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Introduction: Staphylococcus aureus causes staphylococcal food poisoning and
several difficult-to-treat infections. The occurrence and dissemination of
methicillin-resistance S. aureus (MRSA) in Nigeria is crucial and well
documented in hospitals. However, findings on MRSA from meat in the
country are yet to be adequately reported. The current study determined the
prevalence, virulence profile and antibiogram characteristics of MRSA from a raw
chicken product from retail outlets within Edo.

Methods: A total of 368 poultry meat samples were assessed for MRSA using a
standard culture-based approach and characterized further using a molecular
method. The antimicrobial susceptibility profile of the isolates was determined
using the disc diffusion method. The biofilm profile of the isolates was assayed via
the crystal violet microtitre-plate method. Virulence and antimicrobial resistance
genes were screened using polymerase chain reaction via specific primers.

Results: Of the samples tested, 110 (29.9%) were positive for MRSA. All the
isolates were positive for deoxyribonuclease (DNase), coagulase and beta-
hemolysis production. Biofilm profile revealed 27 (24.55%) weak biofilm
formers, 18 (16.36%) moderate biofilm formers, and 39 (35.45%) strong biofilm
formers. The isolates harboured 2 and <17 virulence genes. Enterotoxin gene
profiling revealed that 100 (90.9%) isolates harboured one or more genes.
Resistance against the tested antibiotics followed the order: tetracycline 64
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(58.2%), ciprofloxacin 71(64.6%), trimethoprim 71(64.6%) and rifampin 103
(93.6%). A total of 89 isolates were multidrug-resistant, while 3 isolates were
resistant to all 22 antibiotics tested. The isolates harboured antimicrobial-
resistant determinants such as methicillin-resistant gene (mecA), tetracycline
resistance genes (tetK, tetl), erythromycin resistance genes (ermA, ermC),
trimethoprim resistance gene (dfrK). All the staphylococcal cassette
chromosome mec (SCCmec) IVa and SCCmec V positive isolates harboured
the Panton-Valentine Leukocidin Gene (PVL).

Conclusion: In conclusion, S. aureus was resistant to commonly used antibiotics;
a concern to public health concerning the transmission of these pathogens after
consuming these highlight the significance of antimicrobial and enterotoxigenic
monitoring of S. aureus in food chains.
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resistant determinants, biofilm formation, cassette chromosomes, virulence, enterotoxin

1 Introduction

The commensal association of S. aureus with food animals
promotes antimicrobial resistance (Zehra et al., 2019).
Staphylococcus aureus (S. aureus) has been reported to acquire
resistance to antibiotics of choice, such as vancomycin (Tegegne
et al, 2021). It has been listed as a ‘priority pathogens’ threatening
public health by the World Health Organization (WHO) (WHO,
2017). Methicillin-resistance S. aureus (MRSA) is a significant
aetiology of massive healthcare-associated MRSA (HA-MRSA)
infections leading to antibiotic resistance crises worldwide
(Abolghait et al., 2020). MRSA is of concern since it can cause
difficult-to-treat fatal infections. Although there has been a decline
in invasive HA-MRSA infections over recent years, community-
associated MRSA (CA-MRSA) infections have heightened among
the general populace. The molecular mechanism for developing
oxacillin/methicillin resistance is inserting and acquiring
staphylococcal chromosome cassette mec (SCCmec) determinants,
which house antimicrobial resistance genes. Differences exist in the
SCCmec types of S aureus strains, which may increase by
independently acquiring the mec gene. Furthermore, HA-MRSA,
livestock-associated MRSA (LA-MRSA), and CA-MRSA can
contaminate human foods, causing cases of staphylococcal food
poisoning (SFP) (Sergelidis and Angelidis, 2017). S. aureus food-
borne disease outbreaks have been reported recently (Le
et al., 2021).

Staphylococcal food poisoning (SFP) is associated with emetic
activity, sepsis-related infections, pneumonia, and toxic shock
syndrome (TSS) (Fisher et al., 2018). Upon contamination of
food, food triggers enterotoxins production in S. aureus, which
may persist in foodstuffs after heat decimation of the bacteria, thus
causing SFP (Sergelidis and Angelidis, 2017). Staphylococcal
enterotoxins (SEs) comprise a superfamily of >23 low-molecular-
weight pyrogenic exotoxins that share functional and structural
similarities. Staphylococcal enterotoxins can be classified into two
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categories depending on their ability to invoke emesis: newly
confirmed enterotoxigenic-like proteins and classical SEs (A to E).
Staphylococcal enterotoxins possess potent super antigenic activity
and disrupt adaptive immunity by stimulating T cells, producing
inflammatory cytokines (Fisher et al, 2018). The SE-encoding
elements are mainly on different mobile genetic elements (MGEs),
which can extensively result in prevalence variations of SEs among
S. aureus isolates. In addition, SEs are controlled by various
overlapping regulatory pathways that can be multiple by various
environmental factors (Fisher et al., 2018).

