA NA

9 NA NA NA NA

10 NA NA NA NA

11 NA NA c.326_349delTTCAACCGGAATGGCTGAAACGCA NA

13 NA NA NA NA

14 NA NA NA NA

15 NA NA NA NA

16 c.469A>C (p.Thr157Pro) NA NA NA

18 c.41G>C (p.Arg14Pro) NA NA
c.633C>T

(p.Thr211Thr)

20 NA NA NA NA

21 NA NA NA
c.363T>C

(p.Gly121Gly)

22 NA NA c.158G>T (p.Gly53Val) NA

23 c.469A>C (p.Thr157Pro) NA NA NA

24 NA NA NA NA

123

c.294A>T (p.Arg98Arg), c.336T>C (p.Thr112Thr),
c.663G>C (p.Pro221Pro), c.736G>A (p.Ala246Thr),
c.766G>C (p.Gly256Arg), c.846G>A (p.Ala282Ala),

c.1032A>C (p.Pro344Pro)

NA NA NA

127 NA NA NA NA

131
c.399G>A (p.Leu133Leu), c.663G>C (p.Pro221Pro),
c.736G>A (p.Ala246Thr), c.766G>C (p.Gly256Arg)

c.390C>A
(p.Gly130Gly),
c.615G>A
(c.41G>C)

NA NA

138 c.616G>C (p.Ala206Pro) NA NA NA

145 NA NA NA NA

146 NA NA NA NA

147 NA NA NA NA

199 NA NA NA NA

200 NA NA c.326_349delTTCAACCGGAATGGCTGAAACGCA NA

202

c.294A>T (p.Arg98Arg), c.336T>C (p.Thr112Thr),
c.663G>C (p.Pro221Pro), c.736G>A (p.Ala246Thr),
c.766G>C (p.Gly256Arg), c.846G>A (p.Ala282Ala),

c.1032A>C (p.Pro344Pro)

NA NA
c.363T>C

(p.Gly121Gly)

212

c.294A>T (p.Arg98Arg), c.336T>C (p.Thr112Thr),
c.663G>C (p.Pro221Pro), c.736G>A (p.Ala246Thr),
c.766G>C (p.Gly256Arg), c.846G>A (p.Ala282Ala),

c.1032A>C (p.Pro344Pro)

NA NA
c.363T>C

(p.Gly121Gl
y)
F
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TABLE 4 Genetic variations in pmrA, pmrB, phoQ, phoP, and mgrB of the polymyxin-resistant E. coli isolates.

Isolate mgrB pmrB pmrA phoQ phop

12
c.23T>C
(p.Val8Ala)

c.1012dupT (p.Ser338fs),
c.486dupG (p.Cys163fs),
c.63C>T (p.Ile21Ile),
c.664dupC (p.Leu222fs),
c.852A>G
(p.Ter284Trpext*)?,
c.868A>C (p.Ser290Arg),
c.886A>G (p.Arg296Gly),
c.910dupG (p.Glu304fs),
c.924G>A (p.Ala308Ala)

c.126A>C (p.Ala42Ala),
c.210_215delTATACCinsATACACT
(p.Asn70fs), c.287C>T (p.Thr96Met),
c.382_383delTTinsAC (p.Leu128Thr),
c.404C>T (p.Thr135Ile), c.46C>T
(p.Leu16Leu), c.46C>T (p.Leu16Leu),
c.560C>T (p.Pro187Leu), c.632C>A
(p.Ala211Asp)

c.1035A>G (p.Ser345Serz),
c.1188T>A (p.Ile396Ile),
c.1203C>A (p.Thr401Thr),
c.1389G>T (p.Leu463Leu),
c.1415dupT (p.Leu472fs),
c.1431G>A (p.Leu477Leu),
c.17dupT (p.Leu8fs), c.277dupT
(p.Tyr93fs), c.402T>A
(p.Ile134Ile), c.470A>G
(p.Gln157Arg), c.506A>G
((p.Asn169Ser), c.548dupA
(p.Phe184fs), c.666dupA
(p.Glu223fs), c.506A>G
(p.Asn169Ser), c.548dupA
(p.Phe184fs), c.60G>A
(p.Ala20Ala), c.666dupA
(p.Glu223fs), c.666dupA
(p.Glu223fs), c.67C>T
(p.Leu23Leu), c.792C>T
(p.Tyr264Tyr), c.798G>A
(p.Thr266Thr), c.7G>A
(p.Ala3Thr), c.876A>G
(p.Glu292Glu), c.900G>A
(p.Glu300Glu)

