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Background:Huanglian Jiedu decoction (HLJDD) is a famous traditional Chinese

medicine prescription, which is widely used in the treatment of Alzheimer’s

disease (AD). However, the interaction between bioactive substances in HLJDD

and AD-related targets has not been well elucidated.

Aim: A network pharmacology-based approach combined with molecular

docking was performed to determine the bioactives, key targets, and potential

pharmacological mechanism of HLJDD against AD, through the regulation of

microbial flora.

Materials and methods: Bioactives and potential targets of HLJDD, as well as

AD-related targets, were retrieved from Traditional Chinese Medicine Systems

Pharmacology Analysis Database (TCMSP). Key bioactive components, potential

targets, and signaling pathways were obtained through bioinformatics analysis,

including protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto

Encyclopedia of Genes and Genomes (KEGG) analysis. Subsequently,

molecular docking was performed to predict the binding of active compounds

with core targets.

Results: 102 bioactive ingredients of HLJDD and 76 HLJDD-AD-related targets

were screened. Bioinformatics analysis revealed that kaempferol, wogonin, beta-

sitosterol, baicalein, acacetin, isocorypalmine, (S)-canadine, (R)-canadinemay be

potential candidate agents. AKT1, TNF, TP53, VEGFA, FOS, PTGS2, MMP9 and

CASP3 could become potential therapeutic targets. 15 important signaling

pathways including the cancer pathway, VEGF signaling pathway, and NF-kB
signaling pathway might play an important role in HLJDD against AD. Moreover,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1140945/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1140945/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1140945/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1140945/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1140945/full
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1140945/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2023.1140945&domain=pdf&date_stamp=2023-03-16
mailto:peidujiang@uestc.edu.cn
mailto:guo596@cdutcm.edu.cn
https://doi.org/10.3389/fcimb.2023.1140945
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2023.1140945
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Zheng et al. 10.3389/fcimb.2023.1140945

Frontiers in Cellular and Infection Microbiology
molecular docking analysis suggested that kaempferol, wogonin, beta-sitosterol,

baicalein, acacetin, isocorypalmine, (S)-canadine, and (R)-canadine combined

well with AKT1, TNF, TP53, VEGFA, FOS, PTGS2, MMP9, CASP3, respectively.

Conclusion: Our results comprehensively illustrated the bioactives, potential

targets, and possible molecular mechanisms of HLJDD against AD. HLJDD may

regulate the microbiota flora homeostasis to treat AD through multiple targets

and multiple pathways. It also provided a promising strategy for the use of

traditional Chinese medicine in treating human diseases.
KEYWORDS

Huanglian Jiedu decoction, Alzheimer’s disease, network pharmacology, microbial
flora, molecular docking
1 Introduction
Alzheimer’s disease (AD), also known as senile dementia, is a

degenerative disease of the central nervous system characterized by

progressive cognitive impairment and memory loss (Soria Lopez

et al., 2019). The histopathological manifestations of AD are brain

atrophy, amyloid b (Ab) protein deposition, neuronal loss, senile

plaques, neurofibrillary tangles, etc. (Loera-Valencia et al., 2019;

Breijyeh and Karaman, 2020). In addition to these definite

pathological injuries, the brain’s immune response is involved in

the course of AD (Henstridge et al., 2019). Although the pathological

mechanisms underlying AD remain controversial, Ab peptide is

believed to be the central participant. Recently, Opare (Opare and

Rauk, 2019) and Samanta (Samanta et al., 2019) demonstrated that

Ab-related peptides were the initiators of AD, and the imbalance

between Ab accumulation and clearance was the main cause of AD.

