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The tuberculosis (TB) burden remains a significant global public health concern,

especially in less developed countries. While pulmonary tuberculosis (PTB) is the

most common form of the disease, extrapulmonary tuberculosis, particularly

intestinal TB (ITB), which is mostly secondary to PTB, is also a significant issue.

With the development of sequencing technologies, recent studies have

investigated the potential role of the gut microbiome in TB development. In

this review, we summarized studies investigating the gutmicrobiome in both PTB

and ITB patients (secondary to PTB) compared with healthy controls. Both PTB

and ITB patients show reduced gut microbiome diversity characterized by

reduced Firmicutes and elevated opportunistic pathogens colonization;

Bacteroides and Prevotella were reported with opposite alteration in PTB and

ITB patients. The alteration reported in TB patients may lead to a disequilibrium in

metabolites such as short-chain fatty acid (SCFA) production, which may recast

the lung microbiome and immunity via the “gut-lung axis”. These findings may

also shed light on the colonization of Mycobacterium tuberculosis in the

gastrointestinal tract and the development of ITB in PTB patients. The findings

highlight the crucial role of the gut microbiome in TB, particularly in ITB

development, and suggest that probiotics and postbiotics might be useful

supplements in shaping a balanced gut microbiome during TB treatment.

KEYWORDS

gut microbiome, Mycobacterium tuberculosis, Firmicutes, Bacteroidetes, short-chain
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1 Introduction

Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading

infectious disease killers worldwide (Avoi and Liaw, 2021). According to the latest

WHO report, it is estimated that a quarter of the global population is infected with M.

tuberculosis. Even though only about 5-10% of infected people develop active TB, in 2020

alone, the incidence of TB was about 127 cases per 100,000 people, and approximately 1.3

million HIV-negative people died of TB (WHO, 2021). Furthermore, most TB cases were
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reported in less developed regions, especially in South-East Asia,

Africa, and the Western Pacific regions (WHO, 2021). However, the

incidence might be underestimated as in some areas, especially in

sub-Saharan Africa, the diagnosis of TB is still a challenge, and it is

estimated that approximately 50% of TB cases remain undiagnosed

(Mnyambwa et al., 2021; Jayasooriya et al., 2022). In the year 2015,

all WHO members adopted the WHO’s End TB strategy which

aims to reduce the absolute number of TB deaths by 95% and the

incidence rate by 90% by 2035 compared to the 2015 baseline. Six

years have passed, and the incidence of TB has only dropped by

10%. With only 13 years left, the situation is still challenging.

TB is transmitted by cough-generated aerosols from patients,

and it primarily affects the lungs, causing pulmonary tuberculosis

(PTB) (Tan et al., 2020). However, it can also involve other parts of

the body. TB that affects areas outside the lungs is called

extrapulmonary tuberculosis. Approximately 1-3% of total TB

cases (Sheer and Coyle, 2003; Cho et al., 2018) and 10% of all

extrapulmonary tuberculosis cases involve the gastrointestinal tract,

causing intestinal tuberculosis (ITB) (Abu-Zidan and Sheek-

Hussein, 2019; Maulahela et al., 2022). Swallowing of sputum in

PTB patients has a certain chance of causing ITB (Gan et al., 2016).

This is because M. tuberculosis is more resistant to the gastric acid

barrier due to its special cell wall structure (Vandal et al., 2009).

However, not all PTB patients develop ITB, as they might benefit

from the protective effect of the intestinal barrier.

The intestinal barrier is a highly complex system, including the

outer mucus layer, the epithelial layer, the underlying lamina

propria, and components such as commensal microbiota,

antimicrobial peptides, secretory immunoglobulin A, and

immune cells (König et al., 2016; Vancamelbeke and Vermeire,

2017). Intestinal microbiota with a complex and dynamic microbial

community is of vital importance to human health (Chen et al.,

2021). It can not only regulate host physiological processes such as

digestion, nutrient absorption, and metabolism, but also modulate

host immunity in protection against pathogens and toxins (Wang

et al., 2017; Comberiati et al., 2021). It is of great importance in gut

homeostasis and colonization resistance to exogenous pathogens

(Ducarmon et al., 2019), and dysbiosis in microbiome composition

can result in susceptibility to infections and disease development

(Budden et al., 2017). It is reported that altered microbiota

composition can cause increased epithelial permeability and

disruption in the mucus layer, resulting in susceptibility to

Clostridioides difficile (Bien et al., 2013) and Citrobacter

rodentium infection (Wlodarska et al., 2011). A recent study in

patients with COVID-19 observed significant gut dysbiosis with

enrichment of opportunistic pathogens (Zuo et al., 2020).