c.130A>T (p.Ile44Leu),
c.207C>T (p.Asn69Asn),
c.279_282delCGGTinsTGGC
(p.95), c.294T>C
(p.Tyr98Tyr),
c.386_387insAC (p.Val131fs),
c.505C>G (p.Gln169Glu),
c.598dupA (p.Ile200fs),
c.615C>G (p.Pro205Pro),
c.643delGinsCA (p.Gly215fs)

19 NA

c.1012dupT (p.Ser338fs),
c.1053G>A (p.Gly351Gly),
c.1064G>A (p.Arg355Lys),
c.286_287delGCinsCGA
(p.Glu103fs), c.354C>T
(p.Glu125Asp), c.375A>T
(p.Glu125Asp), c.390G>A
(p.Ala130Ala), c.486dupG
(p.Cys163fs), c.551G>A
(p.Gly184Asp), c.664dupC
(p.Leu222fs), c.679C>T
(p.Gln227*), c.700A>C
(p.Thr234Pro), c.808C>T
(p.Gln270*), c.814G>A
(p.Ala272Thr), c.852A>G
(p.Ter284Trpext*)?,
c.868A>C (p.Ser290Arg),
c.886A>G (p.Arg296Gly),
c.910dupG (p.Glu304fs),
c.933T>A (p.Arg311Arg)

c.126A>C (p.Ala42Ala), c.159G>C
(p.Gly53Gly), c.168C>T (p.Asp56Asp),
c.177A>G (p.Gly59Gly), c.189C>T
(p.Leu63Leu),
c.210_215delTATACCinsATACACT
(p.Asn70fs),
c.224_230delACTGATCinsGTTAATT
(p.TyrTerSer75CysTerPhe), c.239T>C
(p.Leu80Pro),
c.248_251delGCTGinsCCTT
(p.ArgTer83ProLeuext*)?, c.281T>G
(p.Val94Gly), c.290C>T (p.Thr97Ile),
c.323_326delACATinsGCAC
(p.TyrMet108CysThr), c.326T>C
(p.Met109Thr), c.392T>C (p.Ile131Thr),
c.404C>T (p.Thr135Ile), c.416T>C
(p.Val139Ala), c.429G>A (p.Trp143*),
c.434T>A (p.Val145Glu),
c.440_441delGTinsAC (p.Ser147Asn),
c.46C>T (p.Leu16Leu), c.416T>C
(p.Val139Ala), c.429G>A (p.Trp143*),
c.434T>A (p.Val145Glu),
c.440_441delGTinsAC (p.Ser147Asn),
c.46C>T (p.Leu16Leu),
c.476_482delACGGTTAinsGCGCCTG
(p.HisGly159ArgAla), c.488C>T
(p.Ser163Leu), c.500T>C (p.Val167Ala),
c.530C>T (p.Thr177Ile), c.536T>C
(p.Ile179Thr),
c.548_551delTGAAinsCGAG
(p.MetAsn183ThrSer),
c.584_587delCAATinsTAAC
(p.ThrIle195IleThr), c.632C>A
(p.Ala211Asp), c.653G>A
(p.Arg218Gln), c.92_93delCAinsGC
(p.Thr31Ser)