The ingestion of 20-100 ng performed SEs in food caused SFP
(Abolghait et al., 2020; Beshiru et al., 2022). The production of SEs
essentially occurred in protein-rich foods, such as meat, after the
growth of enterotoxigenic S. aureus strains at high cell densities
under optimal temperatures and environmental conditions (Schelin
etal, 2011; Igbinosa et al., 2020). Staphylococcal enterotoxins retain
activity in S. aureus-contaminated food due to their high heat
stability, protein denaturation tolerance, proteolytic enzyme activity
resistance, freezing, drying, and low pH conditions (Abolghait et al.,
2020). Additionally, they are acid-stable and retain their activity in
the digestive tract (Fisher et al., 2018). Chicken products can be a
potential reservoir of MRSA infections of zoonotic origin. Chicken
meat not kept at refrigeration temperature can be contaminated
with SEs-producing MRSA, which may create a health hazard.
Consuming or handling contaminated food could result in the
spread to humans (Igbinosa et al., 2021a; Beshiru et al, 2022).
Sequel to concerns from the Nigerian government regarding food
safety, significant proportions of data concerning the characteristics
and Prevalence of MRSA, including SEs-producing MRSA in retail
foods in Nigeria, is essential.

S. aureus is biofilm-producing bacteria and can perpetuate its
contamination on contact surfaces in meat processing (Igbinosa
et al., 2020; Abbasi et al., 2021; Beshiru et al., 2021) and could
increase bacterial resistance and spread in farm animals, favor their
persistence in the environment, and improve their survival in meat
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products. Some S. aureus lineages have adapted to chicken
(Lowdera et al., 2009; Murray et al, 2017) and harbor multiple
virulence and antimicrobial resistance (AMR) genes. Biofilm
attachment involves bacterial surface component sensing adhesive
and matrix molecules, whereas biofilm maturation consists of the
expression of intercellular adhesion gene cluster (icaABCD)
operon-encoded polysaccharide adhesion molecules (Nemati
et al, 2009; Bernier-Lachance et al, 2020). The importance of
biofilm-forming MRSA in foods of animal origins is not
adequately documented in Nigeria and other developing
countries. Thus, the present study was designed to assay the
occurrence and distribution of biofilm-associated determinants,
virulence, and resistance elements in MRSA recovered from
chicken carcasses in Nigeria.

The Prevalence of MRSA varies in different food, animals, and
country of origin (Lim et al., 2010; Wu et al,, 2019). In Nigeria, there
is sparse information on the prevalence of MSRA in food and food
animals, with few unrelated studies reporting MRSA infection rates
(Beshiru et al., 2016; Igbinosa et al., 2016a; Igbinosa et al., 2016b;
Igbinosa and Beshiru, 2019; Abolghait et al., 2020; Beshiru et al.,
2021). S. aureus and MRSA have been recovered from poultry birds,
frozen fish, humans, environmental samples, milk, pork, beef,
ready-to-eat food, livestock, dressed chicken, pet, and stray dogs
in Nigeria (Igbinosa et al., 2016a; Igbinosa et al., 2016b; Beshiru
et al,, 2021). However, reports on the molecular characterization of
MRSA from chicken are scarce. A better understanding of the
epidemiology and identifying the genetic profile of MRSA is crucial
in developing preventive mechanisms against infectious of its
origin. Likewise, understanding the genetics of MRSA circulating
in different milieus is vital for its evolutional tracking in various
niches. Hence, this study aimed to determine the antibiotic
resistance, prevalence, enterotoxigenic, and other genetic profiles
of MRSA in retail chicken meat sold at open markets in Nigeria.

2 Materials and methods
2.1 Sample collection

Frozen chicken carcass samples were obtained from cold rooms
operating on a large scale from open markets in Edo, Nigeria. The
selection of the markets was based on their strategic location in
conjunction with consumer patronage. The cold rooms selected
usually distribute chicken carcasses at a cheaper wholesale rate to
retail traders who re-sell to direct consumers in their local markets. The
sample size was determined via the sample size determination formula:

2
Sample (N) = —(Zl_a/Z) dzP(l =P

N = Number of expected samples; Z; 4, = Standard normal
variant at 5% type I error (P< 0.05); P = prevalence expected based
on previous studies [1.3% (Bernier-Lachance et al., 2020), 9.89%
(Baghbaderani et al., 2020), 13.9% (Abbasi et al, 2021), 20.5 (Li
et al, 2019), 29.1% (Rortana et al, 2021), 354% (Tegegne et al,
2021), 66.67% (Savariraj et al, 2020), 89.5% (Lika et al, 2021)];
d = Complete precision or error (which is 5%). Thus, the expected
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size of the sample was >351. The markets sampled include Tkpoba Hill
(n=30) [6.3496° N, 5.6609° E], New Benin (1=32) [6.3448° N, 5.6340°
E], Oba (n=32) [6.3348° N, 5.6201° E], Santana (n=30) [6.2915° N,
5.6325° E], Aduwawa (n=32) [6.3688° N, 5.6849° E], Uselu (n=31)
[6.3744° N, 5.6134° E], Ileha (n=30) [6.3460° N, 5.6097° E], Ekiosa
(n=31) [6.3231° N, 5.6363° E], Oka (n=30) [6.2905° N, 5.6623° E], Egor
(n=30) [6.3642° N, 5.6090° E], Oregbeni (n=30) [6.3501° N, 5.6592° E],
and Ugbor (n=30) [6.2629° N, 5.6063° E] markets. The sampling was
conducted from June 2018 to April 2019. Seasonal durations in Nigeria
include a wet season characterized by heavy rainfall with a temperature
reaching 35 + 2°C (March to September) and a dry season
characterized by low to no rainfall with a temperature reaching 39 +
2°C (November to February). A total of 368 frozen fresh chicken meat
samples were collected. In all cases, 50 g of samples were collected into
a plastic tube from retail outlets within Benin City and transported on
ice to the laboratory (Applied Microbial Processes & Environmental
Health Research Laboratory, University of Benin, Nigeria).

2.2 MRSA isolation

Twenty-five grams of the sample was inoculated into 225 ml
trypticase soy broth (Merck, Darmstadt, Germany), incubated at 37 °C
for 24 h, and subcultured via streaking onto MRSA selective agar plate
(CHROMagarTM MRSA-ITK Diagnostics BV, Netherlands) and
incubated at 37°C for 24 h. Rose to mauve colonies on MRSA
selective agar plates were presumptive MRSA isolates. The isolates
were identified based on cultural, morphological, and biochemical tests
such as Gram-reactions, 3% potassium hydroxide (3% KOH), catalase,
coagulase, -haemolysis, DNAse activity, anaerobic utilization of
glucose and mannitol (Tallent et al., 2019). One colony per plate was
purified in nutrient agar (Lab M, Lancashire, United Kingdom), further
incubated for 18 h at 37°C, and preserved on nutrient agar slants at 4°C.
The positive control used includes S. aureus (ATCC 12600).

2.3 Phenotypic confirmation of
MRSA isolates

Phenotypic detection of MRSA was performed using cefoxitin
disk assay (CLSI, 2020). For individual isolates, colonies of isolated
S. aureus from an overnight-grown culture were transferred into the
nutrient broth. S. aureus suspensions at a 0.5 McFarland standard
equivalent density in nutrient broth were spread onto Mueller-
Hinton agar (Lab M, Lancashire, UK) plate in duplicate with
cefoxitin (30 pg), methicillin (5 pg), cloxacillin (5 pg), and
oxacillin (1 pg) disc (Mast Diagnostics, UK). The plates were
incubated at 37°C for 24 h. Isolates identified with cefoxitin
resistance (< 21 mm zone diameter) were categorized as MRSA.

2.4 PCR detection and characterization
of the MRSA isolates

The genomic DNA of the MRSA isolates and positive S. aureus
(S. aureus ATCC 12600) control were extracted using the DNA
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MiniPrep kit following the manufacturer’s instructions. The
polymerase chain reaction (PCR) uses to identify Staphylococcus
aureus using specific primers (Supplementary Table 1) and the PCR
reaction previously described (Brakstad et al., 1992) by targeting the
nuc gene. AMR genes such as methicillin resistance (mecA),
trimethoprim (dfrG, dfrK, dfrD), aminoglycosides [ant(4')-Ia, aac
(6°)-Ie-aph(2”’)-1a, aph(3°)-IIIa], chloramphenicol (cat:pCI194,
cat:pC223, cat:pC221), erythromycins (ermA, ermB, ermC),
tetracyclines (tetO, tetM, tetL, tetK) and beta-lactamase (BlaZ);
and virulence genes such as intercellular adhesion protein (icaA,
icaB, icaC, icaD), toxic shock syndrome toxin 1 (¢sst-1), exfoliative
toxin (eta, etb), enterotoxins (sea to seu), haemolysins (hla, hib),
Panton-Valentine Leucocidin (PVL), staphylococci protein A (spa),
and coagulase (coa) were amplified as described previously (Jackson
and Landolo, 1986; Dale et al., 1995; Frenay et al., 1996; Monday
and Bohach, 1999; Martineau et al., 2000; Fueyo et al, 2005).
SCCmec I to V and subtype SCCmec (IVa to d) of the MRSA
isolates was carried out using PCR as described previously (Okuma
etal., 2002; Ma et al., 2005; Zhang et al., 2005) using specific primer
sets in Supplementary Table 1. PCR products were performed in a
1% agarose gel electrophoresis for 45 min at 110 V, viewed after
staining with ethidium bromide in a transilluminator (Vilber
Lourmat, EBOX VX5, France).