The drugs currently approved for clinical treatment of AD are based

on neuroprotective agents (e.g., neurotransmitter generators or

neurotransmitter receptor agonists/antagonists). For example,

donepezil is a centrally reversible acetylcholinesterase (AChE)

inhibitor that increases ACh levels and improves cognitive function

in patients with AD (Ma et al., 2018). At present, more than 1000

drugs have been developed to treat AD worldwide, but only 6 drugs

have been approved for clinical use by FDA. Moreover, these drugs

are usually acetylcholinesterase inhibitors, which mainly target a

single molecule and can only play a partial role in slowing down

the progress of AD. They cannot reverse the clinical process of the

disease, and have no obvious therapeutic effect on AD related to the

pathogenesis of multiple targets and multiple pathways. GV-971 is a

low-molecular-weight acidic oligosaccharide compound extracted

from marine brown algae. As the effect of reversing the cognitive

impairment of AD, it was approved by FDA in the third clinical phase

of AD in 2020. Its mechanism of action is mainly to inhibit gut

dysbiosis and reverse the neuroinflammation and cognitive

impairment of AD patients through the microbiota-gut-brain axis.

The success of GV-971 in reversing and treating AD brings a new

idea for drug development of multi-target intervention in AD.
02
Therefore, the mechanism of traditional Chinese medicine (TCM)

in treating AD, which is characterized by multi-component and

multi-target effects, needs to be further studied. TCM has a long

clinical application in China and is an important tool for the

treatment of many complex diseases with multiple targets, such as

AD (Pei et al., 2020) and cardiovascular diseases (Hao et al., 2017).

Huanglian Jiedu decoction (HLJDD) is a classic prescription with

heat-clearing and detoxifying effects, mainly by Rhizoma coptidis

(Ranunculaceae), Radix scutellariae (Labiatae), Cortex phellodendri

(Rutaceae) and Fructus gardeniae (Rubiaceae) in a ratio of 3:2:2:3

mixed. HLJDD is widely used in China and Japan to treat cerebral

ischemia and to exert neuroprotective effects (Zhang et al., 2014). Sun

et al. found four target proteins related to AD and two pathways

related to neuroinflammation through network pharmacology, and

speculated that HLJDD may exert its anti-AD effect by scavenging/

reducing Ab in the brain and inhibiting hyperphosphorylation of tau

protein through insulin signaling pathway (Sun et al., 2017).

However, the relationship between HLJDD and microbial flora (gut

microbiota, oral microorganisms, skin microorganisms, etc.) in vivo

needs further study. Whether HLJDD exerts its therapeutic effects on

AD through regulating microbial flora homeostasis is still unclear.

Network pharmacology and molecular docking analysis was

performed in this study to explore the possible mechanisms of

HLJDD in the treatment of AD through constructing the network of

the “herb-component-target-pathway-disease”. It will provide a

new theoretical support for the clinical treatment of AD and a

reference for screening bioactive components with potential

medicinal value. The workflow of the whole process of our study

was shown in Figure 1.
2 Materials and methods

2.1 Screening and target prediction of
active components of HLJDD

The active components of Rhizoma coptidis, Radix scutellariae,

Cortex phellodendri and Fructus gardeniae in HLJDD were searched
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by application analysis platform and database system pharmacology

of Chinese medicine (TCMSP, https://tcmspw.com/tcmsp.php) (Ru

et al., 2014) and the targets of active components were predicted.

We screened the active ingredients that meet both oral

bioavailability (OB) ≥ 30% and drug-like (DL) ≥ 0.18 by

pharmacodynamics (Wang and Wang, 2017; Wang et al., 2019a).
2.2 Prediction of drug and disease
related targets

TCMSP was used to predict the target of active ingredients. The

obtained drug components were searched in the TCMSP and

BATMAN-TCM database platforms to obtain the target proteins

corresponding to each drug component, and the protein targets

were compared in the Uniprot protein database (https://

www.uniprot.org/) (The UniProt Consortium, 2017) as standard

gene names, and non-human genes were removed. GeneCards

(https://www.genecards.org/) (Safran et al., 2010), OMIM (https://

omim.org/search/advanced/) (Hamosh et al., 2005), TTD (https://

db.idrblab.net/ttd/) (Zhou et al., 2022) and other databases were

searched with “Alzheimer disease” as the key word. The gene targets

searched in GeneCards database were deleted according to

Relevance score ≥ 1. The target genes obtained from these three

databases were combined, and the disease genes related to AD were

obtained after deleting the duplicates.
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2.3 Screening of common targets of
diseases and drugs and construction
of PPI network

