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Causal effects of gut microbiota
on the risk of periodontitis: a
two-sample Mendelian
randomization study

Shulu Luo, Weiran Li , Qianqian Li, Mengqi Zhang, Xun Wang,
Shuyi Wu* and Yan Li*

Department of Prosthodontics, Hospital of Stomatology, Guangdong Provincial Key Laboratory of
Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou,
Guangdong, China
Introduction: The oral cavity and the gut tract are interconnected, and both

contain abundant natural microbiota. Gut microbiota may interact with oral flora

and participate in the development of periodontitis. However, the specific role of

certain gut microbiota taxa for periodontitis has not been investigated.

Mendelian Randomization is an ideal method to explore causal relationships

avoiding reverse causality and potential confounding factors. Thus, we

conducted a two-sample Mendelian Randomization study to comprehensively

reveal the potential genetic causal effect of gut microbiota on periodontitis.

Methods: SNPs strongly associated with 196 gut microbiota taxa (18,340

individuals) were selected as instrument variables, and periodontitis (17,353

periodontitis cases and 28,210 controls) was used as the outcome. The causal

effect was analyzed via random effect inverse variance-weighted, weighted

median, and MR-Egger. The sensitivity analyses were conducted using

Cochran’s Q tests, funnel plots, leave-one-out analyses, and MR-Egger

intercept tests.

Results: Nine gut microbiota taxa (Prevotella 7, Lachnospiraceae UCG-008,

Enterobacteriales, Pasteurellales, Enterobacteriaceae, Pasteurellaceae,

Bacteroidales S24.7 group, Alistipes, and Eisenbergiella) are predicted to play a

causal role in enhancing the risk of periodontitis (p< 0.05). Besides, two gut

microbiota taxa (Butyricicoccus and Ruminiclostridium 6) have potentially

inhibitive causal effects on the risk of periodontitis (p< 0.05). No significant

estimation of heterogeneity or pleiotropy is detected.

Conclusion: Our study demonstrates the genetic causal effect of 196 gut

microbiota taxa on periodontitis and provides guidance for the clinical

intervention of periodontitis.
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Introduction

As the leading cause of missing teeth and the most prevalent

oral disease, periodontitis is a chronic, irreversible, and destructive

inflammatory disease that damages the soft tissue and alveolar bone

supporting the teeth (Papapanou et al., 2018). Currently,

periodontitis has imposed an unbearable burden on humans. For

individuals, periodontitis tends to have a tremendous impact on the

patient’s masticatory function, aesthetics, and psychology, which

cause a significant reduction in their life quality (Barbe et al., 2020).

Periodontitis is also associated with serious systematic health

problems, such as cardiovascular diseases, chronic lower

respiratory disorders, and diabetes (Chapple et al., 2013; Tonetti

et al., 2013; Kelly and El Karim, 2020). Globally, periodontitis is

estimated to affect around 50% of adults in its mild state and is

recorded as the sixth most prevalent disease in its severe state

(Genco and Sanz, 2020). Furthermore, the prevalence of

periodontitis increases with age and the economic impact of

periodontitis accounts for a significant portion of the annual

global economic burden of dental disease (Billings et al., 2018).

Since periodontitis’ socioeconomic and healthcare impacts are

enormous, it’s urgent to identify risk factors for periodontitis to

prevent its occurrence. However, implementing public health

models to prevent periodontitis is insufficient (Janakiram and

Dye, 2020). Existing studies have demonstrated that many risk

factors are associated with periodontitis, including smoking, alcohol

consumption, poor oral hygiene, systematic health, and so on

(Bartold, 2018; Baumeister et al., 2021). To further reduce the

periodontitis burden, more emphasis should be laid on extra

potentially modifiable risk factors.

