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Buea, Buea, Cameroon, 3Centre International de Recherche en Infectiologie (CIRI), Team Enveloped
Viruses, Vectors and Immunotherapy (EVIR), Univ Lyon, Université Claude Bernard Lyon 1, Inserm,
U1111, Centre National de la Recherche Scientifique (CNRS), UMR5308, Ecole Normal Superieur (ENS)
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Introduction: Despite a high fatality rate in humans, little is known about the

occurrence of Crimean-Congo hemorrhagic fever virus (CCHFV) in Cameroon.

Hence, this pioneer study was started with the aim of determining the prevalence

of CCHFV in domestic ruminants and its potential vector ticks in Cameroon.

Methods: A cross-sectional study was carried out in two livestock markets of

Yaoundé to collect blood and ticks from cattle, sheep, and goats. CCHFV-

specific antibodies were detected in the plasma using a commercial ELISA

assay and confirmed using a modified seroneutralization test. Ticks were

screened for the presence of orthonairoviruses by amplification of a fragment

of the L segment using RT-PCR. Phylogeny was used to infer the genetic

evolution of the virus.

Results: Overall, 756 plasma samples were collected from 441 cattle, 168 goats,

and 147 sheep. The seroprevalence of CCHFV was 61.77% for all animals, with the

highest rate found in cattle (433/441, 98.18%) followed by sheep (23/147, 15.65%),

and goats (11/168, 6.55%), (p-value < 0.0001). The highest seroprevalence rate

was found in cattle from the Far North region (100%). Overall, 1500 ticks of the

Rhipicephalus (773/1500, 51.53%), Amblyomma (341/1500, 22.73%), and

Hyalomma (386/1500, 25.73%) genera were screened. CCHFV was identified in

one Hyalomma truncatum pool collected from cattle. Phylogenetic analysis of

the L segment classified this CCHFV strain within the African genotype III.
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Conclusion: These seroprevalence results call for additional epidemiological

studies on CCHFV, especially among at-risk human and animal populations in

high-risk areas of the country.
KEYWORDS

zoonosis, emerging and re-emerging virus, Central Africa, CCHFV, Dugbe
virus, Orthonairovirus
Introduction

Crimean-Congo hemorrhagic fever (CCHF) is endemic in

Africa, eastern Europe the Middle East and in Asia and is the

most widespread tick-borne disease in the world (Fanelli and

Buonavoglia, 2021). CCHF is caused by an enveloped, segmented,

negative sense, single-strand RNA virus (CCHFV) belonging to the

Orthonairovirus genus, Nairoviridae family (Garrison et al., 2020).

The viral genome consists of three RNA segments: small (S),

medium (M), and large (L), which encode the viral nucleoprotein

(NP), the glycoprotein precursor (GPC) which is matured in two

structural glycoproteins (Gn and Gc), and the RNA-dependent

RNA polymerase, respectively (Garrison et al., 2020). CCHFV is

among the most genetically diverse arboviruses known currently.

Many genotypes are distinguished based on the genomic segment

considered and they show geographic segregation according to the

origin of the virus. The phylogenetic analysis of the S segment

described seven lineages named Africa 1, Africa 2, Africa 3, Asia 1,

Asia 2, Europe 1, and Europe 2 while nine and six additional genetic

lineages can be characterized for the M and L segments respectively,

with however a certain congruent level (Deyde et al., 2006; Bente

et al., 2013; Guo et al., 2017). Interestingly, segment reassortment

are common with CCHFV, leading to differences in the

phylogenetic three topology for the same isolate when the three

genomic segments are analysed (Deyde et al., 2006; Chinikar

et al., 2015).