In order to clarify the mechanism of action of drug targets and

disease targets at the protein level, drug genes and disease genes

were submitted to the online Venny 2.1 mapping platform (https://

bioinfogp.cnb.csic.es/tools/venny/index.html) to draw Venn

diagram and obtain the intersection genes of drug and

component targets. The intersection genes were imported to

STRING gene database (https://string-db.org/cgi/input)

(Szklarczyk et al., 2019) to construct protein interaction network

model. The species was set as “Homo sapiens”, the minimum

interaction threshold was set as “medium confidence”, and the

free protein was hidden to obtain the PPI network. The PPI network

download was saved in Tsv format and imported into Cytoscape

3.9.1 software for visualization (Shannon et al., 2003).
2.4 GO and KEGG enrichment analysis

For the screened core targets, the DAVID platform website

(https://david.ncifcrf.gov) was used for Gene Ontology (GO)

functional annotations and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis, and P-value was

set to screen the top 10 important pathways.
GO and KEGG analysis

102 active ingredients 

163 different targets 

HLJDD

TCMSP
OB ≥ 30%

and

DL ≥ 0.18

1696 related targets

Alzheimer’s disease

OMIM

TTD

GeneCards 

databases

Network construction: 

C-T and H-C-T-P-D

Step 1

Step 2

Molecular docking 

Step 3

The microbiota in AD progression and 

possible strategies for HLJDD intervention

Protein-protein network 

based on STRING analysis

FIGURE 1

The summary and description of the study workflow in the potential mechanisms of HLJDD in treating AD. Network pharmacology was used to
analyze the crucial ingredients and key targets of HLJDD in the treatment of AD; molecular docking revealed that eight candidate compounds could
bind well with eight candidate targets, respectively. It is speculated that HLJDD exerts its anti-AD effect by regulating the homeostasis of microbial
flora in vivo and inhibiting neuroinflammation.
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2.5 Constructing the “composition-target”
network and “herb-component-target-
pathway-disease” network

Cytoscape 3.9.1 software was used to construct the

composition-target network and the herb-component-target-

pathway-disease (H-C-T-P-D) interaction network. Node

represents active components, drugs, diseases and targets, while

edge represents the relationship between different nodes. Through

the Network Analyzer function of Cytoscape software, combined

with the main active ingredients, core targets and concentrated

main signaling pathways, the possible core active ingredients of

HLJDD in the treatment of AD were speculated. It can also show

the functional relationship of traditional Chinese medicine, active

ingredients, targets and pathways in the treatment of AD.
2.6 Validation molecular docking

The 3D structures of the main active ingredients in HLJDD were

downloaded from the TCMSP database while the 3D structure of the

core target protein (top 8 of degree in PPI network) treated by HLJDD

was downloaded from the Worldwide Protein Data Bank (PDB)

database (https://www.rcsb.org/). They were imported into PyMOL

and AutoDockTools and Autodock vina (Trott and Olson, 2010)

software to remove water molecules and small molecule ligands,

hydrogenation, and then molecular docking of receptors and ligands

was performed. The binding ability and stability of the targets and

active ingredients were evaluated by docking score and hydrogen bond

number. The docking results were visualized using PyMOL software.
3 Results

3.1 The active components and effective
targets of HLJDD

Based on TCMSP database, 102 different active ingredients of

HLJDD were screened, including 14 in Coptis chinensis, 36 in

Scutellaria baicalensis, 37 in Phellodendri chinensis and 15 in
Frontiers in Cellular and Infection Microbiology 04
Gardenia jasminoides. Cytoscape 3.9.1 software was used to

screen the active ingredients with OB≥30% and DL≥0.18 in

HLJDD, as shown in Table 1.