Therefore, the gut microbiome of the host might also be crucial

in preventing TB infection or decelerating the disease progression

(Hu et al., 2019b).

With the universal application of Next-Generation Sequencing

and bioinformatic analysis, there are increasing studies

investigating the association between M. tuberculosis infection

and alteration of gut microbiota. Here, we reviewed all the

previous reports on the intestinal microbiome in active TB
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patients (including PTB and ITB) without any treatment,

summarized their main findings, and tried to deduce the reasons

for ITB development in PTB patients.
2 Alteration of gut microbiome in
active TB patients

M. tuberculosis infection is known to cause dysregulation of the

immune system, resulting in dysregulation of the gut microbiome

(Osei Sekyere et al., 2020). In this review, we included studies

referring to the alterations in the gut microbiome of TB patients

(Luo et al., 2017; Maji et al., 2018; Huang et al., 2019; Hu et al.,

2019a; Hu et al., 2019b; Li et al., 2019; Namasivayam et al., 2020;

Cao et al., 2021; He et al., 2021; Naidoo et al., 2021; Shi et al., 2021;

Ding et al., 2022; Wang S. et al., 2022; Wang Y. et al., 2022; Yang

et al., 2022; Ye et al., 2022; Yoon et al., 2022). All patients included

in the study were without antibiotic treatment, as the antibiotics can

result in dysbiosis and mask the results caused by M. tuberculosis

infection (Hu et al., 2019a; Namasivayam et al., 2020). The main

findings are summarized in Table 1 and Figure 1. The study design

and sequencing techniques used in these studies are also included.

Most of the studies found a decreased alpha-diversity in TB

patients (Maji et al., 2018; Hu et al., 2019a; Hu et al., 2019b; Li et al.,

2019; Namasivayam et al., 2020; Cao et al., 2021; He et al., 2021; Shi

et al., 2021; Ding et al., 2022; Wang S. et al., 2022; Wang Y. et al.,

2022; Yang et al., 2022; Ye et al., 2022; Yoon et al., 2022), with only

one exception reporting increased diversity in both newly diagnosed

PTB and recurrent PTB patients (Luo et al., 2017). However, it

should be noted that the study by Luo et al. reported a significant

difference in the age structure between the healthy control group

and the two TB patient groups (Luo et al., 2017), which might have

contributed to the observed enhancement in gut microbiome

diversity. In a mouse model challenged with M. tuberculosis,

dysbiosis resembling that observed in TB patients was observed in

TB patients was reported (Winglee et al., 2014). The authors found

a rapid initial post-infection reduction in alpha-diversity of the gut

microbiome followed by slight recovery of diversity until death

(Winglee et al., 2014). They proposed that the change in gut

microbiome was due to the crosstalk between microbiota and

immune system activation, while the recovery of diversity

indicated the attainment of balance.

The dysbiosis observed in the gut microbiome of TB patients at

the taxonomic level was mainly in the following aspects.
2.1 Firmicutes

Firmicutes, which play a role in nutrition and metabolism

(Stojanov et al., 2020), are the most abundant microbiome in the

healthy human colon, comprising 64% of the gut microbiome

(Piccioni et al., 2022). The imbalance in the ratio of Firmicutes/

Bacteroides was also reported to indicate disrupted intestinal

homeostasis, pathogen invasion, or unhealthy conditions
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TABLE 1 Studies investigating the alteration of gut microbiome in pulmonary tuberculosis patients or intestinal tuberculosis patients without
antibiotics comparing with the healthy controls.

Study design Change
in diver-

sity

Change in microbiota composition Sequencing
technology

Literature

Patients Controls

Stool samples from
active PTB patients
(n=29)

Stool samples from
healthy controls

(n=22)

decreased
alpha-

deversity

Bifidobacterium and Prevotella decreased in patients 16S rRNA gene
amplicon (Illumina)

sequencing

(Cao et al.,
2021)

Bacteroidetes increased in patients

Stool samples from
PTB patients (n=10)

Stool samples from
healthy controls

(n=20)

decreased
alpha-

deversity

Bacteroidetes, Clostridales, Ruminococcaceae, Lachnospiraceae,
Prevotella, Romboutsia, Dialister, Gemmiger, Collinsella and

Roseburia decreased in patients;

16S rRNA gene
amplicon (Illumina)

sequencing

(Ding et al.,
2022)

Proteobacteria, Actinobacteria, Bifidobacteriales,
Coriobacteriales, Rhizobiales, Bifidobacteriaceae,

Coriobacteriaceae, Caulobacteraceae, Phyllobacteriaceae,
Burkholderiaceae, Granulicatella, Solobacterium,