2.5 Antimicrobial susceptibility testing

The antibiogram profiling of the MRSA isolates was conducted
using the Kirby-Bauer disc diffusion procedure. Antibiotics used
includes Penicillin G (10 units), ceftaroline (30ug), gentamicin
(10ug), amikacin (30pg), kanamycin (30pg), azithromycin (15pg),
clarithromycin (15pg), erythromycin (15ug), doxycycline (30ug),
minocycline (30pg), tetracycline (30pg), ciprofloxacin (5ug),
levofloxacin (5ug), moxifloxacin (5ug), nitrofurantoin (300pg),
clindamycin (2ug), trimethoprim-sulfamethoxazole (1.25/
23.75ug), trimethoprim (5ug), chloramphenicol (30ug),
sulfonamides (300ug), linezolid (30pg) and rifampin (5pg). The
interpretation of the zone of inhibitions of the isolates as resistance,
intermediate, or susceptibility was based on the Clinical and
Laboratory Standard Institute’s interpretative chart (CLSI, 2020)
to determine the sensitivity, intermediate and resistance profiles of
the isolates to the antibiotics used. For vancomycin (1-32 ug/mL),
oritavancin (0.12-0.50 pg/mL), teicoplanin (4-64 pg/mL),
daptomycin (0.5-4 pg/mL), and tedizolid (0.25-4 pg/mL)
antibiotics, the minimum inhibitory concentration (MIC)
procedure was adopted, and data were interpreted based on
interpretive categories and MIC breakpoints, pug/mL (CLSI, 2020).
Multidrug resistance and multiple antibiotic resistance index were
determined as described elsewhere (Igbinosa et al., 2022).

2.6 Biofilm formation profile of the
MRSA isolates

Biofilm formation assay was carried out by suspending pure
MRSA colonies in 4.5 mL tryptone soy broth (TSB) and incubating
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for 18 h at 37°C. After that, the cells were harvested at 12,000 rpm
for 2 min., washed, re-suspended in phosphate-buffered solution at
pH 7.2), and adjusted to 0.5 McFarland standards. A 20 mL of the
suspended cell inoculant and 80 mL TSB were introduced into
sterile 96-welled polystyrene microtitre plates to assess
Staphylococci adherence onto a solid matrix/medium well-
contained as described previously (Igbinosa et al., 2022). The
negative and positive control was a well-containing TSB broth
and S. aureus ATCC 12600, respectively. Each assay was done in
independent biological triplicate. Biofilm-producing ability of the
isolates was defined as non-producing/negative (ODi< ODc), weak/
poor-producing (ODc< ODi<0.1), moderate/intermediate-
producing (ODi % 0.1< 0.12), or strong producer (ODi>0.12) as
described somewhere else (Igbinosa et al., 2022).

3 Results
3.1 MRSA prevalence from chicken meat

From the 368 samples screened, 110(29.9%) were positive for
MRSA via resistance (< 21 mm zone diameter) to the cefoxitin disc
test. As such, representative isolates from the 110 samples were
carefully screened using the S. aureus specific primer (nuc gene),
where a total of 110 isolates were detected (Table 1).

3.2 Phenotypic virulence factors of the
MRSA isolates

All MRSA isolates from this study were 100% positive for
DNase, coagulase, and beta-hemolysis production (Table 1). The
biofilm profile of the isolates revealed that 27(24.55%) were weak
biofilm producers, 18(16.36%) were moderate biofilm producers, 39
(35.45%) were strong biofilm producers, while 26(23.64%) were
negative for biofilm formation (Table 2). An overall total of 84
(76.36%) of the isolates were biofilm formers (Table 1).

3.3 Occurrence of virulence determinants
from the MRSA isolates

The occurrence of virulence genes screened in this study is as
follows: coa 110(100%), spa 98(89.1%), hla 110(100%), pvl 50
(45.5%), hlb 23(20.95), sea 27(24.6%), seb 16(14.6%), sec 19
(17.3%), sed 14(12.7%), see 13(11.8%), seg 39(35.5%), seh 13
(11.8%), sei 11(10%), sej 32(29.1%), sek 4(3.6%), sel 4(3.6%), sep
20(18.2%), ser 13(11.8%), tsst 16(14.6%), eth 17(15.5%), eta 17
(15.5%), icaA 45(40.9%), icaB 44(40%) (Table 1). The sem, sen,
seo, seq, seu, icaD and icaC were not detected. Overall, staphylococci
isolates harbored a minimum of 2 virulence genes and a maximum
of 17 virulence genes (Table 1). All the isolates that possessed the
adherence determinant (icaA and icaB) formed biofilms
phenotypically. All the isolates that possessed the hla and hlb
genes were [-hemolytic phenotypically on blood agar. All the
isolates in the study were coagulase positive via biochemical
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process and possessed the coa determinant. Enterotoxin gene (18
sea-seu genes) profiling of the isolates revealed that 90.9% (100/110)
of the isolates were enterotoxigenic, harboring either one or more
genes of the 13 genes that were positive. The chain of enterotoxin
gene occurrence was seg>sej>sea>sep>sec>seb>sed> see,she,
ser>sei>sek,sel. All the ica gene-carrying isolates were biofilm
formers (Table 1). The combined occurrence of virulence genes
include: hla+hlb 23(20.9%), eta+etb 17(15.5%), icaA+IcaB 37
(33.6%), pvi+hla+hlb 23(20.9%), pvi+tsst-1 16(14.5%) (Table 1).