1004 different drug targets were screened using the TCMSP and

BATMAN-TCM database which included 148 targets in Coptis

chinensis, 498 targets in Scutellaria baicalensis, 218 targets in

Phellodendron amurense, and 140 targets in Gardenia jasminoides

Ellis. After merging and deleting the repeated values, 163 targets

were obtained, and the targets information were standardized by

Uniprot database.
3.2 Related targets for disease

After combining the OMIM, TTD, and GeneCards databases

and deleting repeated targets, 1696 AD-related targets were

finally obtained.
3.3 Common targets for diseases
and drugs

1696 AD-related targets and 163 HLJDD drug predicted targets

were imported using the Venny online mapping platform. After

mapping, 76 intersection targets of HLJDD and AD were

obtained (Figure 2).
3.4 Construction and analysis of
HLJDD-AD-related PPI network

76 intersection targets were then imported into the STRING

platform to construct a PPI network. 74 nodes and 585 edges were

obtained using this platform. Node size and color indicated the size

of the value. The double median of “Degree” that is, “Degree ≥30”

was used to screen the intersection targets. Thus, 8 target genes with

the highest degree of AD treated by HLJDD were shown in Table 2.

The PPI network information obtained from the STRING11.5

database was imported into Cytoscape 3.9.1 software for

visualization (Figure 3).
TABLE 1 Chemical information sheet of major active ingredients.

Mol ID Molecule name OB% DL Degree Herb

MOL000422 Kaempferol 41.88 0.24 37 Zhizi

MOL000173 wogonin 30.68 0.23 23 Huangqin

MOL000358 beta-sitosterol 36.91 0.75 21 Huangqin, Huangbo, Zhizi

MOL002714 baicalein 33.52 0.21 21 Huangqin

MOL001689 acacetin 34.97 0.24 18 Huangqin

MOL000790 Isocorypalmine 35.77 0.59 17 Huangbo

MOL001455 (S)-Canadine 53.83 0.77 16 Huangbo

MOL002903 (R)-Canadine 55.37 0.77 15 Huanglian
OB, oral bioavailability; DL, drug-likeness.
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3.5 GO and KEGG enrichment analysis

The GO function enrichment analysis of the 76 core targets was

performed on the Metascape platform, and 943 GO items were

obtained, including 419 “Biological Processes (BP)”, 54 “Cellular

Components (CC)”, and 88 “Molecular Functions (MF) “. The first

15 “Biological Processes” items, 10 “Cellular Components” items,

and 10 “Molecular Functions” items were selected based on the P

value for visual analysis (Figure 4). Results showed that the

treatment of AD by HLJDD mainly involved BP such as aging,

response to drug, response to hypoxia , response to

lipopolysaccharide, response to xenobiotic stimulus, response to

nicotine, response to estradiol, positive regulation of pri-miRNA

transcription, positive regulation of gene expression, positive

regulation of apoptotic process, etc. These targets passed through

identical protein binding, enzyme binding, heme binding, protein

homodimerization activity, protein binding, protease binding,

steroid binding, G-protein coupled serotonin receptor activity,

serine-type endopeptidase activity, neurotransmitter receptor

activity and other functions, and they played a role in the plasma

membrane, presynaptic membrane, membrane raft, extracellular

space, postsynaptic membrane, caveola, neuron projection,

extracellular region, glutamatergic synapse, etc.
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137 signal pathways were enriched by KEGG pathway analysis

of the core targets using the DAVID platform. According to the P

value and the number of genes, 15 signal pathways with high

probability were screened out for visual analysis as shown in

Table 3 and Figure 5 (bubble diagram was plotted by https://

www.bioinformatics.com.cn). Moreover, Figure 5 showed that

HLJDD treatment of AD may be mainly related to calcium,

VEGF, and NF-kB signaling pathway, lipid and atherosclerosis,

chemical carcinogenesis-receptor activation, dopaminergic synapse,

platinum drug resistance, etc.
3.6 Construction of “composition-target”
network and “herb-component-target-
pathway-disease” network

The data of potential active ingredients and potential targets of

HLJDD in the treatment of AD were imported into Cytoscape 3.9.1

software to obtain a diagram of the traditional Chinese medicine
TABLE 2 Core target information table.