c.1018C>T (p.Leu340Leu),
c.1035A>G (p.Ser345Serz),
c.1086T>C (p.Ile362Ile),
c.1095G>A (p.Glu365Glu),
c.1107C>T (p.Val369Val),
c.1119C>T (p.Asn373Asn),
c.1131G>A (p.Glu377Glu),
c.1320A>G (p.Val440Val),
c.132T>C (p.Thr44Thr),
c.1407G>A (p.Glu469Glu),
c.1415dupT (p.Leu472fs),
c.17dupT (p.Leu8fs), c.243C>G
(p.Thr81Thr), c.249G>A
(p.Thr83Thr), c.277dupT
(p.Tyr93fs), c.470A>G
(p.Gln157Arg), c.48G>A
(p.Leu16Leu), c.506A>G
(p.Asn169Ser), c.548dupA
(p.Phe184fs), c.60G>A
(p.Ala20Ala), c.666dupA
(p.Glu223fs), c.48G>A
(p.Leu16Leu), c.506A>G
(p.Asn169Ser), c.548dupA
(p.Phe184fs), c.60G>A
(p.Ala20Ala), c.666dupA
(p.Glu223fs), c.67C>T
(p.Leu23Leu), c.666dupA
(p.Glu223fs), c.67C>T
(p.Leu23Leu), c.696C>T
(p.Arg232Arg), c.757T>C
(p.Leu253Leu), c.792C>T
(p.Tyr264Tyr), c.876A>G
(p.Glu292Glu), c.96C>T
(p.Val32Val), c.987C>T
(p.Leu329Leu)

c.45C>T (p.His15His),
c.130A>T (p.Ile44Leu),
c.165A>C (p.Pro55Pro),
c.207C>T (p.Asn69Asn),
c.294T>C (p.Tyr98Tyr),
c.306G>A (p.Pro102Pro),
c.386_387insAC (p.Val131fs),
c.409T>C (p.Ser137Pro),
c.505C>G (p.Gln169Glu),
c.559C>T (p.Pro187Ser),
c.568T>A
(p.Ter190Argext*)?,
c.599_600delTTinsATA
(p.Ile200fs), c.615C>G
(p.Pro205Pro),
c.643delGinsCA (p.Gly215fs)

175 NA

c.1012dupT (p.Ser338fs),
c.286_287delGCinsCGA
(p.Glu103fs), c.342C>T
(p.Pro114Pro), c.393A>G
(p.Leu131Leu), c.419G>A
(p.Ser140Asn), c.486dupG

c.126A>C (p.Ala42Ala),
c.210_215delTATACCinsATACACT
(p.Asn70fs), c.287C>T (p.Thr96Met),
c.326T>C (p.Met109Thr), c.404C>T
(p.Thr135Ile), c.46C>T (p.Leu16Leu),

c.1035A>G (p.Ser345Serz),
c.1188T>A (p.Ile396Ile),
c.1203C>A (p.Thr401Thr),
c.132T>C (p.Thr44Thr),
c.1415dupT (p.Leu472fs),
c.17dupT (p.Leu8fs), c.277dupT

c.130A>T (p.Ile44Leu),
c.156C>G (p.Leu52Leu),
c.159A>T (p.Gly53Gly),
c.207C>T (p.Asn69Asn),
c.279_282delCGGTinsTGGC
(p.95), c.294T>C

(Continued)
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antibiotics tested, whereas the others were XDR or MDR. ST-11,

one of the first identified pandemic K. pneumoniae clones, has been

described in Asia, Australia, USA, and Europe (Chen et al., 2014;

Tian et al., 2019; Tumbarello et al., 2021; Huang et al., 2021b).

Several studies have suggested that a specific ST-11 subclone with

different b-lactamases might have increased its epidemic potential

(Giske et al., 2012; Sonnevend et al., 2013; Tan et al., 2019). ST-11 K.

pneumoniae was also the most dominant strain prevalent in China

and exhibited reduced susceptibility to most available antibiotics

(Liu et al., 2022; Ouyang et al., 2022), which is consistent with our

findings. The K. pneumoniae ST-15 and ST-65 were reported to be

prevalent mainly in Asia and also carry multiple resistance genes

(Lin et al., 2014; Zhao et al., 2021). In our study, most of the

prevalence isolates (ST-11) got similar plasmid types, which carry

carbapenemase resistance genes. Polymyxin-resistant E. coli isolates

in the present study were composed of multiple MLST types. ST-
Frontiers in Cellular and Infection Microbiology 11
156 or ST-167 clones have been reported at a higher frequency in

China (Xia et al., 2017), whereas ST-69 was found reported in Korea

(Kim et al., 2020), ST-38 in the United Kingdom (Greig et al., 2018),

ST-648 in Kerman, Iran (Kalantar-Neyestanaki et al., 2020), and

ST-1193 in Canada (Izydorczyk et al., 2020). All carried multiple

ARGs findings consistent with the results of the present study.