CCHFV is a zoonotic virus maintained in an enzootic

transmission cycle involving Ixodidae ticks and several vertebrate

animals such as birds, small mammals, domestic animals, and wild

ungulates (Kuehnert et al., 2021). Although the virus has been

found in different species of ticks such as Amblyomma spp., and

Rhipicephalus spp., Hyalomma spp. ticks are considered as the

primary vectors and reservoirs of CCHFV. In fact, the area of

endemicity of CCHFV closely mirrors that of the different species of

Hyalomma ticks in Africa, Europe, and Asia with the involvement

of local species (Turell, 2007; Okely et al., 2020). Hyalomma

maintains the virus through transovarial, transstadial, and

venereal transmission (Turell, 2007). CCHF infection in non-

human vertebrates is usually asymptomatic or mild with a

viremia lasting less than 14 days (Spengler et al., 2016). CCHFV

can be transmitted to humans through the bite or crushing of an

infected tick, by direct contact with blood or tissues of a CCHFV-

infected animal or patient. Nosocomial transmission has been

documented as mostly associated with unsuitable sterilization of
02
medical equipment and contamination of medical supplies

(Whitehouse, 2004; Turabi Gunes et al., 2009). Clinical

presentation of CCHF in humans is variable, from a mild non-

specific febrile illness to a fatal haemorrhagic fever characterized by

disseminated intravascular coagulation, shock, and multiple organ

failure. No commercial vaccines and treatments for humans or

animals are available to date (Tipih and Burt, 2020). With a case

fatality rate ranging from 10 to 40%, and only supportive care to

control the disease symptoms in patients, CCHF is _with COVID-

19, Ebola virus disease and Marburg virus disease, Lassa fever,

Middle East respiratory syndrome (MERS) and Severe Acute

Respiratory Syndrome (SARS), Nipah and henipaviral diseases,

Rift Valley fever, Zika and Disease X_ on the blueprint list of

priority diseases on which most research and development efforts

should be focused (Freitas et al., 2022; WHO, 2022a).

The epidemiology of CCHF has long been underestimated in

Africa. Though not many efforts to understand CCHF have been

made on the continent, reports show the evident activity of the virus

in animals and ticks. Since the year 2000, at least nineteen African

countries have described CCHF outbreaks in humans, showing the

growing impact of this disease (Temur et al., 2021; WHO, 2022b).

Indeed, Mali, Mauritania, Namibia, Nigeria, Senegal, South Africa,

Sudan, and Uganda have each reported at least three human

outbreaks from 2010 to 2021 (Zivcec et al., 2017; Boushab et al.,

2020; Temur et al., 2021). Very little information is available on

CCHF in Central Africa besides small-scale seroprevalence studies

in cattle or humans (Guilherme et al., 1996; Sas et al., 2017; Sadeuh-

Mba et al., 2018; González Gordon and Bessell, 2022). Grard and

colleagues have however described in 2008 a human CCHF case in

the Democratic Republic of the Congo (DRC) with the occurrence

of CCHFV genotype II (Grard et al., 2011). The aim of this study

was to gain greater insight into CCHFV activity by screening

domestic ruminants and their attached ticks for the detection of

either specific antibodies or the virus in two markets of Yaoundé

in Cameroon.
Materials and methods

Ethical consideration and authorization

The study protocol was implemented with approval from the

Regional Delegation of the Ministry of Livestock, Fisheries, and

Animal Industries (MINEPIA), authorizations N°000151/L/
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MINEPIA/SG/DREPIA-CE/SRDPIA and 00034/L/MINEPIA/SG/

DREPIA-CE. Oral consent for blood and ticks sampling was

obtained from the animal’s owners.
Description of the study sites

The study was carried out in two main livestock markets of

Yaoundé, Cameroon namely Etoudi (3°55’N, 11°31’36” E) for cattle,

and Tsinga market (3°53’55” N, 11°29’30” E) for goats and sheep.