3.4 Antimicrobial susceptibility profile and
determinants of the MRSA isolates

The resistance profile of the S. aureus in Table 2 to the antibiotics
tested is as follows: penicillin G 110(100%), clarithromycin 53(48.2%),
doxycycline 58(52.7%), minocycline 53(48.2%), tetracycline 64
(58.2%), ciprofloxacin 71(64.6%), levofloxacin 84(76.4%),
moxifloxacin 88(80%), clindamycin 62(56.4%), sulfonamides 53
(48.2%), trimethoprim 71(64.6%), and rifampin 103(93.6%). The
sensitivity profile of the isolates in Table 3 is as follows: ceftaroline
54(49.1%), gentamicin 51(46.4%), amikacin 64(58.2%), kanamycin 56
(50.9%), nitrofurantoin 100(90.9%), trimethoprim-sulfamethoxazole
58(52.7%), chloramphenicol 78(70.9%), and linezolid 83(75.5%). All
the isolates were vancomycin, oritavancin, teicoplanin, daptomycin,
and tedizolid-sensitive (Table 2).

A total of 89(80.9%) isolates were multidrug resistant been
resistant to >1 antibiotic in >3 antimicrobial classes. A total of 3
isolates were resistant to 22/27(81.5%) antibiotics used in this study.
All isolates were resistant to > 1 antibiotic, while 89(80.9%) isolates
were resistant to > 3 antibiotics (Table 2). Of the isolates, 103
(93.6%) were resistant to >2 antibiotics. MAR index of the isolates
ranged from 0.04 - 0.81. Isolates with MAR index >2 were 73
(66.4%). The highest resistant phenotype was PEN"+CPT"+GEN"
+AMI*+KANR+AZM®+CLR*+ERY "+ DOX"+MIN"+ TET®+CIP"
+LVXR 4+ MXEFRNITR+CLI*+SX TR +8SS" + TMP®+ CHLR+LNZ®
+RIF® with a MAR index of 0.81. A total of 57 resistance phenotypic
patterns were observed amongst all the isolates studied (Table 2).

The antibiotic-resistant genes detected includes: mecA 91/110
(82.7%), blaZ 91/110(82.7%), tetK 64/110(58.2%), tetL 23/110
(20.9%), ermA 55/110(50%), ermB 9/110(8.2%), ermC 21/110
(19.1%), aac(6’)-Ie-aph(2”’)-Ia 37/110(33.6%), ant(4’)-Ia 28/110
(25.5%), aph(3’)-1lIa 26/110(23.6%), cat:pC194 20/110(18.2%), cat::
pC221 12/110(10.9%), cat:pC223 12/110(10.9%), dfrD 64/110(58.2%),
dfrK 22/110(20%), dfrG 38/110(34.5%) (Table 3). Other resistant
genes, such as tetM and tetO, were not detected (Table 3). A total of
91(82.7%) isolates harbored >1 antimicrobial resistance gene, while 19
(17.3%) of the isolates didn’t harbor any antimicrobial resistance gene
(Table 3). The combined occurrence of antimicrobial resistance genes
includes: mecA+blaZ 91(82.7%), tetK+tetL 23(20.9%), ermA+ermB 9
(8.2%), ermA+ermB+ermC 3(2.7%), aac(6')+ ant(4')+aph(3°) 25
(22.7%), aac(6”)+ant(4’) 30(27.3%), cat:pCl194+cat:pC221+ cat:
pC223 7(6.4%), cat:pCl194+ cat:pC221 12(109%), dfrD+dfrK+dfrG
17(15.5%), dfrD+dfrK 22(20%), dfrD+dfrG 37(33.6%) (Table 3).

The distribution of SCCmec is as follows: SCCmec 11T 18(16.4%),
SCCmec TVa 33(30%) and SCCmec V 17(15.5%) (Table 3). Other
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SCCmec screened (SCCmec 1, 11, IVb, IV, IVd, and IVh) were not
detected (Table 3). The combined occurrence of SCCrmec and pvi genes
includes SCCmec IVa+pvl 33(30%) and SCCmec V+pvl 17(15.5%). All
the SCCmec IVa and SCCmec V isolates also harbored the PVL gene,
while all the SCCmec III isolates didn’t harbor the PVL gene (Table 3).

4 Discussion

Methicillin-resistance S. aureus from poultry meat poses a
public health risk that can transmit to humans via the handling
or consumption of contaminated poultry meat. Lower prevalence
rates than those of our study (ranging from 0 - 27%) have been
reported previously in North and South America, Europe, and Asia
(Tang et al,, 2017; Bernier-Lachance et al., 2020). Higher prevalence
rates (35.4%) compared to our findings have also been documented
in the Czech Republic (Tegegne et al., 2021). Differences in
geographical locations, handling practices, sample size variations,
seasonal variations, management practices, and methods of the
experiment have been reported to cause differences in the
prevalence of MRSA (Abbasi et al., 2021). These results highlight
the necessity to mitigate the risk of MRSA transmission dynamics
via meat products to humans.