Changes in the two-component systems pmrA/pmrB (E. coli, K.

pneumoniae, Salmonella spp.), phoP/phoQ (K. pneumoniae,

Salmonella spp.), parR/parS (P. aeruginosa), colR/colS (P.

aeruginosa), and cprR/cprS (Campylobacter jejuni) are associated

with polymyxin resistance in Gram-negative bacteria (Baron et al.,

2016). In the present study, all the polymyxin-resistant isolates had

mutations in pmrA and/or pmrB, a major TCS in Gram-negative

bacteria, which are responsible for polymyxin resistance. Our study

indicates that the mgrB alteration may be a common mechanism

associated with polymyxin resistance for the clinical treatment of K.
TABLE 4 Continued

Isolate mgrB pmrB pmrA phoQ phop

(p.Cys163fs),
c.548_551delACGGinsTCGA
(p.HisGly183LeuAsp),
c.572C>T (p.Ala191Val),
c.63C>T (p.Ile21Ile),
c.664dupC (p.Leu222fs),
c.852A>G
(p.Ter284Trpext*)?,
c.868A>C (p.Ser290Arg),
c.886A>G (p.Arg296Gly),
c.910dupG (p.Glu304fs),
c.947A>T (p.Tyr316Phe)

c.416T>C (p.Val139Ala), c.46C>T
(p.Leu16Leu), c.60G>A (p.Ala20Ala)

(p.Tyr93fs), c.470A>G
(p.Gln157Arg), c.48G>A
(p.Leu16Leu), c.506A>G
(p.Asn169Ser), c.548dupA
(p.Phe184fs), c.60G>A
(p.Ala20Ala), c.666dupA
(p.Glu223fs), c.48G>A
(p.Leu16Leu), c.506A>G
(p.Asn169Ser), c.548dupA
(p.Phe184fs), c.60G>A
(p.Ala20Ala), c.666dupA
(p.Glu223fs), c.67C>T
(p.Leu23Leu), c.666dupA
(p.Glu223fs), c.67C>T
(p.Leu23Leu), c.792C>T
(p.Tyr264Tyr), c.876A>G
(p.Glu292Glu), c.900G>A
(p.Glu300Glu), c.96C>T
(p.Val32Val), c.975C>T
(p.Gly325Gly)

(p.Tyr98Tyr), c.306G>A
(p.Pro102Pro),
c.386_387insAC (p.Val131fs),
c.526C>A (p.Pro176Thr),
c.535T>C (p.Ser179Pro),
c.559C>T (p.Pro187Ser),
c.568T>A
(p.Ter190Argext*)?,
c.599_600delTTinsATA
(p.Ile200fs), c.615C>G
(p.Pro205Pro),
c.643delGinsCA (p.Gly215fs)

189 NA

c.1012dupT (p.Ser338fs),
c.1081C>T (p.Gln361*),
c.339G>A (p.Thr113Thr),
c.387G>A (p.Ser129Ser),
c.486dupG (p.Cys163fs),
c.548_551delACGGinsTCGA
(p.HisGly183LeuAsp),
c.572C>T (p.Ala191Val),
c.582C>T (p.Ser194Ser),
c.623T>G (p.Val208Gly),
c.664dupC (p.Leu222fs),
c.852A>G
(p.Ter284Trpext*)?,
c.886A>G (p.Arg296Gly),
c.910dupG (p.Glu304fs),