The cattle found in Etoudi market arrive from the Adamawa, North,

and Far-North regions of Cameroon as well as neighboring

countries, to a lesser extent. The small ruminants in Etoudi

market come from the northern and western regions of the

country. These study sites have been previously described (Sado

and Tchetgna, 2022).
Sample collection and processing

After obtaining consent from the herd’s owners, a questionnaire

was administered, and we randomly sampled 10% of the herd. The

age of animals was determined using the characteristics of their

horns and dentition. Blood and ticks were sampled in June and

August 2019, then February and March 2020, and finally March and

April 2021. Plasma was obtained after centrifugation at 2500 rpm

for 10 min and stored at -20°C until analysis. Ticks were removed

manually or with forceps and kept in individual 15mL falcon tubes

per animal. Once in the laboratory, the ticks were washed in ethanol

70%v/v, rinsed twice with sterile water, and finally washed in cell

culture medium (Minimum Essential Medium, Gibco, Thermo

Fisher Scientific, Gloucester, UK). They were subsequently

identified using a stereomicroscope (LEICA EZ4E, LEICA

Microsystems, Wetzlar, Germany) based on published

morphological taxonomic keys (Walker et al., 2003), preserved in

RNAlater™ Stabilization Solution (Invitrogen™, Life Technologies,

Carlsbad, California, USA) and stored at -80°C until further

analysis. To support morphological identification, the tick species

was confirmed by molecular analysis of the Cytochrome c Oxidase

subunit 1 (Cox1) and 16S rDNA (Lv. et al., 2014; Sado Yousseu

et al., 2022).
Screening of antibodies against CCHFV in
the plasma of domestic ruminants

A double antigen Enzyme-Linked Immunosorbent Assay (da-

ELISA) was performed to detect specific antibodies directed against

the CCHFV nucleoprotein (CCHFV-NP) following the

manufacturer’s instructions (Innovative Diagnostics®, Grabels,

France) (Sas et al., 2018). The test was conducted in 96-well

plates that were pre-coated with recombinant purified CCHFV-

NP antigens. The anti-CCHFV-NP antibodies if present in the

plasma, formed an antigen-antibody complex which will be

recognised by a recombinant CCHFV NP antigen-HRP

(horseradish peroxidase). Then the absorbance was measured at
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450nm using a Biochrom EZ Read 400 ELISA Microplate Reader

(ThermoScientific™, Cambridgeshire, Cambridge, United

Kingdom). The test was validated when the mean value of the

positive control O.D. (ODPC) was greater than 0.350 (ODPC

> 0.350) and when the ratio of the mean values of the positive

and negative controls was greater than 3 (ODPC/ODNC >3). Hence,

the positivity percentage was computed over the net OD of the

positive control.
Seroneutralization test using the
transcription and entry competent virus-
like particle system harboring CCHF
glycoproteins

We used a reverse genetic approach to produce nanoluciferase

(nanoluc)-expressing CCHF virus-like particles, namely

transcriptionally and entry competent virus-like particles

(tecVLP) (Freitas et al., 2020). Briefly, Huh7.5 cells were seeded

in 10 cm dishes and transfected with 3.6µg of pCAGGS-V5-L WT,

1.2µg of pCAGGS-N, 1.2µg of pT7-nLuc, 3µg of pCAGGS-GP, 3µg

of pCAGGS-T7, using GeneJammer transfection reagent (Agilent

technologies, Santa Clara, California, USA). The transfection media

was replaced 6h post transfection. Cells supernatants were

harvested 72h post transfection, filtered through a 0.45 mm filter

and nanoluc-tecVLP were aliquoted and stored at 80°C before use.

Plasmids used for nanoLuc-tecVLP production were described

previously (Bergeron et al., 2010; Devignot et al., 2015). For

neutralization assays, nanoLuc-tecVLP were incubated with a

100-fold dilution of sera or control antibodies for 1h at 37°C

before infection of Huh7.5 cells. Then, 24h post-infection, cells

were lysed and nanoluciferase activity was quantified as relative

light unit (RLU) using the Nano-glo Luciferase Assay System

(Promega, France) following supplier’s recommendations. Cattle

sera from France were used as negative controls, and an anti-Gc

neutralizing antibody and a serum from an experimentally infected

bovine as the positive control. Cut-off value was calculated as mean

of negative controls ±2 standard deviation and set at 1.2x105 RLU.