Bernier-Lachance et al. (2020) isolates formed biofilm via the
microtiter plate assay, which was higher than our study’s biofilm
formers (76.36%). Biofilm occurrence meant that the MRSA isolates
have adhesive potentials to the host’s extracellular matrix; these likely
favor zoonotic potential, persistence, and colonization. Nigeria, where a
significant proportion of the population is non-vegetarian, suggests that a
large population is t risk of meat-borne hazards. Szczuka et al. (2013)
reported that 76% of the biofilm-forming strains had the icaA gene
(Yazdani et al,, 2006), which was lower than the 100% icaA gene-carrying
isolates that formed biofilm in our study. High distribution of biofilm
formation genes (icad, icaB, icaC, icaD) have been demonstrated
previously (Nemati et al, 2009; Abbasi et al, 2021), which was
different from our study where icaC and icaD were not detected. The
icaABCD genes encode intercellular polysaccharide adhesion, which
shields S. aureus in difficult environmental circumstances such as
immune responses, antimicrobials, and antiseptic agents. Higher
detection rates of icaABCD genes have been reported (Abbasi et al,
2021). Biofilm production ability, presence of virulence determinants,
and antimicrobial capacity in the genome of MRSA constitute a severe
risk to public health.

In addition to infection/colonization, MRSA strains have
caused SFP outbreaks (Sergelidis and Angelidis, 2017). Most
MRSA isolates by Wu et al. (2019) were MDR and harbored >1
SE gene, similar to our findings. Lower profiling of SEs (13 - 83%)
has been documented (Kitai et al.,, 2005; Li et al., 2018; Savariraj
et al., 2020; Tegegne et al., 2021) compared to those of our study.
The chain of distribution of the enterotoxin genes from our
study was seg>sej>sea>sep>sec>seb>sed>see,she,ser> sei>sek,sel.
This was different from those from other studies, such as
seb>seg>sei>sec>sed>sej (Savariraj et al., 2020). Kitai et al. (2005)
reported the distribution of seb>sea>sec>sed. Previous studies have
found that sea (Nemati, 2014), seg, and sei (Pu et al., 2011) were the
prevalent toxin gene somewhat similar to our study, where seg was
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TABLE 2 Continued

Coded MRSA MAR Index
SA094 0.74
SA095 0.37
SA096 0.29
SA097 0.07
SA098 0.78
SA099 0.29
SA100 0.81
SA101 0.59
SA102 0.37
SA103 0.07
SA104 0.78
SA105 0.29
SA106 0.59
SA107 0.74
SA108 0.26
SA109 0.29
SAI110 0.07

PEN: ERY: Erythromycin 15ug; Penicillin G 10 units; CPT, Ceftaroline 30ug; GEN, Gentamicin 10pg; AMI, Amikacin 30pg; KAN, Kanamycin 30ug; AZM, Azithromycin 15ug; CLR, Clarithromycin 15ug; DOX, Doxycycline 30pg; MIN, Minocycline 30pg; CIP,
Ciprofloxacin 5ug; LVX, Levofloxacin 5ug; MXF, Moxifloxacin 5ug; NIT, Nitrofurantoin 300ug; CLI, Clindamycin 2ug; DAP, Daptomycin; SXT, Trimethoprim-sulfamethoxazole 1.25/23.75ug; SSS, Sulfonamides 300pg; TMP, Trimethoprim 5ug; CHL, Chloramphenicol

Antibiotics

MIN

SXT

SSS

30ug; RIF, Rifampin 5ug; VAN, Vancomycin; ORI, Oritavancin; TET, Tetracycline 30pg; TEI, Teicoplanin; LNZ, Linezolid 30ug; and TED, Tedizolid; Red colour = resistance; green colour = sensitive; yellow colour = intermediate.
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the most predominant, followed by sej, sea, and others. In the
present study, non-classical enterotoxin genes seg and sej had higher
prevalence with the exemption of classical enterotoxin sea.
Previously, newly described enterotoxin genes seg, sem, sei, and
sen were found among S. aureus isolates with the exemption of
classical enterotoxin genes known as major etiological factors in
SEFP (Hwang et al., 2007). Mosaic structure in the pathogenicity
islands can contribute to the shuffling and rearrangement of the
enterotoxin genes in S. aureus (Banaszkiewicz et al., 2019).