Target Degree Betweenness centrality (BC) Closeness centrality (CC)

AKT1 49 0.124526 0.744898

TNF 45 0.099243 0.708738

TP53 42 0.067676 0.682243

VEGFA 42 0.04322 0.682243

FOS 39 0.111585 0.675926

PTGS2 37 0.024935 0.651786

MMP9 37 0.057281 0.640351

CASP3 36 0.018634 0.640351
FIGURE 2

Disease-drug target Venn diagram.
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Core target PPI network. As shown in the figure, the darker color of
the circle is proportional to its importance in this network.
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composition-target network (Figure 6). The data showed that

kaempferol, wogonin, beta sitosterol, baicalein, acacetin,

isosorbine, (S)-cardione, (R)-cardione were the top 8 active

ingredients with the degree values of 37, 23, 21, 21, 18, 17, 16 and

15 respectively, which suggested that they may be the main

chemical active ingredients of HLJDD for the treatment of

AD (Figure 6).

The “herb-component-target-pathway-disease” network was

constructed using the 66 active ingredients, 76 intersection

targets, and 15 KEGG signal pathways of HLJDD in the

treatment of AD (Figure 7). It showed that multiple active

ingredients were related to multiple targets and pathways, and the

therapeutic effect of HLJDD may be achieved by working multiple

active ingredients in conjunction with multiple targets.
3.7 Molecular docking results and analysis

According to Table 2, the top 8 targets of degree are AKT1,

TNF, TP53, VEGFA, FOS, CASP3, MMP9, PTGS2. The docking

targets with the 8 active components with the highest degree of

kaempferol (degree = 37), wogonin (degree = 23), beta-sitosterol

(degree = 21), baicalein (degree = 21), acacetin (degree = 18),

isosorbine (degree = 17), (S)-cardione (degree = 16), (R)-cardione

(degree = 15) in HLJDD were performed docking. As shown in

Table 4 and Figure 8 (heatmap was plotted by https://

www.bioinformatics.com.cn), The binding energies of the above

eight compounds with AKT1, TNF, TP53, VEGFA, FOS, CASP3,

MMP9, and PTGS2 were less than -5.0 kcal · mol-1, showing good

binding ability. The binding of AKT1 to beta-sitosterol, TNF to

beta-sitosterol, TP53 to kaempferol, VEGFA to baicalein, FOS to

kaempferol, CASP3 to kaempferol, MMP9 to kaempferol, and

PTGS2 to baicalein were shown in Figure 9.
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4 Discussion

HLJDD, which is the representative medicine of heat-clearing

and detoxification of traditional Chinese medicine, has been

reported to show significant ant i - inflammatory and

neuroprotective effects in the neurodegenerative diseases. In our

study, bioinformatics analysis revealed that kaempferol, wogonin,

beta-sitosterol, baicalein, acacetin, isocorypalmine, (S)-canadine,

(R)-canadine may be potential candidate agents of HLJDD;

AKT1, TNF, TP53, VEGFA, FOS, PTGS2, MMP9 and CASP3

could become potential therapeutic targets in the treatment of AD.

According to the GO and KEGG pathway enrichment analysis

results, we speculated that the mechanism of HLJDD in the

treatment of AD may be mainly related to VEGF, NF-kB, Ca2+

signaling pathways. Recent studies have shown that VEGF, NF-kB,
and Ca2+ are all involved in the process of inflammation, which is

closely associated to AD (Kirk and Karlik, 2003; Thawkar and Kaur,

2019; Cheng et al., 2021). AKT1 is an important member of the

AKT (protein kinase B, PKB) family that regulates cell proliferation

and growth, and its activation is mainly dependent on the PI3K

signaling pathway (Kumar and Bansal, 2022). PI3K/AKT signal

transduction pathway is involved in a variety of cellular and

biological processes in vivo. Previous study also found that

activation of the PI3K/AKT/FoxO3a pathway, can play a role in

the reduction of inflammatory response in AD mice and restoring

the therapeutic effect of cognitive impairment (Wang et al., 2020).