To identify nonspecific neutralization, we also incubated each

serum with nanoLuc-VSV-G (glycoprotein of the vesicular

stomatitis virus (VSV)) pseudotype lentivirus particles and follow

the same procedure as described for tecVLP.
Detection of the CCHFV S segment in
plasma and orthonairovirus L segment
in ticks

Viral RNA was extracted from 10% of da-ELISA positive

plasma samples randomly selected using QIAamp Viral RNA

Mini Kit (Qiagen, Hilden, Germany) according to the

manufacturer’s instructions. Then, the cDNA was synthesized

with a High-capacity cDNA reverse transcription kit (Applied

Biosystems, Foster City, California, USA). Real-time RT-PCR

targeting a portion of the nucleoprotein within the S segment was

performed with TaqMan™ Universal PCR Master Mix kit (Applied
frontiersin.org
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Biosystems, Foster City, California, USA) and 400 nM of forward

(5’CAAGGGGTACCAAGAAAATGAAGAAGGC3’, position 1068

to 1095 ) and r eve r s e (5 ’GCCACAGGGATTGTTCC

AAAGCAGAC3’, position 1223 to 1248) primers and 200 nM

probe (5’FAM-ATCTACATGCACCCTGCTGTGTTGACA-

TAMRA3’) (Wölfel et al., 2007). PCR amplification was

completed using a Stratagene Mx3005P qPCR machine (Agilent

Technologies, Santa Clara, California, USA).

Additionally, RNAwas extracted from pools of three to eight ticks per

species and animal using the TRIzol™ Reagent according to the

manufacturer (Invitrogen™, Waltham, Massachusetts, USA). Then

cDNA was synthesized as described above and RT-PCR was performed

using the KAPA Taq PCR Kit (Kapa Biosystems, Wilmington,

Massachusetts, USA) and primers described elsewhere targeting the L

segment (Forward 5’ ATGATTGCIAAYAGIAAYTTYAA 3’; reverse 5’

ACAGCARTGIATIGGICCCCAYTT 3’) (Honig et al., 2004). The

reaction was subjected to a denaturation cycle at 95°C for 5 min

followed by 45 amplification cycles at 94°C for 30 s, 56°C for 1min, 72°

C for 1min, and a final extension at 72°C for 10min. PCR amplicons were

visualized on a 2% agarose gel containing SYBR™ Safe DNA Gel Stain

(Invitrogen™, Massachusetts, USA) and a 100 bp Hyper Ladder™

(Bioline, Thomas Scientific, New Jersey, USA) for an expected size of

445bp. Then, the amplicons were purified using the ExoSAP-IT™

(Applied Biosystems™, Foster City, California, USA) and sequenced at

theMicrosynth laboratory using the Sanger BigDye terminator technology

(Microsynth AG, Germany).
Phylogenetic analysis of a fragment of the
L segment of orthonairoviruses

Orthonairovirus sequences obtained were identified by

comparison with different organisms using BLASTN (https://

blast.ncbi.nlm.nih.gov/Blast.cgi). Dugbe and Crimean-Congo

hemorrhagic fever viruses were identified using a 445 bp fragment of

the L segment and deposited in Genbank under the accession number

OP292216 and ON564456. A multiple sequence alignment was

performed using CCHFV sequence and reference genomes available

in GenBank using MAFFT v7 in Unipro Ugene v34.0 (Okonechnikov

et al., 2012; Nakamura et al., 2018) and manually edited. The
Frontiers in Cellular and Infection Microbiology 04
phylogenetic tree was inferred using the maximum-likelihood (ML)

method implemented in IQ-Tree v2.2.0. under the TIM2+F+I

substitution model obtained with ModelFinder according to the

Bayesian Information Criterion (BIC) (Nguyen et al., 2014;

Kalyaanamoorthy et al., 2017). The node supports were estimated

from 1000 bootstrap replicates. The final tree was read and annotated

using FigTree v1.4.4.
Data analysis

The serological data were analyzed using R software version

4.0.3 for windows via RStudio Version 1.3.1093 (RStudio, 2020).

Overall seroprevalence with 95% confidence intervals was

calculated. Seroprevalence rates were compared between the

animal’s origins using the Fisher exact test. The prevalence of

infection in ticks was determined and was compared per tick

species. Statistical significance was considered at p-value < 0.05.
Results

CCHFV antibody seroprevalence in the
study population

Overall, 756 adult animals (692 males and 64 females) were

included in this study, comprising 441 cattle (438 males, 3 females),

168 goats (119 males, 49 females), and 147 sheep (135 males, 12

females). Most cattle were from Cameroon (324/441; 73.47%) but

some arrived from Chad (98/441; 22.22%), and Sudan (19/441;

4.31%). In Cameroon, cattle were recorded at the North (43.83%,

142/324), Adamawa (38.58%, 125/324), and Far-North 17.59%, 57/

324) regions. All sheep and goats were from the North region of the

country (Table 1).