Savariraj et al. (2020) reported that none of their S. aureus
isolates harbored see sea, and seh either alone or in combination,
which negates the findings from our study as sea and see were
detected independently or in variety. Higher prevalence of seb gene
in MRSA and S. aureus in retail chicken carcasses have been
reported (Kitai et al., 2005; Abolghait et al., 2020). Among the
SEs, seb and sea are the best elucidated. Among well-known
bacterial superantigens connected with SFP, asthma, atopic
dermatitis, nasal polyps, and toxic shock syndrome in humans,
SEB is the most potent (Fries and Varshney, 2013). Abolghait et al.
(2020) reported that the isolate positive for the sed gene did not
harbor the tsst gene, which negates the finding from our study
where some of the isolates carried the sed+tsst gene. No
combinations of >1 of the tested SE genes (sea, sec, seb, and sed)
were found by Abolghait et al. (2020), which was also different from
our findings where there were multiple combinations of SEs genes
that could be attributed to the larger SEs gene pool we screened (sea
- seu) which aligns with other studies (Titouche et al., 2020). Most
of the enterotoxigenic isolates by Abolghait et al. (2020) encoded
the etb and tsst-1 genes which were similar to our findings. Wu et al.
(2019) reported lower tsst-1 gene detection (3.70%) compared to
ours (14.6%). None of the MRSA isolates from previous studies
(Bernier-Lachance et al., 2020) harbor genes encoding eta, etb, and
tsst-1, which negates our findings as these genes were detected in
some of the isolates. The SEs genotypes sea-seg—sei or seg— sei,
which also exists from our study, are known to be associated with
SFP outbreaks (Kerouanton et al.,, 2007). The existence of hlb and
hla genes in MRSA isolates is crucial for SEP. Ariyanti et al. (2011)
showed that the hla and hib genes were ubiquitous among S. aureus
isolated from food animals, similar to our study’s findings.

All MRSA isolates in our study harbored virulence determinants
pivotal in toxin production, invasion, adhesion, immune modulation,
tissue destruction, leucocyte, and erythrocytes lysis. Enterotoxin genes
are borne on MGEs, plasmids (seb), bacteriophages (sea), or
pathogenicity islands (sec) (Argudin et al., 2010), which explains their
absence or presence in individual isolates either by vertical or acquisition
transmission of genes respectively. The virulence genes detected in S.
Aureus and MRSA in the current study have been documented in CA-
MRSA isolates in humans in hospital settings (Pokhrel et al., 2016). The
occurrence of these potential pathogenic MRSA isolates in chicken meat
portends their role as a threat to public health. The Prevalence of SEs
gene in S. aureus/MRSA varies from country to country and might
likely reflect geographical differences and ecological differences in
strains’ origins (Li et al., 2018; Abolghait et al,, 2020).

Previous studies have reported lower MDR MRSA isolates within
the range of 39.17 - 70.2% (Li et al, 2019; Zehra et al, 2019)
compared to 80.9% from our study; while the MAR index was
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reported as 0.23% (Amoako et al., 2019) which is lower compared
to most of the isolates from our study. It was reported previously that
97.1% of isolates were resistant to >1 antimicrobial agent (Li et al,
2019), which negates our findings as all isolates were resistant to >1
antimicrobial. A result from Iran revealed that 96.0% of isolates were
resistant to >2 antimicrobials (Nemati, 2013), similar to the 93.6%
reported in our study. Resistance to penicillin, ciprofloxacin,
tetracycline, erythromycin and kanamycin has commonly been
reported from meat samples (Li et al, 2019; Zehra et al, 2019).
None of the S. aureus strains from previous studies (Tang et al., 2017;
Liet al, 2019) was found to be resistant to nitrofurantoin, and less
than ten strains were resistant to rifampicin, trimethoprim,
chloramphenicol, teicoplanin or gentamicin. This was different
from the findings from our study, where the isolates were resistant
to the antibiotics mentioned with the exemption of teicoplanin, where
no resistance was observed. However, from previous studies, low
resistance rates varying from 2-9% were observed for clindamycin,
oxacillin chloramphenicol, and ceftriaxone (Zehra et al., 2019), which
negates the findings from our study. No vancomycin-resistant isolate
was found in this study, similar to Okorie-Kanu et al. (2020).

Approximately 38 unique resistance phenotypic patterns were found
among the chicken isolates by Zehra et al. (2019), which was lower than
the 57-resistance phenotypic pattern found in our study. Antibiotics such
as tetracyclines, fluoroquinolones, macrolides, and sulfonamides are
important for human health and are listed by the WHO as critically
essential antimicrobials (WHO, 2017). The marked resistance to such
antimicrobials is perhaps not surprising since these drugs are
inexpensive, orally administered, and are available from diverse sources
where they are sold with or without prescription in Nigeria (Okorie-
Kanu et al., 2020). The indiscriminate use of these antibiotics in food
animal production is a cause for concern culminating in the upsurge of
MDR S. aureus (Beshiru et al., 2016; Imanah et al., 2017; El-Ashker et al.,
2020; Beshiru et al, 2021). The low levels of biosecurity practices
compliance and poor husbandry practices promote indiscriminate use
and overdependence of these antibiotics in water and feed as growth
promoters and for prophylaxis purposes in poultry farms in Nigeria
(Oviasogie et al., 2016; Igbinosa et al., 2021b; Igbinosa et al., 2023).