c.126A>C (p.Ala42Ala),
c.210_215delTATACCinsATACACT
(p.Asn70fs), c.287C>T (p.Thr96Met),
c.326T>C (p.Met109Thr), c.404C>T
(p.Thr135Ile), c.46C>T (p.Leu16Leu),
c.416T>C (p.Val139Ala), c.46C>T
(p.Leu16Leu), c.500T>C (p.Val167Ala),
c.593C>A (p.Ala198Glu), c.632C>A
(p.Ala211Asp), c.653G>A
(p.Arg218Gln)

c.1035A>G (p.Ser345Serz),
c.1107C>T (p.Val369Val),
c.1143C>T (p.Asn381Asn),
c.1155T>C (p.Asn385Asn),
c.1188T>A (p.Ile396Ile),
c.1320A>G (p.Val440Val),
c.1387C>A (p.Leu463Met),
c.1415dupT (p.Leu472fs),
c.17dupT (p.Leu8fs), c.277dupT
(p.Tyr93fs), c.470A>G
(p.Gln157Arg), c.506A>G
(p.Asn169Ser), c.548dupA
(p.Phe184fs), c.666dupA
(p.Glu223fs), c.506A>G
(p.Asn169Ser), c.548dupA
(p.Phe184fs), c.60G>A
(p.Ala20Ala), c.666dupA
(p.Glu223fs), c.666dupA
(p.Glu223fs), c.732C>A
(p.Thr244Thr), c.792C>T
(p.Tyr264Tyr), c.798G>A
(p.Thr266Thr), c.876A>G
(p.Glu292Glu), c.996G>A
(p.Glu332Glu)

c.130A>T (p.Ile44Leu),
c.156C>G (p.Leu52Leu),
c.165A>C (p.Pro55Pro),
c.174C>T (p.Asp58Asp),
c.207C>T (p.Asn69Asn),
c.294T>C (p.Tyr98Tyr),
c.387_388delCCinsACCA
(p.Val131fs), c.409T>C
(p.Ser137Pro), c.526C>A
(p.Pro176Thr), c.535T>C
(p.Ser179Pro), c.598dupA
(p.Ile200fs), c.615C>G
(p.Pro205Pro),
c.643delGinsCA (p.Gly215fs)
NA, Not applicable.
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pneumoniae infection (Cannatelli et al., 2013). However, only one of

the polymyxin-resistant K. pneumoniae isolates contains mgrB

resistance genes, and an intriguing aspect is that all four isolates

of polymyxin-resistant E. coli carried mgrB genes and b-lactamases.

Thus far, other studies have reported 10 variants of the mcr genes,

mcr (1–10) in various Enterobacterales (Antoniadou et al., 2007;

Jayol et al., 2015; Baraniak et al., 2016; Bardet et al., 2017; Borowiak

et al., 2017; AbuOun et al., 2018; Carroll et al., 2019; Xu et al., 2022;

Zhou et al., 2022). Here, we have identified mcr-1 genes in three

polymyxin-resistant E. coli isolates. The co-appearance of mcr-1

and other resistant genes, especially b-lactamases, is worrying,

because of limited therapeutic options.

Several studies have shown an association between the use of

polymyxin and the emergence of polymyxin resistance in K.

pneumoniae in hospitals, although the results remain controversial

in different countries (Antoniadou et al., 2007; Lee et al., 2009;

Zarkotou et al., 2010; Xu et al., 2022; Zhou et al., 2022) In our

study, 17 patients received polymyxin therapy during their

hospitalizations, 15.6% received topical treatment that involved the

use of polymyxin therapy for 7–22 days, 31.2% received PMB IV (25–

150 mg) treatment for 2–30 days according to the International
Frontiers in Cellular and Infection Microbiology 12
Consensus Guidelines for the Optimal Use of polymyxins (Tsuji et al.,