The CCHFV seroprevalence observed in all animals was 61.77%

(467/756, 95% CI: [58.20-65.25]) with the highest seroprevalence in

cattle, 98.18% (433/441, 95% CI: [96.46-99.21]), while low

seroprevalences were reported in sheep, 15.65% (23/147, 95%

CI: [10.18-22.55]) and goats, 6.55% (11/168, 95% CI: [3.31-
TABLE 1 Description of the animal population included in the study.

Country
Region Cattle Goats Sheep

Frequency (%)
F M F M F M

Cameroon

Adamawa 0 125 0 0 0 0 125 (16.53)

North 2 140 49 119 12 135 457 (60.45)

Far-North 0 57 0 0 0 0 57 (7.54)

Chad 0 98 0 0 0 0 98 (12.97)

Sudan 1 18 0 0 0 0 19 (2.51)

Total 3 438 49 119 12 135 756
F, female; M, male.
frontiersin.org

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.rstudio.com
https://doi.org/10.3389/fcimb.2023.1132495
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Simo Tchetgna et al. 10.3389/fcimb.2023.1132495
11.41]). The difference in seroprevalence rate was statistically higher

in cattle than in small ruminants (p-value < 0.0001, X2 = 594.3;

(Figure 1). We also observed a slightly higher seroprevalence rate in

cattle coming from Sudan (100%, 19/19) compared to Cameroon

(98.15%, 318/324) and Chad (97.96%, 96/98), but the difference was

not significant (p-value < 0.2408, X2 = 2.85). In Cameroon, the

highest seroprevalence was found in cattle from the Far-North

(100%, 57/57) followed by the North (97.88%, 139/142), and the

Adamawa (97.60%, 122/125) but the differences were not

statistically significant (p-value < 0.2164, X2 = 3.06). No

amplification of the S segment was observed by real time RT-PCR

on da-ELISA positive samples.
Seroneutralization of CCHF da-ELISA
positive and negative samples

To confirm the specificity of the results obtained with the da-

ELISA test, we performed seroneutralization assays using a CCHFV

tec-VLP system. Hence, 40 cattle, 11 sheep, and 9 goats da-ELISA

positive samples (da-ELISA+), and 8 cattle, 10 sheep, and 10 goats

da-ELISA negative samples (da-ELISA–) were assessed for their

seroneutralizing activity. Additionally, 27 bovines sampled in

France (CCHFV non-exposed, negative controls) and one

experimentally infected bovine (kindly provided by Dr. Loïc

Comte t , IDVet , Montpe l l i e r ) were inc luded in the

seroneutralization test. The da-ELISA+ group gave significantly

higher neutralization compared to ELISA– of bovine, ovine, and
Frontiers in Cellular and Infection Microbiology 05
caprine, respectively (mean RLU = 4.62E4 vs 1.2E6; 9.0E4 vs 7.5E5;

1.3E5 vs 5.7E5) (Figure 2). All samples from non-exposed bovine

(collected in France) were found to be non-neutralizing (mean

RLU=9.9E5), in contrast to a serum collected on an experimentally

infected bovine (RLU=2.3E3) and an anti-CCHFV-Gc neutralizing

antibody (mean RLU=5.7E3, Supplementary Figure 1).
FIGURE 2

Seuroneutralization assay using the tecVLP system on selected da-
ELISA samples. Bovine, ovine, and caprine sera from the ELISA+
(blue) and ELISA- (red) groups were analyzed using a CCHFV
tecVLP-based neutralization assay. Neutralizing activities are
expressed as RLU (relative light unit). Each dot represents one
serum. Dotted line represents the threshold value. Results were
statistically analysed using Graph Pad Prism, unpaired t-test.
Asterisks show the significant difference. p-value < 0.005.
FIGURE 1