Tumor necrosis factor (TNF) is a small molecule protein mainly

secreted by macrophages. TNF is involved in a variety of cellular

processes, including activating NF-kB signaling pathway,

promoting cell death and regulating immune function (Webster

and Vucic, 2020). Studies have shown that TNF-mediated

neuroinflammation was associated with necroptosis of

hippocampal neurons in AD. Therefore, TNF-a-targeted therapy
−
lo

g
 

 v

FIGURE 4

The GO function analyzes the histogram. BP is marked in teal, CC in sienna, and MF in steel blue. The bar graph is obtained by Bioinformatics Platform.
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was a biologically feasible approach to prevent or attenuate AD

(Decourt et al., 2017; Torres-Acosta et al., 2020; Jayaraman et al.,

2021). Vascular endothelial growth factor (VEGF), a highly specific

vascular endothelial growth factor, can promote vascular

permeability, angiogenesis, blood production, and neural

development (Robinson and Stringer, 2001). Studies have shown

that VEGF can improve the spatial learning and memory ability of

AD mice and reduce the level of Ab. In addition, VEGF protected

SH-SY5Y cells against Ab25-35-induced neurotoxicity by improving

mitochondrial function and numbers, increasing neuronal activity

and reducing intracellular ROS production (Liu et al., 2021).

Moreover, the high concentration of VEGF-A in cerebrospinal

fluid was related to the slower cognitive decline in patients with

AD risk (Hohman et al., 2015).

It was reported that kaempferol, a potentially active ingredients

in HLJDD, significantly protected neurons and SH-SY5Y cells from

rotenone-induced injury by reducing protease lysis, nuclear

apoptosis, the level of oxidative stress and mitochondrial hydroxyl

compounds (Filomeni et al., 2012). In addition, kaempferol
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attenuated STZ-induced memory impairment in OVX rats by

increasing hippocampal endogenous superoxide dismutase and

glutathione levels and reducing neuroinflammation (Kouhestani

et al., 2018). Ji et al. found that wogonin and baicalein effectively

relieved Ab25-35-stimulated PC12 cell apoptosis and inflammation

(Ji et al., 2020). Moreover, wogonin and baicalein inhibited

apoptosis and production of inflammatory factors TNF-a, NO
and PGE2 (Ji et al., 2020). b-sitosterol improved memory,

learning impairment and reduced Ab deposition in APP/PS1

mice through helping reverse the loss of dendritic spines in APP/

PS1 mice, and the decrease of miniature excitatory postsynaptic

current frequency in hippocampal neurons (Ye et al., 2020). In

addition, b-sitosterol inhibited LPS-induced inflammatory response

in BV-2 cells by inhibiting the activation of ERK, p38 and NF-kB
pathways (Sun et al., 2020).

Recent ly , emerg ing s tud ie s have confi rmed tha t

neuroinflammation is a key factor in the neurodegeneration of AD

(Tejera et al., 2019). However, it should be noted that

neuroinflammation was not limited to the contributions of relevant
TABLE 3 KEGG pathway enrichment results.

Term % Count P value Related genes

Hsa05200: Pathways in
cancer

38.15789 29 2.28E-15
GSK3B, GSTP1, PTGS2, RELA, CASP9, IKBKB, CASP8, CASP3, PLCG2, STAT4, AKT1, HMOX1,
PRKACA, TGFB1, NOS2, MMP1, MMP2, IGF2, FOS, MMP9, ESR2, VEGFA, IL4, CCNA2, AR,