Erysipelotrichaceae unclassified and Actinomyces increased in
patients

Colon biopsy
samples from ITB
patients (n=6)

Colon biopsy
samples from

healthy controls
(n=4)

no
significant
difference

Firmicutes, Lachnospiraceae, Ruminococcaceae, Bacteroidaceae,
Bacteroides, Faecalibacterium, Roseburia, Collinsella, Dorea,

Oscillibacter, Ruminococcus decreased in patients;

16S rRNA gene
amplicon (Illumina)

sequencing

(He et al.,
2021)

Proteobacteria, Enterobacteriaceae, Lactobacillus,
Pseudomonas, Klebsiella, Mycobacterium increased in patients

Stool samples from
PTB patients (n=30)

Stool samples from
healthy controls

(n=52)

decreased
alpha-

deversity

Roseburia hominis, Roseburia inulinivorans, Roseburia
intestinalis, Eubacterium rectale, Coprococcus comes,
Bifidobacterium adolescentis, Bifidobacterium longum,

Ruminococcus obeum, Akkermansia muciniphila, Haemophilus
parainfluenzae decreased in patients;

Shotgun
metagenomic

Illumina sequencing

(Hu et al.,
2019a)

unclassified Coprobacillus bacterium, Clostridium bolteae
increased in patients

Stool samples from
active PTB patients
(n=28), latent PTB
(n=10)

Stool samples from
healthy controls

(n=13)

minor
decreased
alpha-

deversity

Bacteroides slightly increased in patients 16S rRNA gene
amplicon (Illumina)

sequencing

(Hu et al.,
2019b)

Stool samples from
active PTB patients
(n=25), latent PTB
(n=32)

Stool samples from
healthy controls

(n=23)

not
reported

Firmicutes/Bacteroidetes ratio decreased in patients; 16S rRNA gene
amplicon (Illumina)

sequencing

(Huang et al.,
2019)

Bacteroidetes increased in patients

Stool samples from
PTB patients (n=18)

Stool samples from
healthy controls

(n=18)

decreased
alpha-

deversity

Bifidobacteriaceae, Ruminococcaceae, Bacteroidaceae,
Faecalibacterium, Faecalibacterium prausnitzii decreased in

patients;

16S rRNA gene
amplicon (454)
pyrosequencing

(Li et al.,
2019)

Prevotellaceae, Enterococcus increased in patients

Stool samples from
new PTB patients
(n=19), recurrent
PTB (n=18)

Stool samples from
healthy controls
(n=20) but with
younger age

structure and more
female

increased
alpha-
diversity

Bacteroidetes and Coprococcus depletion in RTB and NTB; 16S rRNA gene
amplicon (Illumina)

sequencing

(Luo et al.,
2017)

Firmicutes decreased in RTB, Roseburia decreased in NTB,
Lachnospira and Prevotella decreased in both NTB and RTB

patients;

Actinobacteria, Proteobacteria, Streptococcus increased in both
NTB and RTB patients, Escherchia and Collinsella increased in

RTB

Stool samples from
PTB patients (n=6)

Stool samples from
healthy blood
relatives of each
patient (n=6)

decreased
alpha-

deversity

Bifidobacterium decreased and Prevotella depletion in patients; 16S rRNA gene
amplicon (Illumina)
sequencing; faecal
whole genome

shotgun sequencing
(Illumina)

(Maji et al.,
2018)

Faecalibacterium, Coprococcus, Phascolarctobacterium,
Pseudobutyrivibrio, Bacteroides, Eubacterium rectale,

Phascolarctobacterium succinatutens, Roseburia inulinivorans,
Faecalibacterium prausnitzii, Shigella sonnei, Escherichia Coli,
Streptococcus pneumoniae, Streptococcus vestibularis were

increased in patients

(Continued)
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(Stojanov et al., 2020). The significant reduction in the phylum

Firmicutes in TB patients was observed by several independent

groups (Hu et al., 2019a; He et al., 2021; Wang S. et al., 2022; Wang

Y. et al., 2022; Ye et al., 2022). The relationship between reduced

Firmicutes and M. tuberculosis infection might be regarded as

reciprocal causation. On one hand, the imbalanced microbiome

composition caused by Firmicutes reduction might cause

susceptibility to M. tuberculosis infection or the activation of TB

in latent TB infection. On the other hand, the reduction of

Firmicutes might also be triggered by the dysregulated immune

system caused by M. tuberculosis infection.