Distribution of CCHFV seroprevalence. Cattle data are presented as pie charts, sheep as histogram, and goats by stacked bars. The positive samples
are presented in red and the negative ones are in blue. The prevalence of anti-CCHFV antibodies is presented on each country map.
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Additionally, we tested the specificity of the seroneutralizing activity

of the serum with a VSV-G pseudotype expressing NanoLuc

system. None of the sera exhibited seroneutralizing activity,

contrary to an anti-VSV-G neutralizing antibody, further

confirming the specificity of the CCHFV tecVLP system

(Supplementary Figure 2). Overall, we were able to confirm 35

(87.5%), 8 (80%) and 8 (80%) of the positive sera detected with the

da-ELISA in bovine, ovine and caprine respectively. Interestingly, 2

bovine sera from the da-ELISA- group showed high

seroneutralization (RLU 6.9E3 and 2.0E4, Figure 2) which could

suggest that some positive individuals may not have been detected

by da-ELISA.
Orthonairoviruses prevalence in
ticks screened

Overall, 1500 ticks from cattle, sheep, and goat comprising 3

genera and 11 species were grouped in 300 pools and tested by

RT-PCR. The ticks included Amblyomma variegatum (22.73%;

61 pools), Rhipicephalus decoloratus (19.67%;57pools),

R. microplus (17.13%; 50 pools), R. annulatus (8.47%; 27

pools), R. sanguineus (6.27%; 13 pools), Hyalomma truncatum

(15.13; 48 pools), H. rufipes (5%; 19 pools), H. nitidum (2.73%; 9

pools), H. impetaltum (2.33%; 12 pools), H. detritum (0.27%; 1

pool), and H. dromedarii (0.27%; 3 pools). Orthonairovirsues

were obtained in one out of 92 Hyalomma pools tested (1/92,

1.08%) and one pool of Amblyomma variegatum on 61 (1/61,

1.64%). CCHFV was detected in Hyalomma truncatum (2.08%,

1/48) and Dugbe virus in A. variegatum (Table 2). CCHFV and

Dugbe virus were detected in ticks sampled from cattle from the

Adamawa and North regions of Cameroon in 2019, and

2021 respectively.
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Phylogenetic analysis of the L segment
of CCHFV

The phylogenetic tree constructed with the 445bp fragment of

the L segment is concordant with the L segment phylogeny, with a

clear distinction of six genotypes grouped per region. The strain

from Cameroon clusters within the African III genotype which

seems to be widely distributed across sub-Saharan Africa (Figure 3).

Indeed, the new CCHFV strain forms a distinct clade with strains

recently implicated in human CCHFV outbreaks in Sudan, Nigeria,

and Spain and seems closely related or identical to a strain isolated

in Mauritania in 1984 from H. rufipes.
Discussion

Crimean-Congo haemorrhagic fever is included in the WHO

list of top priority diseases in public health emergency contexts on

which research and development should be focused (WHO, 2022a).

With the same goal, we conducted a cross-sectional survey of

CCHFV in livestock and ticks from various locations in

Cameroon to evaluate the risk to the local human population.

The contact of cattle, goats, and sheep with CCHFV was assessed

using a double antigen sandwich ELISA test confirmed by a

seroneutralization test using the tecVLP system while ticks were

grouped in species-specific pools and screened by RT-PCR.

The CCHFV seroprevalence was high in all tested animals

(61.77%) with the highest seroprevalence in cattle (98.18%) as

compared to sheep (15.65%) and goats (6.55%). With such

alarming and surprisingly high seroprevalences, cross-reaction, as

previously described among orthonairoviruses, especially for

CCHFV and Hazara virus (Vanhomwegen et al., 2012; Kalkan-

Yazıcı et al., 2021) was a possible explanation. Hence, we selected
TABLE 2 Checklist of the tick species screened for orthonairoviruses and the infection rates detected.