Physiologically, the oral cavity and the gut are continuous areas

connected by the gastrointestinal tract in the digestive system, and

both are abundant in microorganisms. Periodontitis is triggered by

dysregulated intraoral microbial communities and aberrant

immune responses (Hajishengallis et al., 2020). Meanwhile, the

gut microbiota is demonstrated to involve in various physiological

regulations and the progression of many diseases, such as

cardiovascular diseases, autoimmune diseases, and tumors (Zhou

et al., 2019; Xu et al., 2022). It is of concern whether gut microbiota,

as an extra-oral but oral-connected microbial community, can cause

or mediate periodontitis. Traditionally, the gut microbiota was not

considered to be one of the risk factors for periodontitis. Over the

past few years, there has been increasing evidence of an association

between gut microbiota and periodontitis. Some experimental

studies point out that gut microbiota can modulate bone

metabolism and play an essential role in regulating periodontal

bone remodeling (Yan et al., 2016), which can affect the

development of periodontitis (Jia et al., 2019). Gut microbiota

may also mediate the impact of periodontitis on systemic diseases

including prediabetes (Li et al., 2021). However, existing studies

have not explored the causal relationship between gut microbiota

and periodontitis or focused on the exact role of specific gut

microbiota taxa on periodontitis. Given the above findings, we

hypothesize that variations in the gut microbiota composition

contribute to periodontitis. However, both gut microbiota

composition and periodontitis share several risk factors including
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diets, smoking, alcohol consumption, and stress, which might cause

spurious correlations as confounders (Bjorkhaug et al., 2019;

Baumeister et al., 2021). Therefore, distinct populations studied,

reverse causality, and potential confounding factors in current

studies hinder the inference of the causal effect between gut

microbiota and periodontitis. What’s more, the gut microbiota is

a complex microorganism community containing diverse taxa, and

research on the function of specific gut microbiota taxa for

periodontitis is absent. Overall, confirmation of a causal

relationship for this correlation and which microbiota taxa are

most relevant is essential for clinical practice in the management

of periodontitis.

Mendelian randomization (MR) is an alternative method to

interpret observational bias, using genetic variation normally single

nucleotide polymorphisms (SNPs) as instrumental variables (IV), to

detect causal relationships between exposure and disease outcomes

(Yavorska and Burgess, 2017). If the exposure is causally associated

with the outcome, the IV related to the exposure will proportionally

affect the outcome (Chen et al., 2021). The MR studies are similar to

randomized controlled trials (RCT) because the probability is the

same in the inheritance of either allele to an individual at random

(Emdin et al., 2017). Since genetic variants are usually not

associated with confounding factors, MR is more powerful in

avoiding reverse causal associations and confounding factors than

traditional observational studies (Hu et al., 2022). Previously, many

MR studies have been applied to elucidate modest risk factors for

various diseases, including cancers, cardiovascular diseases, and so

on, which is effective in solving problems in epidemiology (Higbee

et al., 2021). In addition, Dmitry. S reports genome-wide association

studies (GWAS) for periodontitis in 17,353 participants (Shungin

et al., 2019), which enables the conduction of an MR study on the

potential causal links between gut microbiota and periodontitis,

minimizing population differences, reverse causation, and

confounding factors that interfere with the analyses.

Herein, we performed a two-sample MR study based on public

large-scale GWAS data of gut microbiome and periodontitis to

reveal the possible causal effects of 196 gut microbiota taxa on

periodontitis. Eventually, we confirm the role of specific gut

microbiota taxa in increasing or reducing the risk of periodontitis,

most of which haven’t been involved in the fields of stomatology.

Our findings thus not only expand the taxa of gut microbes

associated with periodontitis but also reveal their specific causal

relationship with periodontitis, providing a new strategy for the

clinical control of periodontitis.
Materials and methods

Study design

In this study, we performed comprehensive MR analyses to

reveal the causal effect between 196 gut microbiota taxa and

periodontitis. The framework of our study design is presented in

Figure 1. The exposure of interest was 196 gut microbiota taxa, and

the outcome was periodontitis. The instrument variables for the

exposure and corresponding information in the outcome were
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1160993
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Luo et al. 10.3389/fcimb.2023.1160993
obtained and harmonized. Then MR analysis - included three

approaches were performed and sensitivities analyses were

conducted. A well-designed MR should follow three assumptions:

(i) the genetics variant was strongly correlated with the exposure of

interest (the gut microbiota); (ii) the genetics variant was not

correlated with potential risk factors of the outcome

(periodontitis) (p< 1×10-5); (iii) the genetic variant played role in

the outcome only through exposure (Emdin et al., 2017). All these

hypotheses were well-handled in our analyses. For the first

hypothesis, we extracted strong instrument variables and

calculated their F statistics to evaluate their strength. Since SNPs

on each chromosome were randomly assigned during meiosis

according to Mendel’s second law, the second hypothesis actually

has been met from the study design (Veller et al., 2019). In addition,

we search the PhenoScanner to remove SNPs associated with

confoundings (Staley et al., 2016; Kamat et al., 2019). For the

third hypothesis, we evaluated the pleiotropy using MR-Egger

intercept analysis.
Data sources and instrumental
variable selections

Previously, the MiBioGen consortium analyzed genome-wide

genotypes and fecal microbiome data from 18,340 individuals

mostly from North America, Israel, South Korea, and European

(Kurilshikov et al., 2021). They performed strict quality control and

those left for analysis should have a pointwise imputation quality

control > 0.4. Taxa with prevalence low than 20% was discarded.
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The microbiome GWAS was adjusted by age, sex, technical

covariates, and genetic principal components. The cutoff

thresholds included: minor allele frequency > 0.05, and SNP-wise

call filtering > 0.95. Alexander Kurilshikov and his colleagues

reported the significant loci of host genetic variation in relation to

microbial taxa (Kurilshikov et al., 2021). After excluding 15

unknown taxa, there were 196 known bacterial taxa, including 9

phyla, 16 classes, 20 orders, 32 families, and 119 genera (Table S1).

The criteria for the 196 taxa included: (i) p< 1×10-5, since limited

SNPs could be obtained under the genome-wide significance

(p< 5×10-8) and such relaxed threshold have also been applied in

many studies (Sanna et al., 2019); (ii) Linkage disequilibrium (LD)

test was performed to remove linked SNPs r2< 0.1 within a window

of 500 kilobase pair (Ni et al., 2022); (iii) The F-statistic was

calculated for each SNP and SNPs with F< 10 were eliminated to

avoid weak instruments bias (Burgess et al., 2011). The F-statistic

for each SNP was calculated with a formula as

F  ¼  
R2 

(1 − R2 )
ñ ðN-2Þ

In the formula, R2 means variance of exposure explained by

instrument variable; N indicates sample size. And the variance of

exposure explained by the instrument variable was calculated with a

formula as

R2  =
b 2

( b 2 + se2 � N)

In this formula, b indicated effect size for the genetic variant of

interest; se indicated a standard error for b; N indicated sample size.
FIGURE 1

Schematic illustration of the causal relationship between gut microbiota and periodontitis through MR analyses. An overview of the two-sample MR
study revealed the causal effect of specific gut microbiota taxa on periodontitis. There existed 9 taxa of gut microbiota that accelerated the initiation of
periodontitis and 2 taxa of gut microbiota that reduced the risk of periodontitis. (MR, Mendelian randomization; SNPs, single nucleotide polymorphisms).
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1160993
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Luo et al. 10.3389/fcimb.2023.1160993
After strict selections, the identified IVs and corresponding F

statistics were presented in Table S2.

The GWAS of periodontitis was from the GLIDE consortium

which included 17,353 periodontitis cases and 28,210 controls

(Shungin et al., 2019). Participants were of European ancestry.