Precisely, within Firmicutes, Clostridiales and Veillonellales were

found to be decreased by some studies (Ding et al., 2022; Wang S. et al.,
Frontiers in Cellular and Infection Microbiology 04
2022; Yoon et al., 2022). Meanwhile, many observations support the

reduction of families Lachnospiraceae, Ruminococcaceae, and

Clostridiaceae within Clostridiales (Maji et al., 2018; Li et al., 2019;

He et al., 2021; Shi et al., 2021; Ding et al., 2022;Wang S. et al., 2022; Ye

et al., 2022) and the reduction of Veillonellaceae within Veillonellales

(Maji et al., 2018; Namasivayam et al., 2020). More interesting findings

were observed at the genus level. Some of the most common genera in

Firmicutes such as Faecalibacterium, Ruminococcus, Blautia, Roseburia,

Lachnospira, Eubacterium,Coprococcus, andDoreawere all observed to

be decreased (Luo et al., 2017; Hu et al., 2019a; Hu et al., 2019b; Li et al.,

2019; He et al., 2021; Shi et al., 2021; Ding et al., 2022; Wang S. et al.,

2022; Wang Y. et al., 2022; Yang et al., 2022; Ye et al., 2022; Yoon et al.,

2022), whereas Granulicatella, Lactobacillus, Enterococcus, and
TABLE 1 Continued

Study design Change
in diver-

sity

Change in microbiota composition Sequencing
technology

Literature

Patients Controls

Stool samples from
PTB patients (n=58)
and symptomatic
controls (n=47)

Stool samples from
close contacts PTB
cases (n=73) and
close contacts of
symptomatic

controls (n=82)

inconclusive Erysipelotrichaceae, Anaerostipes and Blautia increased in
patients

16S rRNA gene
amplicon (Illumina)

sequencing

(Naidoo et al.,
2021)

Stool samples from
new M. tuberculosis
PTB patients (n=21)

Stool samples from
healthy controls

(n=10)

decreased
alpha-

deversity

Bacteroidetes, Actinobacteria, Veillonellaceae,
Succinivibrionaceae and Crocinitomicaceae decreased

in patients

16S rRNA gene
amplicon (Illumina)

sequencing

(Namasivayam
et al., 2020)

Stool samples from
PTB patients with
antibiotics (n=39)
and PTB patients
without antibiotics
(n=55)

Stool samples from
TB negative controls

(n=62)

decreased
alpha-

deversity

Lachnospiraceae, Lachnoclostridium, Anaeroglobus decreased
in PTB patients without antibiotics;

16S rRNA gene
amplicon (454)
pyrosequencing

(Shi et al.,
2021)

Enterococcus, Clostridiales and Rothia increased in patients

Stool samples from
new PTB patients
(n=83)

Stool samples from
healthy controls

(n=31)

decreased
alpha-

deversity

Firmicutes, Actinobacteria, Clostridales, Bifidobacteriales,
Bifidobacteriaceae, Lachnospiraceae, Ruminococcaceae,
Marinifilaceae, Eggerhellaceae, Barnesiellaceae, Blautia,
Roseburia, Bifidobacterium, undifined Ruminococcaceae,
Fusicatenibacter, Romboutsia decreased in patients;

16S rRNA gene
amplicon (454)
pyrosequencing

(Wang S.
et al., 2022)

Bacteroidetes, Bacteroidales, Bacteroidaceae, Tannerellaceae,
Fusobacteriaceae, Erysipelotrichaceae, Prevotellaceae,

Bacteroides, Parabacteroides, Fusobacterium,
Lachnoclostridium, Bacteroides vulgatus increased in patients

Stool samples from
new PTB patients
(n=56) and latent
PTB (n=36)

Stool samples from
healthy controls

(n=50)

decreased
alpha-

deversity

Firmicutes, Tenericutes, Roseburia decreased in patients; 16S rRNA gene
amplicon (Illumina)

sequencing

(Wang Y.
et al., 2022)

Actinobacteria, Bifidobacterium increased in patients

Stool samples from
new PTB patients
(n=55)

Stool samples from
healthy controls

(n=50) with slightly
younger median age

decreased
alpha-

deversity

Bacteroidetes and Bacteroides fragilis decreased in patients RT-qPCR for
targeting certain
phylum, family or

species

(Yang et al.,
2022)

Stool samples from
PTB patients (n=69)

Stool samples from
healthy controls

(n=10)

decreased
alpha-

deversity

Bacteroidetes, Proteobacteria, Fusobacteria, Bacteroidaceae,
Tannerllaceae, Bacteroides, Veillonella increased in patients

16S rRNA gene
amplicon (515, 806)
pyrosequencing

(Ye et al.,
2022)

Firmicutes, Actinobacteria, Bifidobacteriaceae,
Butyricioccaceae, Ruminococcaceae, Faecalibacterium,
Bifidobacterium, Agathobacter decreased in patients