Similar reports of resistance to fluoroquinolones have been
documented from retail meat products in South Africa, Ghana,
and Bangladesh (Mkize et al., 2017). Fortunately, MRSA isolates in
our study were susceptible to linezolid, vancomycin, daptomycin,
tedizolid, teicoplanin, oritavancin, and nitrofurantoin in line with a
previous report (Okorie-Kanu et al., 2020). These are the priority
and critically essential antibiotics in human medicine (WHO,
2019). The high sensitivity observed could be because these drugs
lack veterinary preparations and aren’t routinely used in a clinical
setting. The efficient regulation or termination of antibiotic usage in
food animals has decreased resistance to zoonotic bacteria in
developed countries (Levy, 2014; El-Ashker et al., 2020). There is
a need for the urgent execution of appropriate food safety strategies
across all decision-makers, policy-makers, and stakeholders in
environmental, animal, and human health to address the public
health menace of antimicrobial resistance.

Mobile genetic elements (MGEs) carry virulence traits that
encode S. aureus accessory genes (fsst-1, eta and etb) (Xia and
Wolz, 2014). Therefore, upon acquiring MGEs conferring virulent
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traits, commensal S. aureus may become a virulent/pathogenic strain
pathogen under favorable conditions (Sergelidis and Angelidis, 2017).
A total of 82.7% of the cefoxitin-resistant MRSA had the mecA gene
from our study. Lower mecA gene occurrence (5.5%) of examined
samples has been reported previously with phenotypic MRSA-
positive isolates in Egypt (Abolghait et al, 2020). Higher mecA
gene occurrence (100%) from cefoxitin-resistant MRSA-positive
isolates has been documented in Poland, Oklahoma, and China (Li
et al., 2019). Some isolates were cefoxitin-sensitive and lacked mecA
or mecC genes but were oxacillin-resistant (Shore and Coleman,
2013). There has also been a report of S. aureus isolates (5.07%)
phenotypically resistant to oxacillin from India but genotypically
lacking mecA gene (Zehra et al, 2019). Such a pattern may be
attributed to PB-lactamases’ hyperproduction of and elicitation of
the variant of mecA gene and penicillin-binding protein with an
altered binding affinity (Laurent et al,, 2012).

A significant proportion of the 3-lactamase-encoding gene (blaZ)
was found among MRSA isolates in the current study in addition to
mecA. Phenotypic resistance to gentamicin, tetracycline, and
erythromycin was supported by detecting tefK, aphA3 and ermA/
ermB/ermC. Zehra et al. (2019) isolated carried resistance genes (blaZ,
mecA, aacA-aphD, ermB, ermC, tetK, tetL, and tetM) similar to the
findings of our study. All the tested MRSA by Bernier-Lachance et al.
(2020) harbored a much higher dfrG gene (which confers resistance to
trimethoprim) compared to our research. Abbasi et al. (2021) reported
that >1 isolate carries one of the following resistance genes blaZ, mecA,
tetK, linA, tetM, ermA, ermB, and aacA-D which was much higher
than the 82.7% of the isolates from our study. The presence of the tetK
and tetM genes similar to our finding explained the tetracycline
resistance phenotype observed by Bernier-Lachance et al. (2020).

The SCCmec typing from our study showed that few belonged to
the human-associated (HA) clones’ type SCCmec III, with the
majority belonging to the CA-MRSA SCCmec IVa, similar to a
previous study (Li et al, 2019). Al MRSA with SCCmecV also
harbored the pvl gene identical to the SCCmecV+pvl variants by
Zehra et al. (2019), which are molecular markers for CA-MRSA,
indicating their presence in food of animal origin. Our study’s
panton-valentine leukocidin (PVL) detection was slightly higher
than previously detected by Okorie-Kanu et al. (2020). Kim et al.
(2015) reported MRSA-SCCmecV+pvl as the commonest MRSA
isolate from meat samples (Kim et al., 2015). SCCmec elements of
types IV and V are the commonly found SCCrmec types in CA-MRSA
(Abdulgader et al., 2015). SCCmec types IVa and V have been
documented in HA-MRSA in Nigeria (Ghebremedhin et al., 2009).

5 Conclusion

The MRSA recovered demonstrated MDR potential while
harboring potent enterotoxin determinants and other virulence traits
that could be detrimental to human health. The MRSA isolates also
showed biofilm-forming capacity, which could make them more prone
to antimicrobial resistance and persist on biotic and abiotic surfaces.
The findings highlight the significance of surveillance studies and the
need to continuously monitor the food chain for foods of animal origin
for the occurrence and spread of MRSA superbugs. Our findings have
revealed that raw chicken meat from Nigeria is the reservoir of MRSA.

Frontiers in Cellular and Infection Microbiology

19

10.3389/fcimb.2023.1122059

This study has also raised concerns about MRSA transmission after
consuming contaminated chicken products. These findings could
proactively assist industries and governments in Nigeria to improve
food safety measures and enhance antimicrobial stewardship to curb
the spread of critical antimicrobial-resistant pathogens.
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