Periodontitis cases were categorized in compliance with the

Community Periodontal Index (World Health Organization,

2013) or the Centers for Disease Control and Prevention/

American Academy of Periodontology case definition in terms of

the probing depths and the amount of deep periodontal pockets

(Page and Eke, 2007). The SNP information of instrument SNPs in

outcomes was obtained and harmonized with that of the exposure.
Mendelian randomization and
sensitivity analyses

The MR and sensitivity analysis methods were consistent with

published studies (Chen et al., 2021; Chen X. et al., 2022). Random

effect inverse variance-weighted (IVW) was used as the main

analysis for it was the most robust analysis and could provide a

modest estimate with the presence of heterogeneity. Besides, we

performed the weighted median (WM) and MR-Egger to validate

the robustness of IVW estimates. MR-Egger regression could

provide a test for unbalanced pleiotropy and considerable

heterogeneity. When pleiotropy exists, the MR-Egger estimates

were more convincing than IVW estimates (Bowden et al., 2015).

And when at least half of the weighted variance provided by

horizontal pleiotropy was valid, the WM estimates could provide

robust estimates of effect (Bowden et al., 2016). In short, a

significant estimate provided by IVW with the same direction of

estimates provided by WM and MR-Egger was treated as a

significant estimate.

We also conducted a series of sensitivity analyses, including

Cochran’s Q tests, funnel plots, leave-one-out analyses, and MR-

Egger intercept tests. To be specific, heterogeneity was detected by

Cochran’s Q tests. The intercept term derived from MR-Egger

regression was utilized to evaluate pleiotropy. The leave-one-out

analyses were conducted to determine whether the causal estimate

was driven by any single SNP.

All analyses were performed with the “Two Sample MR”

(version 0.5.6) package in R software (version 4.2.1). A two-sided

p< 0.05 was set as significant. All estimations were expressed as odds

ratios (OR) per standard deviation (SD) increment of the

corresponding exposure.
Results

An overview of IVs in taxa

Through screening the genome-wide significance threshold

(p< 1×10-5), LD tests, harmonizing, and verifying F-statistics,

each of the 196 bacterial taxa gets multiple SNPs as their IVs. The

F-statistics of all retained SNPs are over 10, indicating sufficient
Frontiers in Cellular and Infection Microbiology 04
correlation strength between IVs and corresponding bacterial

taxon. Thus, our study has no weak instrument bias.
Associations of gut bacterial taxa
with periodontitis

Preliminary results for the analyses of associations between

genetically proxied gut bacterial taxa and risks of periodontitis are

presented in Figure 2; Table S3. Among the 196 bacterial taxa, we

find 11 gut microbiota taxa causally associated with periodontitis

(Figure 3). The position of instrumental SNPs of the causal

microbiota taxa and their nearest genes were listed in Table S4.

The genus Prevotella 7 is found to be positively associated with

periodontitis, suggesting that genus Prevotella 7 in the human gut is

causally related to an increased risk of periodontitis (IVW OR =

1.14, 95% confidence interval (CI)1.05-1.25, p = 0.002). The above

result is furtherly confirmed by WM analyses (OR = 1.13, 95% CI

1.01-1.26, p = 0.028). The causal assessment from the MR-Egger

analysis also supports consistent correlation but is not significant

(OR = 1.12, 95% CI 0.67-1.88, p = 0.681) (Figure 4A; Table 1). The

genus Lachnospiraceae UCG008 also has a progressive effect on

periodontitis (IVW OR = 1.19, 95% CI 1.04-1.38, p = 0.014). The

WM analysis shows similar results (OR = 1.20, 95% CI 1.02-1.42,

p = 0.032). However, the MR-Egger analysis still exhibits consistent

but insignificant trends (OR = 1.24, 95% CI 0.53-2.89, p = 0.633)

(Figure 4B; Table 1).