Stool samples from
ITB patients (n=11)

Stool samples from
healthy controls

(n=63)

decreased
alpha-

deversity

Proteobacteria, Megasphaera, Veillonellales decreased in
patients

16S rRNA gene
amplicon (Illumina)

sequencing

(Yoon et al.,
2022)

Verrucomicrobia, Rhizobiales, Blautia increased in patients
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Streptococcuswere observed to be increased in patients (Luo et al., 2017;

Maji et al., 2018; Hu et al., 2019a; Li et al., 2019; He et al., 2021; Shi et al.,

2021; Ding et al., 2022; Wang Y. et al., 2022; Ye et al., 2022).

As mentioned earlier, the reduced genera primarily belong to

the two most abundant families in Firmicutes, Lachnospiraceae and

Ruminococcaceae. They are obligate anaerobic and butyrate-

producing bacteria (Sorbara et al., 2020; Liu et al., 2021). Butyrate

is a short-chain fatty acid (SCFA) that is an essential regulator for

the maintenance of intestinal homeostasis (Parada Venegas et al.,

2019). Butyrate can interact with G-coupled receptors such as

GPR43, GPR41, and GPR109a (Hodgkinson et al., 2023), leading

to increased regulatory T cells (Tregs) and dendritic cell precursors,

improved epithelial barrier function, as well as the increased

expression of anti-inflammatory cytokines such as IL-10 (Liu

et al., 2018). Additionally, butyrate can also inhibit HDAC
Frontiers in Cellular and Infection Microbiology 05
activity to decompact chromatin and upregulate gene expression,

inducing Tregs and the antimicrobial activity in intestinal

macrophages (Schulthess et al., 2019). In addition, Phenylbutyrate

(PBA), a derivative of butyrate, has been found to induce the

expression of antimicrobial peptides in lung epithelial cells

(Steinmann et al., 2009) and directly restrict the growth of M.

tuberculosis in vitro or even within macrophages (Coussens et al.,

2015). In clinical trials for TB patients, PBA in combination with

vitamin D has also been shown to increase the clearance of M.

tuberculosis by inducing the antimicrobial peptide LL-37 (Mily

et al., 2013; Mily et al., 2015), while also ameliorating

inflammation and improving symptom relief (Bekele et al., 2018;

Rekha et al., 2018). LL-37 was reported to disrupt the cell wall of

intra- and extracellularM. tuberculosis (Deshpande et al., 2020) and

also activate the autophagy of macrophages (Rekha et al., 2015).
FIGURE 1

The main findings in alteration of gut microbiomes in TB patients compared to healthy controls at the phylum, order, family, and genus level. Red:
elevation; blue: reduction; grey: not reported; white: no reported genus within the family.
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1149679
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yu et al. 10.3389/fcimb.2023.1149679
Therefore, a decreased butyrate level would result in elevated pro-

inflammatory responses, reduced antimicrobial activity, and

impaired epithelial barrier function (Chen et al., 2019b).

Conversely, the increased genera in patients all belong to the

order Lactobacillales, a group of lactic acid-producing bacteria. Lactic

acid bacteria are generally regarded as beneficial microorganisms that

support the host’s gut homeostasis and enhance the epithelial barrier

(Ren et al., 2020). However, it is also reported that lactic acid bacteria

can induce Th1 and suppress Th2 responses during M. tuberculosis

infection (Ghadimi et al., 2010). Meanwhile, it is also worth noting

that some of the bacteria in Enterococcus, Streptococcus, and

Granulicatella are opportunistic pathogens. The disrupted epithelial

barrier caused by reduced butyrate can facilitate the colonization of

these opportunistic pathogens.
2.2 Bacteroidetes

Bacteroidetes are the second most abundant microbiota in the

healthy human colon, comprising 23% of the gut microbiota

(Sánchez-Tapia et al., 2019). Similar to Firmicutes, alterations in

Bacteroidetes are also important in metabolism and energy balance

(Chen et al., 2019a). However, unlike Firmicutes, Bacteroidetes are

the main producer of the other two members of SCFAs, namely

acetate and propionate (Feng et al., 2018).

Despite the contradictory findings in the alteration of

Bacteroidetes, the most predominant findings were related to the

three most abundant genera in Bacteroidetes, namely Bacteroides,

Prevotella, and Parabacteroides (Rinninella et al., 2019; Zafar and

Saier, 2021). In most studies, Bacteroides and Parabacteroides were

reported to be increased in TB patients while Prevotella was

reported to be decreased (Maji et al., 2018; Hu et al., 2019a; Hu

et al., 2019b; Shi et al., 2021; Wang S. et al., 2022; Wang Y. et al.,

2022; Ye et al., 2022).