BCL2, BAX, PPARG, TP53

Hsa05417: Lipid and
atherosclerosis

27.63158 21 1.37E-15
GSK3B, VCAM1, NOS3, MMP1, FOS, MAPK14, SELE, TNF, MMP9, RELA, CASP9, IKBKB,

PPP3CA, CASP8, CASP3, CYP1A1, BCL2, BAX, AKT1, PPARG, TP53

Hsa05418: Fluid shear
stress and atherosclerosis

21.05263 16 8.56E-13
VCAM1, NOS3, GSTP1, MMP2, FOS, MAPK14, SELE, TNF, MMP9, RELA, VEGFA, IKBKB, BCL2,

AKT1, HMOX1, TP53

Hsa05020: Calcium
signaling pathway

18.42105263 14
1.59326E-

07
CASP9, GSK3B, PPP3CA, CASP3, BAX, CACNA1S, MAPK14, PRKACA, TNF

Hsa05010: Alzheimer
disease

21.05263 16 1.11E-06
GSK3B, CHRM1, NOS2, CHRNA7, INSR, PTGS2, TNF, RELA, CASP9, IKBKB, BACE2, PPP3CA,

CASP8, CASP3, AKT1, CACNA1S

Hsa05207: Chemical
carcinogenesis-receptor
activation

17.10526 13 3.14E-07
CHRNA7, FOS, ADRB2, CYP3A4, RELA, ESR2, VEGFA, AR, CYP1A1, BCL2, AKT1, CACNA1S,

PRKACA

Hsa05210: Colorectal
cancer

11.84211 9 8.40E-07 CASP9, GSK3B, TGFB1, CASP3, BCL2, BAX, AKT1, FOS, TP53

Hsa04728:
Dopaminergic synapse

13.15789 10 2.33E-06 GSK3B, PPP3CA, GRIA2, AKT1, FOS, DRD1, MAPK14, PRKACA, SLC6A3, DRD4

Hsa04370: VEGF
signaling pathway

10.52632 8 8.03E-07 CASP9, PPP3CA, NOS3, PLCG2, AKT1, MAPK14, PTGS2, VEGFA

Hsa01524: Platinum
drug resistance

10.52632 8 3.47E-06 CASP9, CASP8, CASP3, GSTP1, BCL2, BAX, AKT1, TP53

Hsa04726: Serotonergic
synapse

11.84211 9 7.61E-06 ALOX5, CASP3, HTR2C, CACNA1S, HTR2A, PRKACA, PTGS2, SLC6A4, PTGS1

Hsa04064: NF-kappa B
signaling pathway

10.52632 8 3.63E-05 IKBKB, VCAM1, PLAU, BCL2, PLCG2, PTGS2, TNF, RELA

Hsa04931: Insulin
resistance

10.52632 8 4.64E-05 IKBKB, GSK3B, NOS3, INSR, SLC2A2, AKT1, TNF, RELA

Hsa04211: Longevity
regulating pathway

9.210526 7 1.34E-04 INSR, BAX, AKT1, PPARG, PRKACA, TP53, RELA

Hsa04218: Cellular
senescence

10.52632 8 4.60E-04 CCNA2, PPP3CA, TGFB1, CDK1, AKT1, MAPK14, TP53, RELA
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factors residing in the brain, as perturbations in microbial diversity

were associated with the spread of neuroinflammation in preclinical

models of AD. Gut microbes could directly affect the immune system

by activating the vagus nerve (Borovikova et al., 2000; Bravo et al.,

2012), which in turn occurred bidirectional communication with the

central nervous system, thereby linking them to the cognitive and

emotional centers of brain (Grenham et al., 2011; Mayer and Tillisch,

2011; Rogers et al., 2016). It has been proven that Lactobacillus and

Bifidobacterium produced GABA; Escherichia coli, Bacillus and yeast

produced norepinephrine; Candida, streptococcus, Escherichia coli and

enterococci produced 5-HT (Dinan et al., 2013); Lactobacillus

regulated dopaminergic pathways to improve tic-like behavior (Liao

et al., 2019); Bifidobacteria significantly reduced plasma C-reactive

protein, TNFa and IL-6 levels to exert immunomodulatory effects
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(Groeger et al., 2013). Wang et al. reported that neuroinflammation

caused by gut dysbacteriosis promoted the progression of AD. GV-

971, a sodium oligomannate, showed stable and sustained cognition

improvement in a phase 3 clinical trial in China. It suppressed gut

dysbacteriosis and related phenylalanine/isoleucine accumulation,

harnessed neuroinflammation, and reversed cognitive dysfunction

(Wang et al., 2019b). Gu et al. found that gut dysbacteriosis and

lipid metabolism were highly correlated with AD-like

neuroinflammation. HLJDD suppressed gut dysbacteriosis and Ab
accumulation, improved neuroinflammation and reversed cognitive

dysfunction (Gu et al., 2021).