In addition, we identify potential causal relationships between

the other 9 taxa and periodontitis, as the IVW analyses results for all
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FIGURE 2

Preliminary MR analyses for the associations between gut
microbiota and the risk of periodontitis. The circle from the outer to
the inner represented the IVW, WM, and MR-Egger estimates,
respectively. Gut microbiota was classified in order, phylum, class,
family, and genus. The shades of color were reflections of the
magnitude of the p-value as the label inside the circle. (MR,
Mendelian randomization; IVW, inverse variance-weighted; WM,
weighted median).
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9 phenotypes show significant differences (p< 0.05, Table 1). Among

them, 7 taxa are determined to have a potential positive causal effect

on periodontitis to increase the risk of periodontitis (Figures 4C–I),

specifically containing the order Enterobacteriales (IVW OR = 1.37,

95% CI 1.07-1.74, p = 0.012), the order Pasteurellales (IVW OR =

1.12, 95% CI 1.01-1.25, p = 0.039), the family Enterobacteriaceae

(IVW OR = 1.37, 95% CI 1.07-1.74, p = 0.012), the family

Pasteurellaceae (IVW OR = 1.12, 95% CI 1.01-1.25, p = 0.039),

the family Bacteroidales S24.7 group (IVW OR = 1.16, 95% CI 1.01-

1.33, p = 0.042), the genus Alistipes (IVW OR = 1.20, 95% CI 1.01-

1.42, p = 0.034), and the genus Eisenbergiella (IVW OR = 1.12, 95%

CI 1.00-1.25, p = 0.046). Consequently, the above 7 taxa are

confirmed to causally increase the risk of periodontitis. On the

contrary, 2 taxa including the genus Butyricicoccus (IVWOR = 0.82,

95% CI 0.68-0.98, p = 0.030) and the genus Ruminiclostridium 6

(IVW OR = 0.86, 95% CI 0.74-0.99, p = 0.038) are identified as

having a negative causal effect on periodontitis (Figures 4J, K) and

tending to causally reduce the risk of periodontitis. Except the order

Enterobacteriales, the family Enterobacteriaceae, and the genus

Alistipes, the other MR analyses (WM and MR-Egger) present

consistent results with the corresponding IVW analyses for the

remaining 6 taxa.

For the order Enterobacteriales, the family Enterobacteriaceae,

and the genus Alistipes, the causal correlations estimated by MR-

Egger are the reverse of that detected by the other two MR analyses,

although not significant. Therefore, the interpretation of these

potential causal effects should be cautious. More investigations

are needed. Nevertheless, due to the absence of horizontal

pleiotropy and heterogeneity (p > 0.05, explained below),

the causal relationships obtained by IVW are more accurate than

the results from MR-Egger (Bowden et al., 2016; Chen et al., 2021;

Chen M. et al., 2022). Consequently, it’s reasonable to recognize

the IVW estimates for the order Enterobacteriales, the family

Enterobacteriaceae, and the genus Alistipes, that is, they may

increase the risk of periodontitis.
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Sensitivity analyses and detection
of pleiotropy

To avoid excessive bias effects, pleiotropic analyses are

conducted. The pleiotropies are absent in the IVs of the

mentioned 11 taxa causally associated with periodontitis (p > 0.05)

and the conclusions are supported by the leave–one–out sensitivity

(Figure S1). Funnel plots indicate that causal associations are less

likely to be influenced by potential biases with SNPs symmetrically

distributed (Figure S2). In view of heterogeneous results, Cochran’s

Q tests demonstrate no evidence of heterogeneity among 11 taxa (p

> 0.05). Besides, MR-Egger intercept tests exhibit no indication of

horizontal pleiotropy within 11 taxa (Table 2). In summary, our MR

analyses are verified to be reliable and robust. All these results

suggest that the identified causal relationships between gut

microbiota and periodontitis are likely to be mediated by the

above gut bacterial taxa.
Discussion

In our research, a two-sample MR study successfully determines

that partial gut microbiota can facilitate or prevent periodontitis.

The results are examined by several analyses, namely IVW, WM,

and MR-Egger analyses, almost all of which show consistent causal

associations. The genus Prevotella 7, the genus Lachnospiraceae

UCG-008, the order Enterobacteriales, the order Pasteurellales, the

family Enterobacteriaceae, the family Pasteurellaceae, the family

Bacteroidales S24.7 group, the genus Alistipes, and the genus

Eisenbergiella play causal roles in promoting the initiation of the

periodontitis, while the genus Butyricicoccus and the genus

Ruminiclostridium 6 causally reducing the risk of periodontitis.