Both Bacteroides and Parabacteroides are acetate-producing

bacteria. Like butyrate, acetate can enhance antimicrobial peptides

such as defensins, and also increase the epithelial barrier repairment

by inducing the production of IL-22 (Fachi et al., 2020). Defensin,

such as defensin-1, was found to inhibit the intracellular growth of

mycobacterium inside granulomas (Sharma et al., 2017). Moreover,

acetate was also reported to increase phagocytosis and bacterial

killing by macrophages and neutrophils (Galvão et al., 2018). In

addition, Bacteroides was also one of the major sources of

propionate in the gut microbiota (Louis and Flint, 2017).

Propionate was also shown to have antimicrobial activity.

Propionate produced by Bacteroides was reported to limit the

colonization of many bacteria such as Salmonella (Jacobson et al.,

2018) and E.coli (Ormsby et al., 2020) by regulating intracellular

pH. However, it should not be neglected that acetate may also

suppress CD4+ T cell activation and Th1 and Th17 response while

propionate may suppress antigen-specific CD8+ T cell activation by

alleviating the IL-12 production by dendritic cells (Nastasi et al.,

2017). These effects may also increase the susceptibility of the host

to infections (Ahn et al., 2017; Piccinni et al., 2019).
Frontiers in Cellular and Infection Microbiology 06
In contrast, studies have shown that Prevotella can augment

Th17-mediated mucosal inflammation (Kempski et al., 2017)

and increase epithelial permeability to bacterial products

(Larsen, 2017). This might be because Prevotella can activate

TLR2-signaling and induce the secretion of IL-6, IL-8, and

CCL20 by epithelial cells (Tamanai-Shacoori et al., 2022), as

well as the secretion of IL-1b, IL-6, and IL-23 by dendritic cells

(Kwok et al., 2012). These cytokines can induce Th17 immune

response and neutrophil recruitment, increasing infection

severity and tissue damage (Larsen, 2017; Shen and Chen,

2018). Therefore, reduced Prevotella as well as increased

Bacteroides and Parabacteroides might simultaneously exert an

anti-inflammatory effect.

Intriguingly, in the context of ITB, there seems to be minor

differences compared with PTB patients. The most significant

observation would be the opposite trends with decreased

Bacteroides and increased Prevotella in ITB patients (He et al.,

2021; Yoon et al., 2022). As the major sources of both acetate and

propionate, decreased Bacteroides together with downregulated

Firmicutes in ITB patients would result in a dramatic depletion of

SCFA production. Based on the critical role that SCFAs play in

epithelial barrier function, antimicrobial protein production, and

immunomodulation, this depletion would cause excessive immune

responses, increased inflammatory lesions, and antimicrobial

peptide production. It might also increase the invasion and

colonization of M. tuberculosis and other opportunistic pathogens

in the gut.

Moreover, the increased Prevotella would also increase the Th17

response inducing neutrophil accumulation and granuloma

formation after M. tuberculosis infection (Seiler et al., 2003).

However, when exposed to excessive IL-17 produced by Th17

cells, longer survival of neutrophils can cause increased

neutrophil infiltration and the formation of pathological lesions

(Torrado and Cooper, 2010). This is also in line with the

observation of elevated IL-17 expression in ITB patients

(Pugazhendhi et al., 2013).
2.3 Proteobacteria and Actinobacteria

At the phylum level, Proteobacteria were observed to be increased

in TB patients (Luo et al., 2017; Namasivayam et al., 2020; He et al.,

2021; Ding et al., 2022; Wang Y. et al., 2022), while conflicting trends

were reported for Actinobacteria (Luo et al., 2017; Namasivayam

et al., 2020; Ding et al., 2022; Wang S. et al., 2022; Wang Y. et al.,

2022). However, at the genus level, Pseudomonas (Maji et al., 2018;

He et al., 2021; Shi et al., 2021), Shigella (Shi et al., 2021; Ding et al.,

2022)and Escherichia from Proteobacteria (Luo et al., 2017; Shi et al.,

2021; Ding et al., 2022)and Actinomyces from Actinobacteria (Maji

et al., 2018; Shi et al., 2021; Ding et al., 2022)were all reported to be

increased in patients. These bacteria are all common opportunistic

pathogens and are always associated with the disruption of mucosal

barriers (Pujic et al., 2015). An imbalanced SCFA constitution alters

the gut environment resulting in dysregulated immune response and
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breakdown of the epithelial barrier, causing the colonization of

opportunistic pathogens.
3 Microbiome-immune crosstalk
during M. tuberculosis infection

The gut microbiome and lung microbiome are not separate

groups within an organism. They are tightly related by the so-called

“gut-lung axis”, which means that the metabolites produced by the

gut microbiome can reach the systemic circulation and shape the

lung microbiome and the immune response in the lung, and vice

versa (Enaud et al., 2020). Among the metabolites of the

microbiome, SCFAs are the most extensively studied. SCFAs

including acetate, propionate, and butyrate have been shown to

have a modulatory role in the immune system and

epithelial function.