Tick species Total Female Male Pools Positive pools (%) Virus Genbank accession number

Hyalomma truncatum 227 49 178 48 1 (2.08) CCHFV ON564456

Hyalomma impeltatum 35 20 15 12 0 na na

Hyalomma rufipes 75 15 60 19 0 na na

Hyalomma dromedarii 4 2 2 3 0 na na

Hyalomma nitidum 41 9 32 9 0 na na

Hyalomma detritum 4 4 0 1 0 na na

Amblyomma variegatum 341 142 199 61 1 (1.64%) DUGV OP292216

Rhipicephalus decoloratus 295 288 7 57 0 na na

Rhipicephalus microplus 257 255 2 50 0 na na

Rhipicephalus annulatus 127 127 0 27 0 na na

Rhipicephalus sanguineus 94 67 27 13 0 na na

Total 1500 978 522 300 2 (0.67%) na na
na, not applicable; CCHFV, Crimean-Congo hemorrhagic fever virus; DUGV, Dugbe virus.
The bold values represent the Genbank accession numbers of the sequences generated in this study.
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some negative and positive da-ELISA samples for confirmation by

seroneutralization, since da-ELISA was not validated for cross

reactivity with other orthonairoviruses. However, CCHFV is a

biosafety level 4 (BSL-4) pathogen that should be handled in high

confinement settings, often not available or affordable by every

institution (Weidmann et al., 2016; Organization, 2018). This

limitation was overcome using the tecVLP system, an alternative

valuable BSL-2 seroneutralization method (Zivcec et al., 2015; Sas

et al., 2018). Interestingly, the tecVLP results were concordant with

the da-ELISA results, in favour of the high CCHFV seroprevalence

observed, even though cross-seroneutralization could occur in case

of infection with a closely related virus. Moreover, two sera from the

da-ELISA negative group were found seroneutralizing, which could

reflect a better sensitivity of the CCHFV tecVLP system. Although

da-ELISA and tecVLP seroneutralisation assay results were

concordant, logistic and financial constraints preclude the testing

of more if not all samples with tecVLP assay.

In Cameroon, the circulation of CCHFV has been documented

in humans and cattle but never in small ruminants until now

(Sadeuh-Mba et al., 2018; González Gordon and Bessell, 2022).

Indeed, González Gordon and colleagues and Sadeuh-Mba and

colleagues have described high seroprevalence in pastoral cattle and

low seroprevalence in humans in Cameroon respectively (Sadeuh-
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Mba et al., 2018; González Gordon and Bessell, 2022). The

seroprevalence of CCHFV has been shown to be associated with

many risk factors including the level of infestation and permanent

bites by infected ticks (Adam et al., 2013; Mangombi et al., 2020).

Animals may be infested by infected ticks once or recurrently

during their lifetime, leading to a permanent activation of their

immunity. However, little is known about the longevity of the anti-

CCHFV antibody response in non-human vertebrates (Goedhals

et al., 2017; Mangombi et al., 2020). This above-mentioned

hypothesis is supported by the fact that we have previously

reported high tick infestation rates in the cattle compared to

small ruminants and a predominance of Hyalomma spp. ticks in

cattle than small ruminants (Sado Yousseu et al., 2022).

Unfortunately, juvenile cattle were not included in the study since

sampling was done in markets. That information would contribute

to broaden our understanding of recent virus transmission in the

country (Nyakarahuka et al., 2018). Our seroprevalence results are

higher than those obtained in the subregion in cattle and goats, even

in countries with notified human CCHFV cases (Guilherme et al.,

1996; Ibrahim et al., 2015; Sas et al., 2017; Mangombi et al., 2020;

Oluwayelu et al., 2020; Lysholm et al., 2022). However, our results

and those obtained in similar localities in Mali (Maiga et al., 2017;

Balinandi et al., 2021) are comparable, supporting the suggestion
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that the circulation of CCHFV among ticks and vertebrate hosts

varies significantly between different locations. Overall, these results

may also signal a relatively higher risk of CCHF in Cameroon since

CCHFV is mainly transmitted by tick bites and direct contact with

bodily fluids on infected animals. This observation also shows the

complexity of CCHFV epidemiology and the difficulties when

comparing serological data over long periods and across countries.