In addition to the gut microbiota, oral microorganisms, skin

microorganisms and pulmonary pathogen also directly or indirectly

affected the central nervous system. For example, Weaver reported
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KEGG enrichment bubble diagram of the treatment of AD by HLJDD.
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Composition-target network of HLJDD. The red hexagon is the active ingredient of the drug; and the blue circle is the target.
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FIGURE 8

Molecular docking heatmap of chemical compositions to targets.
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H-C-T-P-D network diagram. Triangle represents disease; V is HLJDD; The yellow hexagon is the KEGG pathway; The red hexagon is the active
ingredient of the drug; The blue circle is the target.
TABLE 4 Docking results of target proteins and active compounds.

Core
target

PDB
ID

Binding energy (kcal/mol)

kaempferol wogonin beta-sitos-
terol baicalein acacetin isocorypalmine (S)-

canadine
(R)-

canadine

AKT1 6s9x -9.5 -9.3 -11.5 -9.7 -9.8 -9.4 -10 -9.8

TNF 6op0 -8.7 -8.3 -9.4 -8.4 -8.5 -8.7 -7.8 -9.4

TP53 5mf7 -8.4 -8 -9.3 -7.9 -8.2 -7.6 -8.1 -7.8

VEGFA 4qaf -7.3 -7.1 -7.5 -9.2 -7.4 -7.2 -7.9 -7.2

(Continued)
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FIGURE 9

Molecular docking diagram of chemical composition to target: (A) AKT1 to beta-sitosterol; (B) TNF to beta-sitosterol; (C) TP53 to kaempferol;
(D) VEGFA to baicalein; (E) FOS to kaempferol; (F) CASP3 to kaempferol; (G) MMP9 to kaempferol; (H) PTGS2 to baicalein.
TABLE 4 Continued

Core
target

PDB
ID

Binding energy (kcal/mol)

kaempferol wogonin beta-sitos-
terol baicalein acacetin isocorypalmine (S)-

canadine
(R)-

canadine

FOS 1fos -7.5 -6.7 -7.1 -6.9 -6.5 -6.6 -7.1 -7.2

PTGS2 5ikt -8.8 -8 -9.4 -9.4 -9 -8.9 -8.9 -8.7

MMP9 1gkd -9.9 -7.1 -7.1 -9.8 -6.4 -9.2 -6.3 -7.1

CASP3 3dej -8.8 -8 -9.4 -9.4 -9 -8.9 -8.9 -8.7
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that oral microorganisms that entered the CNS through the blood-

brain barrier (BBB) triggered immune responses in the body and

increased the production of Ab, thus promoted the occurrence of AD

(Weaver, 2020). Zeng et al. found that the mice infected with P.

gingivalis had reduced BBB integrity and increased Ab content flowing
into the brain from the periphery, thereby promoted the occurrence of

AD (Zeng et al., 2021). In the context of the gut-brain-skin axis, Wang

et al. explored the inflammatory and immune mechanisms of psoriasis

and depression (Wang et al., 2021). Specifically, psoriasis and

depression can cause gut dysbiosis through the gut-skin axis and the

gut-brain axis. In turn, the disorder of gut microbiome can aggravate

the inflammatory response in psoriasis and depression. In general,

disorders of the gut-brain-skin axis can lead to a vicious cycle of

psoriasis and depression. Moreover, Balin et al. demonstrated that C.

pneumoniae infected the brain. The authors correlated the

inflammatory response stimulated by C. pneumoniae with the

neuroinflammation of late-onset Alzheimer’s disease, and established

an animal model of C. pneumoniae infection-triggered in vivo

neuropathology consistent with AD pathology (Balin et al., 2008).

Therefore, we hypothesize that HLJDD played a therapeutic role in

AD by regulating the homeostasis of microbial flora and inhibiting the

neuroinflammatory response (Figure 1). Based on the multidisciplinary

strategy, our study provided evidence for the therapeutic effect of

HLJDD in AD, and also provided a comprehensive method for finding

active compounds, core target genes and potential mechanisms in

traditional Chinese medicine, and provided a new theoretical basis for

further experimental research and clinical application.
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