Our findings fill the knowledge gap of whether gut microbiome can

contribute to periodontitis and which taxa can accelerate or inhibit

the initiation of periodontitis.
FIGURE 3

Forest plot of Mendelian randomization estimates between Gut microbiota and periodontitis. The figure showed the IVW estimates of significantly
periodontitis-associated gut microbiota taxa. The red dots represent the IVW estimates, and the black bars represent the 95% confidence intervals of
IVW estimates. The OR > 1 indicates increased risk while< 1 indicates decreased risk.
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Prevotella is identified to activate key pathogenic species of

periodontitis especially P. gingivalis that can result in periodontal

diseases at low abundance (Hajishengallis et al., 2011). The genome

of Prevotella is highly plastic and diverse, which favors its resistance

to multiple exogenous factors, adaptation to variable environments,

and generation of virulence (Purushe et al., 2010). This

characteristic may account for the association between Prevotella

and several oral infectious diseases. According to observational

experiments, the genus Prevotella 7 in the gut of patients with
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periodontal diseases is significantly increased compared with that of

populations without periodontal diseases (Abusleme et al., 2021). In

our study, a higher abundance of the genus Prevotella 7 indicates a

higher risk of periodontitis, suggesting the genus Prevotella 7

detected in fecal samples can be considered as a predictive

biomarker and a target for efficient intervention in periodontitis.

To be noted, we found novel positively related taxa that haven’t

been reported in previous literature. Among them, the genus

Lachnospiraceae UCG-008 is positively correlated to the release of
A B

D E F

G IH

J K

C

FIGURE 4

Scatter plots of the MR estimates for the significant causality of 11 gut microbiota taxa and the risk of periodontitis. (A) The causal effect of the genus
Prevotella 7 on periodontitis; (B) The causal effect of genus Lachnospiraceae UCG008 on periodontitis; (C–K) Potential causal effect of 9 other gut
microbiota taxa on periodontitis. The lines implying positive correlations moved diagonally upward from left to right, indicating a facilitative effect of
gut microbiota on periodontitis. The horizontal and vertical lines indicated each correlation’s 95% confidence interval. The lines implying negative
correlations move diagonally downward from left to right, indicating the inhibitory effect of gut microbiota on periodontitis. (MR, Mendelian
randomization; SNPs, single nucleotide polymorphisms).
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inflammatory factors such as IL-6, HS-CRP, and TNF-a, indicating
that reducing the numbers of Lachnospiraceae UCG-008 is

beneficial for controlling inflammation and can function in

controlling periodontitis (Zhu et al., 2020). The pathogenic

members of the order Pasteure l la les and the family

Pasteurellaceae are partially distributed in the mucosal of the oral

cavity (Christensen et al., 2020). Our Mendelian study has shown
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that these two taxa distributed in the gut increase the risk of

periodontitis. Combining previous studies and our findings, we

assume that the order Pasteurellales and the family Pasteurellaceae

may deteriorate periodontitis by regulating their abundance and

pathogenicity in the oral cavity. The family Bacteroidales S24.7

group, one of the major components of gut microbiota, can trigger

infections by stimulating immunity and synthesizing virulence
TABLE 1 MR estimates for the relationship between genetically instrumented gut microbiota and periodontitis.