2019), and 9 patients were given polymyxin therapy for more than 15

days. Polymyxin-resistant isolates were obtained from 16 of these

patients after polymyxin treatment for 2 to 50 days, and only one

patient was isolated with the polymyxin-resistant K. pneumoniae

strain before polymyxin therapy was administered. We also found a

divergent prevalence in patient isolates with polymyxin- resistant

strains after multiple-time or once- only analysis. In patients’ isolates

with multi polymyxin- resistant strains, 15 out of 22 (68.18%)

patients were given polymyxin treatment. In reverse, in patients

who had polymyxin- resistant strains isolated only once, only 2 of

10 patients (20%) were given polymyxin treatment. From these

findings, we were able to demonstrate an association between the

use of polymyxin and the emergence of polymyxin-resistant

Enterobacterales. There is a great risk that long-time dosing might

lead to polymyxin resistance among various Enterobacterales isolates.

Monotherapy with polymyxins should be avoided, with better ways

to use them in combination with drugs with synergistic effects or an

i.v. spray. According to the host factors of all the collected patients, we

concluded that the patients were mainly adults, with multiple

complicated comorbid conditions to highly infection-prone
FIGURE 2

Phylogenetic tree and distribution of resistance genes of K. pneumoniae isolates (A) core-genome-based ML phylogenetic tree showing the
relationship of 30 polymyxin-resistant and 17 polymyxin-sensitive K. pneumoniae isolates constructed taking KP58 as the reference. Apart from 28
strains sequenced in this study, the other 19 genomes were obtained from public data. The antibiotic- resistant genes were mapped on the right,
with carried genes painted in purple and classified according to the ResFinder database.
TABLE 5 mgrB and mcr genes in polymyxin-resistant E. coli isolates.

Gene Isolates Contig name Scaffold affiliation Plasmid information

mgrB 12 Contig1 Chromosome –

mgrB 19 Contig36 Chromosome –

mgrB 189 Contig2 Chromosome –

mgrB 175 Contig1 Chromosome –

mcr-1 12 Contig46 Plasmid P0111-1

mcr-1 19 Contig37 Plasmid IncI2-1

mcr-1 189 Contig29 Plasmid IncI2-1-Delta

mcr-1 175 Absent – –
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environments, and also underwent longtime hospitalization. Fifteen

patients who were not given polymyxin therapy also had isolates

containing polymyxin-resistant Enterobacterales. We may attribute

this to their long-term exposure to the environment during

hospitalization. Since this was a retrospective study, we did not

have the corresponding data about the nosocomial environments.

Further studies are therefore needed to demonstrate the prevalence of

polymyxin-resistant Enterobacterales in hospitals.
Conclusions

A low prevalence of polymyxin-resistant Enterobacterales was

found soon after polymyxin therapy was introduced into a Chinese

tertiary teaching hospital. The polymyxin-resistant Enterobacterales

pose a real threat to public health. It is very important for clinical

laboratories to detect polymyxin- resistant genes and to characterize

the epidemiological trends of high-risk polymyxin-resistant

Enterobacterales in order to optimize the use of the last-line

class of antibiotics. Furthermore, effective infection control

measures are urgently needed to prevent further transmission of

polymyxin resistance.
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SUPPLEMENTARY FIGURE 1

Phylogenetic tree showing the genomic relationship of the polymyxin-

resistant K. pneumoniae isolates and public isolates. The phylogenetic tree
was constructed based on core genome SNPs and the isolates sequenced in

this study was marked with red color in the circle. Altogether, 378 high quality
genomes were collected from GenBank database and 28 K. pneumoniae

polymyxin-resistant genomes with GCA_008728695 K. pneumoniae
genome as a reference, resulting in 3 distinct clades. The MLST typing

results and country information of the isolates were shown in the outer

circles from outside to inside.

SUPPLEMENTARY FIGURE 2

Phylogenetic tree showing the genomic relationship of the polymyxin-

resistant E. coli isolates and public isolates. The phylogenetic tree was
constructed based on core genome SNPs and the isolates sequenced in

this study are marked with black triangles. Altogether, 400 high quality

genomes were collected from GenBank database and 4 polymyxin-
resistant E. coli and genomes with E. coli GCA_003018455.1_ASM301845v1

genome as a reference. The MLST typing results and country information of
the isolates are shown on the right.
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