In PTB patients, compared with healthy controls (Figure 2A),

the main findings are the loss of Firmicutes such as Lachnospiraceae

and Ruminococcaceae, and the enrichment of Bacteroidetes

(Figure 2B). In the murine model challenged with M. tuberculosis,

the authors also observed a post-infection reduction of butyrate-

producing Lachnospiraceae and Ruminococcaceae and enrichment

of acetate/propionate-producing Bacteroides, similar to the

observations in humans (Winglee et al., 2014). Furthermore, two

studies on the relationship between Helicobacter hepaticus and M.

tuberculosis infection found that infection by Helicobacter hepaticus

resulting in similar dysbiosis with increased Bacteroidaceae and

decreased Clostridiales, Ruminococcaceae, Lachnospiraceae, and

Prevotellaceae could cause hyperactivated immune response,

overexpressed pro-inflammatory cytokines, and increased

susceptibility to M. tuberculosis, resulting in severe lung damage

(Arnold et al., 2015; Majlessi et al., 2017). These observations in

patients and murine models may lead to the potential altered SCFA

composition with decreased butyrate but increased acetate and

propionate. A fecal metabolomic study also revealed slightly

increased acetate and a significant decrease in butyrate in PTB

patients (Wang S. et al., 2022).
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Acetate, butyrate, and propionate are all SCFAs that can exert

anti-inflammatory effects by binding to GPR41 and GPR43.

However, butyrate is the only SCFA known to bind to GPR109A

(Liu et al., 2018). In vivo experiments using Gpr109a-/- mice failed to

ameliorate the inflammatory response and epithelial barrier

dysfunction after sodium butyrate administration (Chen et al.,

2018), indicating the importance of GPR109A in anti-

inflammatory response and epithelial barrier construction.

Another experiment using Gpr109a-/- mice observed dysregulated

immune responses and increased M1 macrophage polarization

(Zhang Z. et al., 2022). Increased acetate and propionate may

remedy the loss of butyrate in GPR41 and GPR43 activation but

may not rescue the loss of GPR109A activation. The loss of butyrate

in the gut microbiome and further in the circulation by the “gut-

lung axis” results in dysbiosis in the lung microbiome (Hu et al.,

2020; Vázquez-Pérez et al., 2020; Xiao et al., 2022; Zhang M. et al.,

2022), as well as the disruption of the lung epithelial barrier and

upregulation of pro-inflammatory cytokines in the systemic

circulation such as IFN-g, TNF, and IL-17A (Machado et al.,

2021). These pro-inflammatory cytokines and the opening up of

tight junctions in the lung epithelial barrier can facilitate the

migration of immune cells such as neutrophils and macrophages

(Akdis, 2021). Macrophages and neutrophils are the first-line innate

immune defense against M. tuberculosis by phagocytosis (Roca

et al., 2019). Moreover, immune cells such as macrophages and

dendritic cells can present antigens to T and B cells and augment

adaptive immune responses. After infection, CD4+ T cells can not

only further strengthen the innate immunity but also promote the

function and survival of CD8+ T cells (Lu et al., 2021), whilst CD8+

T cells can directly kill M. tuberculosis by their cytolytic function

(Lin and Flynn, 2015). Antibody opsonization was also shown to

promote the phagocytosis of macrophages (Chandra et al., 2022).

However, when the SCFA level in circulation is sustainably

reduced due to an imbalanced microbiome in TB, as observed in

ITB patients with decreased Bacteroides (Figure 2C), the resulting

depletion of IL-10 production and anti-inflammatory response can

provoke the persistence of an overactivated pro-inflammatory

response. Meanwhile, excessive TNF production was found to
A B C

FIGURE 2

The main findings in gut microbiome composition in PTB and ITB patients. Compared with the healthy conditions (A), in PTB patients (B), reduced
Firmicutes and Prevotella and increased Bacteroides altered the proportion of each SCFA, causing immune cell recruitment and mildly increased
immune response. However, when Bacteroides decreased and Prevotella increased (C), decreased SCFAs production resulted in drastic activation of
immune response and disruption of epithelial barrier, facilitating the colonization of M. tuberculosis in the intestine and the development of ITB.
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induce necroptosis of granuloma macrophages by activating the