Exposure Method OR 95% CI p-value

Enterobacteriales

IVW 1.37 1.07-1.74 0.012

WM 1.36 1.01-1.85 0.046

MR-Egger 0.49 0.13-1.81 0.336

Pasteurellales

IVW 1.12 1.01-1.25 0.039

WM 1.13 0.96-1.32 0.130

MR-Egger 1.18 0.92 -1.53 0.2163

Enterobacteriaceae

IVW 1.37 1.07-1.74 0.012

WM 1.36 1.00-1.86 0.051

MR-Egger 0.49 0.13-1.81 0.336

Pasteurellaceae

IVW 1.12 1.01-1.25 0.039

WM 1.13 0.97-1.31 0.117

MR-Egger 1.18 0.92-1.53 0.216

Bacteroidales S24.7 group

IVW 1.16 1.01-1.33 0.042

WM 1.16 0.97-1.38 0.113

MR-Egger 1.12 0.64-1.97 0.702

Prevotella 7

IVW 1.14 1.05-1.25 0.002

WM 1.13 1.01-1.26 0.028

MR-Egger 1.12 0.67-1.88 0.681

Lachnospiraceae UCG008

IVW 1.19 1.04-1.38 0.014

WM 1.20 1.02-1.42 0.032

MR-Egger 1.24 0.53-2.89 0.633

Butyricicoccus

IVW 0.82 0.68-0.98 0.030

WM 0.83 0.64-1.08 0.161

MR-Egger 0.85 0.60-1.20 0.384

Alistipes

IVW 1.20 1.01-1.42 0.034

WM 1.20 0.96-1.50 0.117

MR-Egger 0.86 0.37-2.00 0.736

Ruminiclostridium 6

IVW 0.86 0.74-0.99 0.038

WM 0.88 0.72-1.08 0.211

MR-Egger 0.89 0.60-1.30 0.548

Eisenbergiella

IVW 1.12 1.00-1.25 0.046

WM 1.04 0.90-1.21 0.580

MR-Egger 1.52 0.63-3.63 0.372
fron
MR, Mendelian randomization; CI, confidence interval; OR, odds ratio; IVW, inverse variance-weighted; WM, weighted median.
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factors (Ormerod et al., 2016). However, an observational study

presents contradictory results showing the anti-inflammatory

effects of metabolites of the family Bacteroidales S24.7 group. The

inconsistency between studies may be ascribed to the highly

individual variations in gut microbiological composition and the

complicated multifactorial properties of inflammatory diseases

(Eckburg et al., 2005). Our MR study can evade these issues by

providing validation from a genetic perspective, obtaining clear

evidence that the family Bacteroidales S24.7 group promotes the risk

of periodontitis. Next, according to previous observational studies,

the increase in the genus Eisenbergiella is associated with the

deterioration of some chronic diseases, particularly pro-

inflammatory illnesses which may include periodontitis (Bailen

et al., 2020).

In addition to the above 9 taxa promoting periodontitis, we also

indicate 2 negatively causative gut microbiota taxa (the genus

Butyricicoccus and the genus Ruminiclostridium 6) that were first

reported to be associated with periodontitis. Both the genus

Butyricicoccus and the genus Ruminiclostridium 6 can degrade

polysaccharides through autocrine multienzyme complexes to

produce short-chain fatty acids such as butyrate, which acts as a

valid anti-inflammatory mediator (Devriese et al., 2017; Wang et al.,

2018). The biological function of butyrate is to maintain the

intestinal epithelial barrier, balance gut microbiota, inhibit the

expression of destructive cytokine, and regulate immunity and

inflammation (Xiao et al., 2020), which may be the mechanisms

of these two taxa to reduce risks of periodontitis. Combined with

the existing results, our MR study suggests that we can possibly

achieve prevention and control of periodontitis by increasing the

abundance of the genus Butyricicoccus and the genus

Ruminiclostridium 6 in various ways. Taken together, the

correlation between mentioned gut microbiota taxa and

periodontitis as verified by our MR study is reasonable.

Since the oral and gastrointestinal tracts are directly connected and

both oral and gut microbiota have been demonstrated to affect the

development of systemic diseases (Uchiyama et al., 2019), the
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interaction between the two microbiotas is meaningful to be

explored. Clarification of the exact contribution of specific gut

microbe taxa to periodontitis can bring new opportunities for more

efficient prevention and control of periodontitis. Although efforts have

already been made to elucidate the association between periodontitis

and gut microbiota, no evidence for the causal effect was proposed.