CCHFV endemic regions overlap the geographic distribution of

their Hyalomma vectors in Africa, Europe, and Asia. Indeed,

Hyalomma marginatum is the most studied and known vector of

CCHFV in Europe and Asia where it is responsible of the

transovarian and transstadial transmission of the virus, ensuring,

therefore, its maintenance in nature (Spengler et al., 2016). In

Africa, the virus has been detected on numerous occasions in

H. dromedarii, H. truncatum, H. rufipes and H. impeltatum

(Swanepoel et al., 1983; Zivcec et al., 2017; Chitimia-Dobler et al.,

2019; Kajihara et al., 2021; Schulz et al., 2021) but also in non

Hyalomma species (Lule et al., 2022). In our study, CCHFV was

found in H. truncatum, although at a low infection rate but not in

H. rufipes, H. impeltatum, H. nitidum, H. detritum, and

H. dromaderii. The detection of CCHFV genetic material in

Hyalomma in Cameroon shows the current activity of the

virus in the country. However, the role of these ticks in

CCHFV maintenance and transmission is yet to be determined,

especially their vector competence since we cannot conclude

whether they became infected after feeding on these hosts or

they were previously infected before infesting the livestock

(genetic material present in the blood meal, or infectious viral

particle) (Gargili et al., 2017). This concern can be at least partially

addressed by screening unfed larvae, nymph, and adult ticks of

this species to determine their role in CCHFV transmission

in Cameroon.

In this study, we have determined that the CCHFV strain active

in Cameroon belongs to the African III genotype on the L segment.

Most of the phylogenetic analyses are currently done with the S or M

segments for CCHFV classification into genotypes (Fakoorziba et al.,

2015; Umair et al., 2020; Monsalve Arteaga et al., 2021). However,

studies have also shown that genotypes obtained with the S segment

are usually the same as with the L segment, corresponding to the

geographic segregation of the virus (Bente et al., 2013). In Central

Africa, a great CCHFV genetic diversity has been described, with the

occurrence of African II and III genotypes (Grard et al., 2011). Here,

we have analysed only a small portion of the L segment (445bp)

representing very little genetic information on the virus. Indeed,

CCHFV has a high level of genetic recombination and reassortments

that can easily distort the classification into genotypes (Grard et al.,

2011; Bente et al., 2013; Chinikar et al., 2015; Guo et al., 2017).

Therefore, the most conclusive response to the genetic diversity of

CCHFV in Cameroon can only be obtained by studying all the three

genomic segments.

Given the high seroprevalence observed in animals and the

detection of CCHFV in ticks, efforts should be done to increase

the survey of CCHF in Cameroon. Indeed, CCHF should be

included in the differential diagnosis of acute haemorrhagic fever
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among at-risk populations in the country. To the best of our

knowledge, no human CCHF case has ever been recorded in

Cameroon but the disease is known to suddenly emerge among

humans in some locations 30 to 50 years apart (Grard

et al., 2011).
Conclusion

In this study, we report high CCHFV seroprevalence in

domestic ruminants and virus detection in Hyalomma ticks in

Cameroon. Although CCHFV is asymptomatic in non-human

vertebrates, the high seroprevalence and virus observed raise a

public health concern about the occurrence of CCHF among

humans, especially among at-risk occupational groups including

abattoir workers, farmers, and veterinarians in Cameroon. These

findings highlight the suitability of a One Health surveillance

system in ticks, wild, and domestic animals that will guide the

survey of the disease in humans and include CCHF in the

differential diagnostic of acute fevers among at-risk groups in

selected regions. Additionally, we have presented here the first

genomic sequence of CCHFV in Cameroon, but longer sequences

will be required if a greater insight into the genetic diversity and

pathogenicity of the CCHFV strains active in the country, is sought.

More remains to be done if we wish to understand the epidemiology

of CCHFV in Cameroon.
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doi: 10.1371/journal.pntd.0010683

Sado Yousseu, F., Simo Tchetgna, H., Kamgang, B., Djonabaye, D., McCall, P. J.,
Ndip, R. N., et al. (2022). Infestation rates, seasonal distribution, and genetic diversity
of ixodid ticks from livestock of various origins in two markets of yaoundé, Cameroon.
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