RIP1-RIP3 necroptosome (Stutz et al., 2018), which can facilitate

bacterial replication and activation (Roca et al., 2019). Moreover,

the increased Prevotella in ITB patients’ gut microbiota could

further induce Th17 responses and aggravate neutrophil

infiltration and pathological lesions in both lung and gut. The

upregulated pro-inflammatory cytokine production may contribute

to the overactivation of neutrophils and lead to impairment of

mycobacterial controls within granulomas and thus exacerbate

disease (Moreira-Teixeira et al., 2020). The observation of higher

levels of neutrophils in the circulation of active TB patients also

indicates the detrimental role of an overactivated immune response

(Moideen et al., 2018). The uncontrolled replication and invasion of

M. tuberculosis might facilitate its colonization in the gut and cause

intestinal TB.
4 Perspectives and conclusions

The treatment of TB requires long-term multidrug treatment

with a mixture of broad-spectrum and mycobacterial-specific

antibiotics, especially for multidrug-resistant TB. However, it has

also been reported that anti-TB medications can result in further

dysbiosis of the intestinal microbiome in TB patients

(Namasivayam et al., 2017; Wipperman et al., 2017; Hu et al.,

2019b; Yoon et al., 2022). Intestinal microbiome disruption can

also, in turn, limit the efficiency of treatment (Negi et al., 2020). A

study ofM. tuberculosis infection in mice pre-treated with isoniazid

and pyrazinamide for 8 weeks also showed a higher lung bacterial

burden. Besides, alleviated TNF and IL-1b production, decreased

MHCII expression, and defective M. tuberculosis control were

found in the alveolar macrophages of the mice. This phenotype

can be partially reversed by fecal transplantation (Khan et al., 2019).

Moreover, in our review, the current findings in TB patients also

indicate a correlation between severely imbalanced gut microbiome

with the development of ITB in PTB patients. Therefore, a balanced

gut microbiome is crucial during M. tuberculosis infection. To

achieve this goal, probiotics and postbiotics as potential routine

supplements during TB treatment could be a one-stone-two-

birds strategy.

Probiotics, such as Bacteroides fragilis and Lactobacillus

plantarum, have already been considered novel probiotics in TB

treatment (Liu et al., 2021; Eribo et al., 2022). B. fragilis has been

reported to exert anti-inflammatory function by decreasing

excessive IFN-g and inducing IL-10 secretion in mice through its

metabolite PSA (polysaccharide) (Johnson et al., 2015; Johnson

et al., 2018). The study by Negi et al., also reported increased

MHCII expression on lung dendritic cells and a lower M.

tuberculosis burden in the lung of mice after treatment with

Lactobacillus plantarum . Another in vitro study using

Lacticaseibacillus rhamnosus PMC203 found a direct restriction in

M. tuberculosis growth and increased killing ability in infected

RAW 264.7 cells (Rahim et al., 2022).

Postbiotics, such as indole propionic acid, can inhibit M.

tuberculosis by targeting tryptophan synthesis (Negatu et al.,

2019). PBA as a derivative of probiotics (butyrate) has also been
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tested in clinical trials and observed to provide significant relief of

symptoms (Bekele et al., 2018; Rekha et al., 2018). However, the

usage and concentration of probiotics and postbiotics must be

individualized in the context of the patients. For example,

different concentrations of SCFAs might have distinct functions

(Ashique et al., 2022). Another example is the usage of SCFAs,

which might be helpful in normal TB patients, but detrimental in

people with HIV co-infection (Machado et al., 2021)

As mentioned above, studies have shown that the gut

microbiome alteration in general TB patients (PTB) is

characterized by dysbiosis, which is defined as reduced butyrate-

producing Firmicutes and Prevotella (Bacteroidetes), and increased

lactic acid-producing Firmicutes, Bacteroides, Parabacteroides, and

opportunistic pathogens in Proteobacteria and Actinobacteria. The

most significant consequence of this alteration, given the abundance

of Firmicutes and Bacteroidetes in the human gut microbiome, is

the change in the composition of SCFAs, with reduced butyrate and

increased acetate and propionate metabolite production. When

acetate and propionate production is further decreased by the

reduction of Bacteroides , there might be an increased

susceptibility to M. tuberculosis infection in the gut, causing ITB.

Therefore, the gut microbiome may act as the defense line in

preventing ITB development. Probiotics and postbiotics could

become potential supplements in TB treatment and ITB prevention.
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Vázquez-Pérez, J. A., Carrillo, C. O., Iñiguez-Garcıá, M. A., Romero-Espinoza, I.,
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