Furthermore, even though studies have found that periodontitis

patients have a phenotype of dysbiosis of the gut microbiota, it’s the

result of a multifactorial combination and the strain-specific changes of

diverse microbiota taxa are inconsistent. In addition, the composition

of the gut microbiota may vary due to inconsistencies in the staging of

periodontitis, gender ratio, and ethnicity of the populations in different

studies. The above factors hinder the inference of a specific causal effect

on the risk of periodontitis and gut microbiota taxa.

As aforementioned, MR is a perfect study design to elucidate the

causal effect between potential risk factors and diseases of interest.

Recently, many MR studies have been applied to clarify modest risk

factors for periodontitis. In these studies, the risk of periodontitis can

be exaggerated by tobacco, alcohol, and genetically proxied obesity

(Baumeister et al., 2021; Dong et al., 2022), while being suppressed by

high micronutrients, fiber, and omega-3 fatty acids intake (Heo et al.,

2022; Watson et al., 2022). Through exploring the factors that

modulate the risk of periodontitis, MR studies facilitate the

recommendation of public health policies and clinical interventions

that effectively reduce the incidence and social burden of

periodontitis. Meanwhile, there are also some factors that were

linked to periodontitis in previous epidemiological observational

studies but are demonstrated to have no causal association with

periodontitis via MR studies, such as arthritis and psoriasis (Baurecht

et al., 2022; Yin et al., 2022), which are not recommended as a target

for the prevention and control of periodontitis. Compared with

previous MR studies, our study is more comprehensive, revealing

the causal effect of 196 gut microbiome taxa on periodontitis while

previous MR studies only focus on less than 10 exposures of interest.

So far, this work is the pioneer MR study using large-scale gut

microbiome and periodontitis genetic data to explore whether gut
TABLE 2 MR-Egger test for directional pleiotropy and heterogeneity.

Exposure Intercept p-value Q Q_ p-value

Enterobacteriales 0.004 0.829 17.518 0.420

Pasteurellales 0.036 0.173 8.640 0.733

Enterobacteriaceae -0.003 0.937 5.308 0.380

Pasteurellaceae 0.000 0.983 10.971 0.531

Bacteroidales S24.7 group 0.017 0.646 8.052 0.234

Prevotella 7 0.003 0.779 8.595 0.968

Lachnospiraceae UCG008 -0.002 0.880 7.863 0.852

Butyricicoccus 0.000 0.984 13.225 0.279

Alistipes 0.025 0.528 16.175 0.135

Ruminiclostridium 6 -0.019 0.361 17.878 0.397

Eisenbergiella 0.001 0.985 2.532 0.865
MR, Mendelian randomization; Q, heterogeneity statistic Q.
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microbiota is causally related to the risk of periodontitis. The

prominent advantage of our study is that the execution of the MR

method robustly diminishes the interference of reverse causal

associations and confounding factors. What’s more, our MR study

encompasses the widest range of the population at a minimal cost,

which may be more practical and convincing than conventional

observational studies. However, some limitations should be noted.

First, since participants in the GWAS are predominantly of European

ancestry, extrapolation of our findings to other ethnic groups may be

constrained. Second, given the biological plausibility and

sophisticated pathobiology of periodontitis as well as the polyphasic

process of statistics, the application of a strict multiple-testing

correction may be so conservative that partially potential strains

that are causally correlated to periodontitis are overlooked. Therefore,

we didn’t implement multiple correlations. Third, since our study

aimed to elucidate the risk factors for periodontitis to achieve

comprehensive clinical intervention and reduce the incidence, we

target the unidirectional role of 196 gut microbiota taxa on

periodontitis. Fourth, the exact mechanisms by which the as-

mentioned gut microbiota taxa influence the risk of periodontitis

haven’t been totally investigated in this study.

Conclusions

In summary, this study innovatively demonstrates the causal

relationship between gut microbiota and periodontitis through MR

analyses and reveals the impact of specific gut microbiota taxa on

the risk of periodontitis, thus providing new directions for the

clinical intervention of periodontitis.
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